
Chapter 2

Load Flow Analysis

2.1 Introduction

Load flow analysis is the most important and essential approach to investigating

problems in power system operating and planning. Based on a specified generating

state and transmission network structure, load flow analysis solves the steady

operation state with node voltages and branch power flow in the power system.

Load flow analysis can provide a balanced steady operation state of the power

system, without considering system transient processes. Hence, the mathematic

model of load flow problem is a nonlinear algebraic equation system without

differential equations. Power system dynamic analysis (see Chaps. 5 and 6) inves-

tigates system stability under some given disturbances. Its mathematic model

includes differential equations. It should be pointed out that dynamic analysis is

based on load flow analysis and the algorithm of load flow analysis is also the base

for dynamic analysis methods. Therefore, familiarity with the theory and algo-

rithms of load flow analysis is essential to understanding the methodology of

modern power system analysis.

Using digital computers to calculate load flow started from the middle of the

1950s. Since then, a variety of methods has been used in load flow calculation. The

development of these methods is mainly led by the basic requirements of load flow

calculation, which can be summed up as:

1. The convergence properties

2. The computing efficiency and memory requirements

3. The convenience and flexibility of the implementation

Mathematically, the load flow problem is a problem of solving a system of nonlinear

algebraic equations. Its solution usually cannot avoid some iteration process. Thus

reliable convergence becomes the prime criterion for a load flow calculation meth-

od. With the scale of power system continually expanding, the dimension of load

flow equations now becomes very high (several thousands to tens of thousands). For

the equations with such high dimensions, we cannot ensure that any mathematical

method can converge to a correct solution. This situation requires the researchers

and scholars in the power system analysis field to seek more reliable methods.
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In the early stages of using digital computers to solve power system load flow

problems, the widely used method was the Gauss–Seidel iterative method based on

a nodal admittance matrix (it will be simply called the admittance method below)

[4]. The principle of this method is rather simple and its memory requirement is

relatively small. These properties made it suit the level of computer and power

system theory at that time. However, its convergence is not satisfactory. When the

system scale becomes larger, the number of iteration increases sharply, and some-

times the iteration process cannot converge. This problem led to the use of the

sequential substitution method based on the nodal impedance matrix (also called

the impedance method).

At the beginning of the 1960s, the digital computer had developed to the second

generation. The memory and computing speed of computers were improved signif-

icantly, providing suitable conditions for the application of the impedance method.

As mentioned in Chap. 1, the impedance matrix is a full matrix. The impedance

method requires the computer to store the impedance matrix that represents the

topology and parameters of the power network. Thus it needs a great amount of

computer memory. Furthermore, in each iteration, every element in the impedance

matrix must be operated with, so the computing burden is very heavy.

The impedance method improved convergence and solved some load flow

problems that the admittance method could not solve. Therefore, the impedance

method was widely applied from then on and made a great contribution to power

system design, operation, and research.

The main disadvantage of the impedance method is its high memory require-

ment and computing burden. The larger the system is, the more serious these

defects are. To overcome the disadvantage, the piecewise solution method based

on impedance matrix was developed [5]. This method divides a large system up into

several small local systems and only the impedance matrixes of local systems and

the impedances of tie lines between these local systems are to be stored in the

computer. In this way, the memory requirement and computing burden are greatly

alleviated.

The other approach to overcoming the disadvantages of the impedance method is

to apply the Newton–Raphson method (also called the Newton method) [6]. The

Newton method is a typical method used to solve nonlinear equations in mathemat-

ics with very favorable convergence. As long as the sparsity of the Jacobean matrix

is utilized in the iterative process, the computing efficiency of the Newton method

can be greatly improved. Since the optimal order eliminating method [7] began to

be employed in the middle of the 1960s, the Newton method has surpassed the

impedance method in the aspects of convergence, memory demand, and computing

speed. It is still the favored method, and is widely used in load flow calculation

today.

Since the 1970s, the load flow calculating method continues to develop in

various ways. Among them the most successful is the fast decoupled method,

also called the P� Q decoupled method [8]. Comparing with the Newton method,

this method is much simpler and more efficient algorithmically, and therefore more

popular in many applications.
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In the recent 20 years, research on load flow calculation is still very active. Many

contributions seek to improve the convergence characteristics of the Newton

method and the P� Q decoupled method [9–15]. Along with the development of

artificial intelligent theory, the genetic algorithm, artificial neural network algo-

rithm, and fuzzy algorithm have also been introduced to load flow analysis [16–19].

However, until now these new models and new algorithms still cannot replace the

Newton method and P� Q decoupled method. Because the scales of power systems

continue to expand and the requirements for online calculation become more and

more urgent, the parallel computing algorithms are also studied intensively now and

may become an important research field [20].

This chapter mainly discusses the currently widely used Newton method and

P� Q decoupled method.

The degree of flexibility and convenience of load flow calculation are also very

important to computer application. In practice, load flow analysis is usually part of

an interactive environment, rather than a pure calculation problem. Therefore, the

human–computer interface should be friendly, allowing users to monitor and

control the calculation process. To obtain an ideal operation scheme, it is usually

necessary to modify the original data according to the computing results. Thus, the

computing method should be flexible, permitting users to readily modify and adjust

their operation scheme. Input and output processes should also receive careful

attention.

Power system steady state analysis includes load flow analysis and static security

analysis. Load flow analysis is mainly used in analyzing the normal operation state,

while static security analysis is used when some elements are out of service. Its

purpose is to check whether the system can operate safely, i.e., if there are

equipment overloads, or some node voltages are too low or too high. In principle,

static security analysis can be replaced by a series of load flow analyses. However,

usually there are very many contingency states to be checked and the computation

burden is quite large if a rigorous load flow calculation method is used. Hence

special methods have to be developed to meet the requirement of efficient calcula-

tion. In the first part of this chapter, the models and algorithms of load flow

calculation are introduced. In the second part, the problems related to static security

analysis are discussed.

2.2 Formulation of Load Flow Problem

2.2.1 Classification of Node Types

An electric power system is composed of generators, transformers, transmission

lines and loads, etc. A simple power system is illustrated in Fig. 2.1. In the process

of power system analysis, the static components, such as transformers, transmission

lines, shunt capacitors and reactors, are represented by their equivalent circuits
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consisting of R,L,C elements. Therefore, the network formed by these static

components can be considered as a linear network and represented by the

corresponding admittance matrix or impedance matrix. In load flow calculation,

the generators and loads are treated as nonlinear components. They cannot be

embodied in the linear network, see Fig. 2.1b. The connecting nodes with zero

injected power also represent boundary conditions on the network.

In Fig. 2.1b, the relationship between node current and voltage in the linear

network can be described by the following node equation:

I ¼ YV ð2:1Þ

or

_Ii ¼
Xn
j¼1

Yij _Vj ði ¼ 1; 2; . . . ; nÞ ð2:2Þ

where _Ii and _Vj are the injected current at bus i and voltage at bus j, respectively, Yij
is an element of the admittance matrix, n is the total number of nodes in the system.
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To solve the load flow equation, the relation of node power with current should

be used

_Ii ¼ Pi � jQi

V̂i

ði ¼ 1; 2; . . . ; nÞ ð2:3Þ

where Pi, Qi are the injected active and reactive power at node i, respectively. If

node i is a load node, then Pi and Qi should take negative values. In (2.3), V̂i is the

conjugate of the voltage vector at node i. Substituting (2.3) to (2.2), we have,

Pi � jQi

V̂i

¼
Xn
j¼1

Yij _Vj ði ¼ 1; 2; . . . ; nÞ

or

Pi þ jQi

_Vi

¼
Xn
j¼1

ŶijV̂j ði ¼ 1; 2; . . . ; nÞ ð2:4Þ

There are n nonlinear complex equations in (2.4). They are the principal equations

in load flow calculation. Based on different methods to solve (2.4), various load

flow algorithms can be formed.

In the power system load flow problem, the variables are nodal complex voltages

and complex powers: V , y, P, Q. If there are n nodes in a power system, then the

total number of variables is 4 n.
As mentioned above, there are n complex equations or 2n real equations defined

in principal by (2.4), thus only 2n variables can be solved from these equations,

while the other 2n variables should be specified as original data.

Usually, two variables at each node are assumed known, while the other two

variables are treated as state variables to be resolved. According to the original data,

the nodes in power systems can be classified into three types:

1. PQ Nodes: For PQ nodes, the active and reactive power (P;Q) are specified as

known parameters, and the complex voltage (V; y) is to be resolved. Usually,

substation nodes are taken as PQ nodes where the load powers are given

constants. When output P and Q are fixed in some power plants, these nodes

can also be taken as PQ node. Most nodes in power systems belong to the PQ
type in load flow calculation.

2. PV Nodes: For PV nodes, active power P and voltage magnitude V are specified

as known variables, while reactive power Q and voltage angle y are to be

resolved. Usually, PV nodes should have some controllable reactive power

resources and can thus maintain node voltage magnitude at a desirable value.

Generally speaking, the buses of power plants can be taken as PV nodes, because

voltages at these buses can be controlled with reactive power capacity of their

generators. Some substations can also be considered as PV nodes when they

have enough reactive power compensation devices to control the voltage.
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3. Slack Node: In load flow studies, there should be one and only one slack node

specified in the power system, which is specified by a voltage, constant in

magnitude and phase angle. Therefore, V and y are given as known variables

at the slack node, while the active power P and reactive power Q are the

variables to be solved. The effective generator at this node supplies the losses

to the network. This is necessary because the magnitude of losses will not be

known until the calculation of currents is complete, and this cannot be achieved

unless one node has no power constraint and can feed the required losses into the

system. The location of the slack node can influence the complexity of the

calculations; the node most closely approaching a large AGC power station

should be used.

We will employ different methods to treat the above three kinds of nodes in

power flow calculations.

2.2.2 Node Power Equations

As described above, power system load flow calculations can be roughly considered

as the problem of solving the node voltage phasor for each node when the injecting

complex power is specified. If the complex power can be represented by equations

of complex voltages, then a nonlinear equation solving method, such as the

Newton–Raphson method, can be used to solve the node voltage phasors. In this

section, node power equations are deduced first.

The complex node voltage has two representation forms – the polar form and the

rectangular form. Accordingly, the node power equations also have two forms.

From (2.4), the node power equations can be expressed as

Pi þ jQi ¼ _Vi

X
j2i

ŶijV̂j ði ¼ 1; 2; . . . ; nÞ ð2:5Þ

where j 2 i means the node j should be directly connected with node i, including
j ¼ i. As discussed in Chap.1, the admittance matrix is a sparse matrix, and the

terms in S are correspondingly few. If the voltage vector of (2.5) adopts polar form,

_Vi ¼ Vie
jyi ð2:6Þ

where Vi,yi are the magnitude and phase angle of voltage at node i. The elements of

admittance matrix can be expressed as

Yij ¼ Gij þ jBij
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Hence (2.5) can be rewritten as

Pi þ jQi ¼ Vie
jyi
X
j2i
ðGij � jBijÞVje

�jyj ði ¼ 1; 2; . . . ; nÞ ð2:7Þ

Combining the exponential items of above equation and using the relationship

ejy ¼ cos yþ j sin y

we have,

Pi þ jQi ¼ Vi

X
j2i

VjðGij � jBijÞðcos yij þ j sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:8Þ

where yij ¼ yi � yj, is the voltage phase angle difference between node i and j.
Dividing above equations into real and imaginary parts,

Pi ¼ Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ

Qi ¼ Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ

9>>=
>>; ði ¼ 1; 2; � � � ; nÞ ð2:9Þ

This is the polar form of the nodal power equations. It is not only very important in

the Newton–Raphson calculation process, but also essential to establish the fast

decoupled method.

When the voltage vector is expressed in rectangular form,

_Vi ¼ ei þ jfi

where

ei ¼ Vi cos yi fi ¼ Vi sin yi

We can obtain from (2.5),

Pi ¼ ei
X
j2i
ðGijej � Bij fjÞ þ fi

X
j2i
ðGij fj þ BijejÞ

Qi ¼ fi
X
j2i
ðGijej � Bij fjÞ � ei

X
j2i
ðGij fj þ BijejÞ

9>>=
>>; ði ¼ 1; 2; . . . ; nÞ ð2:10Þ
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Let

X
j2i
ðGijej � Bij fjÞ ¼ ai

X
j2i
ðGij fj þ BijejÞ ¼ bi

9>>=
>>; ð2:11Þ

Obviously, ai and bi are the real and imaginary parts of injected current at node i
and (2.10) can be simplified as,

Pi ¼ eiai þ fibi

Qi ¼ fiai � eibi

)
ði ¼ 1; 2; . . . ; nÞ ð2:12Þ

This is the rectangular form of the nodal power equations.

Both (2.9) and (2.10) are the simultaneous nonlinear equations of node voltage

phasors. They are usually expressed as the following forms as mathematical models

of the load flow problem:

DPi ¼ Pis � Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ¼ 0

DQi ¼ Qis � Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ ¼ 0

9>>=
>>; ði ¼ 1; 2; . . . ; nÞ ð2:13Þ

and

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ ¼ 0

9>>=
>>;

ði ¼ 1; 2; . . . ; nÞ

ð2:14Þ

where Pis,Qis are the specified active and reactive powers at node i. Based on

the above two simultaneous equations, the load flow problem can be roughly

summarized as: for specified Pis,Qis ði ¼ 1; 2; . . . ; nÞ, find voltage vector Vi, yi or
ei, fi ði ¼ 1; 2; . . . ; nÞ, such that the magnitudes of the power errors DPi,DQi,

ði ¼ 1; 2; . . . ; nÞ of (2.13) or (2.14) are less then an acceptable tolerance.

2.3 Load Flow Solution by Newton Method

2.3.1 Basic Concept of Newton Method

The Newton–Raphson method is an efficient algorithm to solve nonlinear equa-

tions. It transforms the procedure of solving nonlinear equations into the procedure
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of repeatedly solving linear equations. This sequential linearization process is the

core of the Newton–Raphson method. We now introduce the Newton–Raphson

method by the following nonlinear equation example,

f ðxÞ ¼ 0 ð2:15Þ

Let xð0Þ be the initial guess value of the above equation solution. Assume the real

solution x is close to xð0Þ,

x ¼ xð0Þ � Dxð0Þ ð2:16Þ

where Dxð0Þ is a modification value of xð0Þ. The following equation holds,

f ðxð0Þ � Dxð0ÞÞ ¼ 0 ð2:17Þ

When Dxð0Þ is known, the solution x can be calculated by (2.16). Expanding this

function in a Taylor series expansion about point xð0Þyields:

f ðxð0Þ � Dxð0ÞÞ ¼ f ðxð0ÞÞ � f 0ðxð0ÞÞDxð0Þ þ f 00ðxð0ÞÞ ðDxð0ÞÞ2
2! �

� � � þ ð�1Þnf ðnÞðxð0ÞÞ ðDxð0ÞÞnn! þ � � � ¼ 0
ð2:18Þ

where f 0ðxð0ÞÞ,. . ., f ðnÞðxð0ÞÞ are the different order partial derivatives of f ðxÞ at xð0Þ.
If the initial guess is sufficiently close to the actual solution, the higher order terms

of the Taylor series expansion could be neglected. Equation (2.18) becomes,

f ðxð0ÞÞ � f 0ðxð0ÞÞDxð0Þ ¼ 0 ð2:19Þ

This is a linear equation in Dxð0Þ and can be easily solved.

Using Dxð0Þ to modify xð0Þ, we can get xð1Þ:

xð1Þ ¼ xð0Þ � Dxð0Þ ð2:20Þ

xð1Þ may be more close to the actual solution. Then using xð1Þ as the new guess

value, we solve the following equation similar to (2.19),

f ðxð1ÞÞ � f 0ðxð1ÞÞDxð1Þ ¼ 0

Thus xð2Þis obtained:

xð2Þ ¼ xð1Þ � Dxð1Þ ð2:21Þ

Repeating this procedure, we establish the correction equation in the tth iteration:

f ðxðtÞÞ � f 0ðxðtÞÞDxðtÞ ¼ 0 ð2:22Þ
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or

f ðxðtÞÞ ¼ f 0ðxðtÞÞDxðtÞ ð2:23Þ

The left hand of the above equation can be considered as the error produced by

approximate solution xðtÞ. When f ðxðtÞÞ ! 0, (2.15) is satisfied, so xðtÞ is the solution
of the equation. In (2.22), f 0ðxðtÞÞ is the first-order partial derivative of function f ðxÞ
at point xðtÞ. It is also the slope of the curve at point xðtÞ, as shown in Fig. 2.2,

tan aðtÞ ¼ f 0ðxðtÞÞ ð2:24Þ

The correction value DxðtÞ is determined by the intersection of the tangent line at

xðtÞwith the abscissa. We can comprehend the iterative process more intuitively

from Fig. 2.2.

Now we will extend the Newton method to simultaneous nonlinear equations.

Assume the nonlinear equations with variables x1; x2; . . . ; xn;

f1ðx1; x2; . . . ; xnÞ ¼ 0

f2ðx1; x2; . . . ; xnÞ ¼ 0

..

.

fnðx1; x2; . . . ; xnÞ ¼ 0

9>>>>>=
>>>>>;

ð2:25Þ

Specify the initial guess values of all variables x
ð0Þ
1 ; x

ð0Þ
2 ; . . . ; x

ð0Þ
n , let Dxð0Þ1 ;

Dxð0Þ2 ; . . . ;Dxð0Þn be the correction values to satisfy the following equations,

f1ðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

f2ðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

..

.

fnðxð0Þ1 � Dxð0Þ1 ; x
ð0Þ
2 � Dxð0Þ2 ; . . . ; xð0Þn � Dxð0Þn Þ ¼ 0

9>>>>>>=
>>>>>>;

ð2:26Þ

f (x(t+1))

y = f (x)

f (x(t))

x(t)x(t+1)

Δx(t+1) Δx(t)

α(t)

x

y

0 x

Fig. 2.2 Geometric interpretation

of Newton method
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Expanding the above n equations via the multivariate Taylor series and neglecting

the higher order terms, we have the following equations,

f1ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@f1
@x1

0 Dx
ð0Þ
1

��� þ @f1
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @f1
@xn

0 Dxð0Þn

��� �
¼ 0

f2ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@f2
@x1

0 Dx
ð0Þ
1

��� þ @f2
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @f2
@xn

0 Dxð0Þn

��� �
¼ 0

..

.

fnðxð0Þ1 ; x
ð0Þ
2 ; . . . ; xð0Þn Þ �

@fn
@x1

0 Dx
ð0Þ
1

��� þ @fn
@x2

0 Dx
ð0Þ
2

��� þ; . . . ;þ @fn
@xn

0 Dxð0Þn

��� �
¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:27Þ

here @fi
@xj 0j is the partial derivative of function fiðx1; x2; . . . ; xnÞ over independent

variable xj at point ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ. Rewrite the above equation in matrix form,

f1ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

f2ðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

..

.

fnðxð0Þ1 ; x
ð0Þ
2 ; . . . ; x

ð0Þ
n Þ

2
6666664

3
7777775
¼

@f1
@x1

���0@f1@x2

���0. . . @f1@xn

���0
@f2
@x1

���0@f2@x2

���0. . . @f2@xn

���0
..
.

@fn
@x1

���0@fn@x2

���0. . . @fn@xn

���0

2
666666664

3
777777775

Dxð0Þ1

Dxð0Þ2

..

.

Dxð0Þn

2
6666664

3
7777775

ð2:28Þ

This is a set of simultaneous linear equations in the variables Dxð0Þ1 ;Dxð0Þ2 ; . . . ;

Dxð0Þn ; usually called the correction equations of the Newton–Raphson method.

After solvingDxð0Þ1 ;Dxð0Þ2 ; . . . ;Dxð0Þn ; we can get,

x
ð1Þ
1 ¼ x

ð0Þ
1 � Dxð0Þ1

x
ð1Þ
2 ¼ x

ð0Þ
2 � Dxð0Þ2

..

. ..
. ..

.

xð1Þn ¼ xð0Þn � Dxð0Þn

9>>>>>>=
>>>>>>;

ð2:29Þ

x
ð1Þ
1 ; x

ð1Þ
2 ; . . . ; x

ð1Þ
n will approach the actual solution more closely. The updated

values are used as the new guess to solve the correction equation (2.28) and to

further correct the variables. In this way the iterative process of the Newton–

Raphson method is formed.

Generally, the correction equation in the tth iteration can be written as,

f1ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

f2ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

..

. ..
. ..

.

fnðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

2
6666664

3
7777775
¼

@f1
@x1 tj @f1

@x2 tj . . . @f1@xn tj
@f2
@x1 tj @f2

@x2 tj . . . @f2@xn tj
..
. ..

. ..
.

@fn
@x1 tj @fn

@x2 tj . . . @fn@xn tj

2
66666664

3
77777775

DxðtÞ1

DxðtÞ2

..

.

DxðtÞn

2
6666664

3
7777775

ð2:30Þ
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or expressed in matrix form,

FðXðtÞÞ ¼ JðtÞDXðtÞ ð2:31Þ

where

FðXðtÞÞ ¼

f1ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

f2ðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

..

.

fnðxðtÞ1 ; x
ðtÞ
2 ; . . . ; x

ðtÞ
n Þ

2
6666664

3
7777775

ð2:32Þ

is the error vector in the tth iteration;

JðtÞ ¼

@f1
@x1 tj @f1

@x2 tj ::: @f1@xn tj
@f2
@x1 tj @f2

@x2 tj ::: @f2@xn tj
..
.

@fn
@x1 tj @fn

@x2 tj ::: @fn@xn tj

2
6666664

3
7777775

ð2:33Þ

is the Jacobian matrix of tth iteration;

DXðtÞ ¼

DxðtÞ1

DxðtÞ2

..

.

DxðtÞn

2
6666664

3
7777775

ð2:34Þ

is the correction value vector in the tth iteration.

We also have the equation similar to (2.29),

Xðtþ1Þ ¼ XðtÞ � DXðtÞ ð2:35Þ

With (2.31) and (2.35) solved alternately in each iteration, Xðtþ1Þ gradually

approaches the actual solution. Convergence can be evaluated by the norm of the

correction value,

DXðtÞ
�� �� < e1 ð2:36Þ

or by the norm of the function,

FðXðtÞÞ�� �� < e2 ð2:37Þ

Here e1 and e2 are very small positive numbers specified beforehand.

82 2 Load Flow Analysis



2.3.2 Correction Equations

In Section 2.3.1, we derived two forms of the nodal power equations. Either can be

applied in the load flow calculation model.

When the polar form (2.13) is used, the node voltage magnitudes and angles Vi,yi
ði ¼ 1; 2; . . . ; nÞ are the variables to be solved. For a PV node, the magnitude of the

voltage is specified. At the same time, its reactive power Qis cannot be fixed

beforehand as a constraint. Therefore, the reactive equations relative to PV nodes

should not be considered in the iterative process. These equations will be used only

to calculate the reactive power of each PV node after the iterative process is

over and all node voltages have been calculated. Similarly, the voltage magnitude

and angle of the slack node are specified, hence the related power equations do

not appear in the iterative process. When the iteration has converged, the active

and reactive power of the slack node can be calculated by using these power

equations.

Assume that total number of system nodes is n, the number of PV nodes is r. For
convenience, let the slack bus be the last node, i.e., node n.Therefore, we have n� 1

active power equations,

DP1 ¼ P1s � V1

X
j21

VjðG1j cos y1j þ B1j sin y1jÞ ¼ 0

DP2 ¼ P2s � V2

X
j22

VjðG2j cos y2j þ B2j sin y2jÞ ¼ 0

..

.

DPn�1 ¼ Pn�1;s � Vn�1
X

j2ðn�1Þ
VjðGn�1;j cos yn�1; j þ Bn�1; j sin yn�1; jÞ ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð2:38Þ

and n� r � 1 reactive power equations.

DQ1 ¼ Q1s � V1

X
j21

VjðG1j sin y1j � B1j cos y1jÞ ¼ 0

DQ2 ¼ Q2s � V2

X
j22

VjðG2j sin y2j � B2j cos y2jÞ ¼ 0

..

.

DQn�1 ¼ Qn�1;s � Vn�1
X

j2ðn�1Þ
VjðGn�1; j sin yn�1; j � Bn�1; j cos yn�1; jÞ ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:39Þ

In the above equations, node voltage angle yi and magnitude Vi are the variables to

be resolved. Here the number of yi is n� 1 and the number of Vi is n� r � 1. There

2.3 Load Flow Solution by Newton Method 83



are 2n� r � 2 unknown variables in total and they can be solved by the above

2n� r � 2 equations.

Expanding (2.38) and (2.39) in a Taylor series, neglecting the high-order terms,

the correction equation can be written as,

DP1

DP2

..

.

DPn�1
������
DQ1

DQ2

..

.

DQn�1

2
666666666666664

3
777777777777775

¼

H11 H12 ... H1;n�1 ..
.

N11 N12 ... N1;n�1
H21 H22 ... H2;n�1 ..

.
N21 N22 ... N2;n�1

... ..
.

...
Hn�1;1 Hn�1;2 ... Hn�1;n�1 ..

.
Nn�1;1 Nn�1;2 ... Nn�1;n�1

......... ......... ... ......... ..
. ......... ......... ... .........

J11 J12 ... J1;n�1 ..
.

L11 L12 ... L1;n�1
J21 J22 ... J2;n�1 ..

.
L21 L22 ... L2;n�1

... ..
.

...
Jn�1;1 Jn�1;2 ... Jn�1;n�1 ..

.
Jn�1;1 Jn�1;2 ... Jn�1;n�1

2
666666666666664

3
777777777777775

�

Dy1
Dy2
..
.

Dyn�1
.........
DV1=V1

DV2=V2

..

.

DVn�1=Vn�1

2
666666666666664

3
777777777777775

ð2:40Þ

The form of the voltage magnitude correction values represented here, DV1=V1;
DV2=V2; . . . ;DVn�1=Vn�1; allow the elements in the Jacobian matrix to have

similar expressions.

Taking partial derivations of (2.38), or (2.39), and noting that both Pis, Qis are

constants, we can obtain the elements of the Jacobian matrix as,

Hij ¼ @DPi

@yj
¼ �ViVjðGij sin yij � Bij cos yijÞ j 6¼ i ð2:41Þ

Hii ¼ @DPi

@yi
¼ Vi

X
j2i
j 6¼i

VjðGij sin yij � Bij cos yijÞ ð2:42Þ

or

Hii ¼ V2
i Bii þ Qi ð2:43Þ

Nij ¼ @DPi

@Vj
Vj ¼ �ViVjðGij cos yij þ Bij sin yijÞ j 6¼ i ð2:44Þ

Nii ¼ @DPi

@Vi
Vi ¼�Vi

X
j2i
j6¼i

VjðGij cosyijþBij sinyijÞ� 2V2
i Gii ¼�V2

i Gii�Pi ð2:45Þ

Jij ¼ @DPi

@yj
¼ ViVjðGij cos yij þ Bij sin yijÞ j 6¼ i ð2:46Þ

Jii ¼ @DPi

@yj
¼ �Vi

X
j2i
j 6¼i

VjðGij cos yij þ Bij sin yijÞ ¼ V2
i Gii � Pi ð2:47Þ
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Lij ¼ @DQi

@Vj
Vj ¼ �ViVjðGij sin yij � Bij cos yijÞ j 6¼ i ð2:48Þ

Lii ¼ @DQi

@Vi
Vi ¼ �Vi

X
j2i
j 6¼i

VjðGij sinyij � Bij cosyijÞ þ 2V2
i Bii ¼ V2

i Bii �Qi ð2:49Þ

The concise form of (2.40) is

DP
DQ

� �
¼ H N

J L

� �
Dy

DV=V

� �
ð2:50Þ

Comparing (2.50) with (2.40), the meaning of elements is obvious. The correction

equation can be rearranged into the following form for convenience,

DP1

DQ1

DP2

DQ2

..

.

DPn�1
DQn�1

2
6666666664

3
7777777775
¼

H11 N11 H12 N12 . . . H1;n�1 N1;n�1
J11 L11 J12 L12 . . . J1;n�1 L1;n�1
H21 N21 H22 N22 . . . H2;n�1 N2;n�1
J21 L21 J22 L22 . . . J2;n�1 L2;n�1
..
. ..

. ..
. ..

. ..
. ..

. ..
.

Hn�1;1 Nn�1;1 Hn�1;2 Nn�1;2 . . . Hn�1;n�1 Nn�1;n�1
Jn�1;1 Ln�1;1 Jn�1;2 Ln�1;2 . . . Jn�1;n�1 Ln�1;n�1

2
6666666664

3
7777777775

Dy1
DV1=V1

Dy2
DV2=V2

..

.

Dyn�1
DVn�1=Vn�1

2
6666666664

3
7777777775
ð2:51Þ

When the rectangular form is adopted in the load flow model, the state variables to

be solved are the real and imaginary parts of voltages, i.e., e1; f1; e2; f2; . . . ; en; fn.
Since the voltage phasor of the slack node is specified, the number of state variables

is 2ðn� 1Þ. We need 2ðn� 1Þ equations to solve these variables. In fact, every node
has two equations except the slack bus. For PQ nodes,Pis, Qis are given, so the

equations are

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ ¼ 0

9>>=
>>; ð2:52Þ

For PV nodes, Pis, Vis are given, so the equations are

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ ¼ 0

DV2
i ¼ V2

is � ðe2i þ f 2i Þ ¼ 0

9=
; ð2:53Þ
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There are 2ðn� 1Þ equations included in (2.52) and (2.53). Expanding them in a

Taylor series expansion, neglecting the higher order terms, we can obtain the

correction equation as follows,

DP1

DQ1

DP2

DQ2

..

.

DPi

DV2
i

..

.

2
666666666666666666664

3
777777777777777777775

¼

@DP1

@e1
@DP1

@f1
@DP1

@e2
@DP1

@f2
� � � @DP1

@ei
@DP1

@f
i
� � �

@DQ1

@e1

@DQ1

@f1

@DQ1

@e2

@DQ1

@f2
� � � @DQ1

@ei

@DQ1

@f
i
� � �

@DP2

@e1
@DP2

@f1
@DP2

@e2
@DP2

@f2
� � � @DP2

@ei
@DP2

@fi
� � �

@DQ2

@e1

@DQ2

@f1

@DQ2

@e2

@DQ2

@f2
� � � @DQ2

@ei

@DQ2

@fi
� � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

@DPi

@e1
@DPi

@f1
@DPi

@e2
@DPi

@f2
� � � @DPi

@ei
@DPi

@fi
� � �

0 0 0 0 � � � @DV2
i

@ei

@DV2
i

@fi
� � �

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
6666666666666666666664

3
7777777777777777777775

De1

Df1

De2

Df2

..

.

Dei

Dfi
..
.

2
6666666666666666666664

3
7777777777777777777775

ð2:54Þ

By differentiating (2.52) and (2.53), we can obtain elements of the Jacobian matrix.

The off-diagonal elements of the Jacobian matrix for j 6¼ i can be expressed as,

@DPi

@ej
¼ � @DQi

@fj
¼ �ðGijei þ Bij fiÞ

@DPi

@fj
¼ @DQi

@ej
¼ Bijei � Gij fi

@DV2
i

@ej
¼ � @DV2

i

@fj
¼ 0

9>>>>>>>=
>>>>>>>;

ð2:55Þ

The diagonal elements of the Jacobian matrix for j ¼ i,

@DPi

@ei
¼ �

X
j2i
ðGijej � Bij fjÞ � Giiei � Bii fi

Using (2.11), we can rewrite the above expression as

@DPi

@ei
¼ �ai � Giiei � Bii fi

and can obtain the following elements similarly,
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@DQi

@fi
¼�

X
j2i
ðGijej � Bij fjÞ þ Giiei þ Bii fi ¼ �ai þ Giiei þ Bii fi

@DPi

@fi
¼�

X
j2i
ðGij fj þ BijejÞ þ Biiei � Gii fi ¼ �bi þ Biiei � Gii fi

@DQi

@ei
¼
X
j2i
ðGij fj þ BijejÞ þ Biiei � Gii fi ¼ bi þ Biiei � Gii fi

@DV2
i

@ei
¼�2ei

@DV2
i

@fi
¼�2fi

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð2:56Þ

The correction equations, in either polar form or rectangular form, are the basic

equations that need repeatedly solving in Newton–Raphson load flow calculation.

Investigating these equations, we can observe the following properties:

1. Equations (2.54) and (2.40) include 2ðn� 1Þ and 2ðn� 1Þ � r equations respec-
tively.

2. From the expression of the off-diagonal elements of the Jacobian matrix either in

polar form or in rectangular form, i.e., (2.41), (2.44), (2.46), (2.48), and (2.55),

we can see that each of them is related to only one element of the admittance

matrix. Therefore, if the element Yij in the admittance matrix is zero, the

corresponding element in the Jacobian matrix of the correction equation is also

zero. It means the Jacobian matrix is a sparse matrix, and has the same structure

as the admittance matrix.

3. From the expression of the elements of the Jacobian matrix we can see that the

Jacobian matrix is not symmetrical in either coordinate form. For example,

@DPi

@yj
6¼ @DPj

@yi
;

@DQi

@Vj
6¼ @DQj

@Vi

@DPi

@ej
6¼ @DPj

@ei
;

@DQi

@fj
6¼ @DQj

@fi
; etc:

4. The elements in the Jacobian matrix are a function of node voltage phasors.

Therefore, they will vary with node voltages during the iterative process. The

Jacobian matrix must not only be updated but also be triangularized in each

iteration. This has a major effect on the calculation efficiency of the Newton–

Raphson method.

Many improvements of the Newton–Raphson method have focused on this

problem.

For instance, when the rectangular coordinate is adopted and the injected current

(see (2.4)) is used to form the load flow equations [12], the off-diagonal elements of
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the Jacobian matrix become constant. This property can certainly be used to

improve the solution efficiency. Semlyen and de Leon [13] suggest that the Jacobi-

an matrix elements can be updated partially to alleviate the computing burden.

Both the above two forms of coordinate system are widely used in Newton–

Raphson load flow algorithms. When the polar form is used, PV nodes can be

conveniently treated. When the rectangular form is used, the calculation of trigo-

nometric functions is avoided. Generally speaking, the difference is not very

significant. A comparison between the two coordinate systems is carried out in [14].

The fast decoupled method is derived from the Newton–Raphson method in

polar form. It will be discussed in Sect. 2.4. In the next section, we mainly introduce

the Newton–Raphson method based on the correction equation of (2.54) in rectan-

gular form.

2.3.3 Solution Process of Newton Method

In the Newton–Raphson method, the electric network is described by its admittance

matrix. From (2.52), (2.53), (2.55), and (2.56) we know that all operations are

relative to the admittance matrix. Therefore, forming the admittance matrix is the

first step in the algorithm.

The solving process of the Newton method roughly consists of the following

steps.

1. Specify the initial guess values of node voltage, eð0Þ, f ð0Þ;
2. Substituting eð0Þ, f ð0Þ into (2.52) and (2.53), obtain the left-hand term of the

correction equation, DPð0Þ, DQð0Þ, and ðDV2Þð0Þ;
3. Substituting eð0Þ, f ð0Þ into (2.55) and (2.56), obtain the coefficient matrix (Jaco-

bian matrix) of the correction equation;

4. Solving (2.54), obtain the correction variables, Deð0Þ and Df ð0Þ;
5. Modify voltages;

eð1Þ ¼ eð0Þ � Deð0Þ

f ð1Þ ¼ f ð0Þ � Df ð0Þ

)
ð2:57Þ

6. Substituting eð1Þ and f ð1Þ into (2.52) and (2.53), obtain DPð1Þ, DQð1Þ, and

ðDV2Þð1Þ;
7. Check whether the iteration has converged. When it has converged, calculate

branch load flow and output the results; otherwise take eð1Þ and f ð1Þ as the new

guess value, return to step (3) and start the next iteration.

The main flowchart of the Newton–Raphson method is shown in Fig. 2.3. The

above steps introduce the main principles of the solution process. There are still

many details to be clarified. As mentioned above, the solution procedure of the
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Newton–Raphson method is essentially the process of iteratively forming and

solving the correction equations. Dealing with the correction equation has a crucial

influence over the memory requirement and computing burden. This problem will

be presented in the next section. First, we discuss some other important issues.

The convergence characteristic of the Newton–Raphson method is excellent.

Generally, it can converge in 6–7 iterations, and the number of iteration does not

depend on the scale of the power system. Theoretically speaking, the Newton–

Raphson method has a quadratic convergence characteristic if the initial guess

values are close to the solution. If the initial guess values are not good enough,

the iterative process may not converge or may converge to a solution at which the

power system cannot operate. This property stems from the Newton method itself.

As described above, the substance of the Newton method is sequential linearization

of nonlinear equations. It is established on the assumption that De and Df are very
small so that their high-order terms can be neglected. Therefore, a good initial guess

value is crucial because the Newton method is very sensitive to it.

Under normal operation states of power systems, the node voltage magnitudes

are usually close to their nominal voltages, and the phase angle differences between

the nodes of a branch are not very large. Therefore, a ‘‘flat start’’ initial guess

value, i.e.,

e
ð0Þ
i ¼ 1:0 f

ð0Þ
i ¼ 0:0 ði ¼ 1; 2; . . . ; nÞ ð2:58Þ

can give satisfactory results. In Fig. 2.3, the convergence condition is

DPðtÞ;DQðtÞ
�� �� < e ð2:59Þ

where DPðtÞ;DQðtÞ
�� �� is a norm representing the maximal modulus elements in

vectors DPðtÞ;DQðtÞ. This convergence criterion is very intuitive, and can be used to
directly control the power errors. When the calculation is based on the per unit

system, we can set e ¼ 10�4 or 10�3. If the base value is 100 MVA, the maximum

error corresponds to 0.01 MVA or 0.1 MVA.

From Fig. 2.3 we know that in the Newton–Raphson load flow calculation, the

Jacobian matrix must be formed and triangularized in each iteration. Hence the

computing burden in each iteration is quite heavy. From the expressions of Jacobian

elements one can see that in the iteration procedure, especially when it is near

convergence, the change of the elements caused by voltage variation is not signifi-

cant (see Example 2.1). Therefore, to decrease the computing effort, once a

Jacobian matrix is formed, it could be used in several successive iterations.

2.3.4 Solution of Correction Equations

The Newton–Raphson method, with Gauss elimination solving the correction

equation, has been used in load flow calculation since the 1950s.
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In the 1960s, the sparsity of the correction equation was fully investigated and

employed in the iteration procedure. In this way, the storage and operation for zero

elements in the Jacobian are avoided.When the technology of optimal node ordering

is adopted, it can minimize the number of the fill-in nonzero elements in factorizing

the Jacobian of the correction equation. This greatly reducesmemory and computing

requirements to almost proportional to the node number of the power system. Based

on this sparsity technology, the Newton–Raphson method has become one of the

most popular methods in power system load flow calculation [7].

With a simple system as shown in Fig. 2.4, we now illustrate some algorithmic

tricks in solving the correction equation of the Newton–Raphson method. In

Fig. 2.4, both node 3 and node 6 are generator nodes. We set node 3 as a PV
node while node 6 the slack node; other nodes are all PQ nodes. The structure of the

network admittance matrix is shown in Fig. 2.5.

The correction equation is given as (2.60). It does not include the equation

related to node 6, the slack node.

Input data

Is convergent?

Form admittance matrix

Output results

t = t+1

Modify voltage on each node according to (2.57)

Solve modified equation (2.54) to obtain Δe(t) and Δf (t)

Solve the elements of Jacobian matrix according to (2.55) and (2.56)

Calculate ΔP (t), ΔQ(t) and ΔV2 (t) according to (2.52) and (2.53)

t = 0

Give voltage initial value e(0) and f (0)

Yes

No

Fig. 2.3 Flowchart of Newton method
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DP1

DQ1

DP2

DQ2

DP3

DV2
3

DP4

DQ4

DP5

DQ5

2
666666666666664

3
777777777777775

¼

H11 N11 H12 N12 H13 N13 H14 N14

J11 L11 J12 L12 J13 L13 J14 L14
H21 N21 H22 N22

J21 L21 J22 L22
H31 N31 H33 N33 H34 N34

0 0 R33 S33 0 0

H41 N41 H43 N43 H44 N44 H45 N45

J41 L41 J43 L43 J44 L44 J45 L45
H54 N54 H55 N55

J54 L54 J55 L55

2
666666666666664

3
777777777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4
De5
Df5

2
666666666666664

3
777777777777775

ð2:60Þ

where the constant terms DPi, DQi can be obtained by (2.52),

DPi ¼ Pis � ei
X
j2i
ðGijej � Bij fjÞ � fi

X
j2i
ðGij fj þ BijejÞ

DQi ¼ Qis � fi
X
j2i
ðGijej � Bij fjÞ þ ei

X
j2i
ðGij fj þ BijejÞ

9>>=
>>;

or can be written as

DPi ¼ Pis � ðeiai þ fibiÞ
DQi ¼ Qis � ðfiai � eibiÞ

)
ð2:61Þ

1

654

3 2

Fig. 2.4 Example of simple

system

Y66Y65Y62

Y56Y55Y54

Y45Y44Y43Y41

Y34Y33Y31

Y26Y22Y21

Y14Y13Y12Y11Fig. 2.5 Structure of admittance

matrix
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From (2.56) we know the diagonal elements of the Jacobian are

Hii ¼ @DPi

@ei
¼ �ai � ðGiiei þ BiifiÞ

Nii ¼ @DPi

@fi
¼ �bi þ ðBiiei � GiifiÞ

Jii ¼ @DQi

@ei
¼ bi þ ðBiiei � GiifiÞ

Lii ¼ @DQi

@fi
¼ �ai þ ðGiiei þ BiifiÞ

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:62Þ

Both (2.61) and (2.62) include components of the injected current at node i, ai and
bi. To calculate DPi, DQi, and the diagonal elements of Jacobian Hii, Nii, Jii, Lii,
we must first compute ai and bi. From (2.11) we can see, the injected current

components ai and bi at node i only depends on the i th row elements of the

admittance matrix and voltage components of corresponding nodes. Therefore, ai
and bi can be accumulated by sequentially taking the two terms and performing

multiplication plus operation.

After ai, bi are known, DPi and DQi can be easily obtained according to (2.61).

The nondiagonal elements of the Jacobian in (2.60) can be expressed by:

Hij ¼ @DPi

@ej
¼ �ðGijei þ Bij fiÞ

Nij ¼ @DPi

@fj
¼ Bijei � Gij fi

Jij ¼ @DQi

@ej
¼ Bijei � Gij fi ¼ Nij

Lij ¼ @DQi

@fj
¼ Gijei þ Bij fi ¼ �Hij

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:63Þ

Obviously, the off-diagonal elements are only related to the corresponding admit-

tance elements and voltage components. From (2.62), the ith diagonal element

consists of, besides the injecting current components at node i(ai and bi), only the

arithmetic operation results of the diagonal elements of admittance matrixGii þ jBii

and voltage components ei þ jfi.
In brief, the whole correction equation can be formed by sequentially taking and

arithmetically operating the elements of the admittance matrix and corresponding

voltage components.

If node i is PV node, the equation of DQi should be replaced by the equation of

DV2
i . The constant term DV2

i on the left hand and elements Rii and Sii of the Jacobian
can be easily obtained from (2.53) and (2.56),

Rii ¼ @DV2
i

@ei
¼ �2ei

Sii ¼ @DV2
i

@fi
¼ �2fi

9>>=
>>; ð2:64Þ
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Forming the correction equation is a very important step in the Newton–Raphson

method which remarkably affects the efficiency of the whole algorithm. Therefore,

we should investigate the above equations carefully in coding the program.

When Gauss elimination is used to solve the correction equation, we usually

eliminate the correction equation row by row. The augmented matrix corresponding

to (2.60) is

H11 N11 H12 N12 H13 N13 H14 N14 DP1

J11 L11 J12 L12 J13 L13 J14 L14 DQ1

H21 N21 H22 N22 DP2

J21 L21 J22 L22 DQ2

H31 N31 H33 N33 H34 N34 DP3

0 0 R33 S33 0 0 DV2
3

H41 N41 H43 N43 H44 N44 H45 N45 DP4

J41 L41 J43 L43 J44 L44 J45 L45 DQ4

H54 N54 H55 N55 DP5

J54 L54 J55 L55 DQ5

2
666666666666664

3
777777777777775

After the equations related to node 1 and 2 are eliminated, the augmented matrix is

converted as shown in Fig. 2.6. This figure tell us when the equations related to

node 2 are eliminated (row 3 and row 4), all operations are independent of equations

related to node 3, 4, . . ., N. Therefore, in the eliminating procedure, we can

eliminate the rows related to a node immediately after forming them.

In Fig. 2.6, elements such as H0023;N
00
23; . . . ; L

00
24, etc. are fill-in nonzero elements

created in the elimination process. To decrease the number of injected elements, we

should optimize the node number ordering before load flow calculation (see Section

1.3.5). The element with superscript (00) represents that it has been manipulated. We

need not save memory for the fill-in element in advance using this elimination

procedure and thus the algorithm is simplified.

When the whole elimination procedure finished, the augmented matrix of cor-

rection equation becomes,

Δ
Δ
Δ
Δ
Δ
Δ

′Δ

′Δ

′Δ

′Δ

′′′′′′′′
′′′′′′′′′
′′′′′′
′′′′′′′

5

5

4

4

2
3

3

2

2

1

1

55555454

55555454

4545444443434141

4545444443434141

3333

343433333131

24242323

2424232322

141413131212

14141313121211

1

1

1

1

Q

P

Q

P

V
P

Q

P

Q

P

LJLJ

NHNH

LJLJLJLJ

NHNHNHNH

SR
NHNHNH

LJLJ

NHNHN

LJLJLJ

NHNHNHN

Fig. 2.6 Diagram of eliminating row by row
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1 N011 H012 N012 H013 N013 H014 N014
1 J012 L012 J013 L013 J014 L014

1 N022 H0023 N0023 H0024 N0024
1 J0023 L0023 J0024 L0024

1 N033 H034 N034
1 J0034 L0034

1 N044 H045 N045
1 J045 L045

1 N055
1

DP01
DQ01
DP02
DQ02
DP03
DV

02
3

DP04
DQ04
DP05
DQ05

2
666666666666664

3
777777777777775

Finally, using a normal backward substitution, one can get De1;Df1; . . . ; De5;Df5
from DP01;DQ

0
1; . . . ;DQ

0
5.

Following to the above discussion, we can summarize the algorithm via flow-

chart shown in Fig. 2.7, where R represents the slack node. The correction equation

can be solved by the common Gauss elimination method. The above procedure

adopts the strategy of eliminating the rows related to a node immediately after

forming them. At the same time, the corresponding constant terms of the correction

equation are also accumulated and eliminated. Thus the operation count per itera-

tion is significantly reduced.

[Example 2.1] Calculate the load flow of the power system shown in Fig. 2.8.

[Solution] The load flow is calculated according to the procedures of the

flowchart. The first step includes forming the admittance matrix and specifying

the initial voltage values.

From Example 1.1 we know the admittance matrix of this system is

Y ¼

1:37874 �0:62402 �0:75471
�j6:29166 þj3:90015 þj2:64150
�0:62402 1:45390 �0:82987 0:00000
þj3:90015 �j66:98082 þj3:11203 þj63:49206
�0:75471 �0:82987 1:58459 0:00000
þj2:64150 þj3:11203 �j35:73786 þj31:74603

0:00000 0:00000
þj63:49206 �j66:66667

0:00000 0:00000
þj31:74603 �j33:33333

2
666666666666664

3
777777777777775

The initial values of node voltages are given in Table 2.1.

According to (2.52) and (2.53), we can establish the expression of the constant

terms (mismatch terms) of the correction equations as
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Input

Optimize node number

Substituted backward
and modify voltage

Eliminate the (2i   1)th
and (2i) th equations by

using the 1st to the
2(i   1)th equations

Form two-row equation
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Give initial value, and iterate by using
successive iteration method

Form admittance matrix
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i>n
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>

>

Fig. 2.7 Flowchart of Newton Method
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Fig. 2.8 Simple power system
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DP1 ¼ P1s � e1½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ�
�f1½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ�

DQ1 ¼ Q1s � f1½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ�þ
e1½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ�

DP4 ¼ P4s � e4½ðG42e2 � B42f2Þ þ ðG44e4 � B44f4Þ� � f4½ðG42f2 þ B42e2Þþ
ðG44f4 þ B44e4Þ�

DV2
4 ¼ V2

4s � ðe24 þ f 24 Þ

Using (2.55) and (2.56), we can obtain the expressions of Jacobian matrix elements:

@DP1

@e1
¼ �½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ� � G11e1 � B11f1

@DP1

@f1
¼ �½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ� þ B11e1 � G11f1

@DP1

@e2
¼ �ðG12e1 þ B12f1Þ; @DP1

@f2
¼ B12e1 � G12f1

@DP1

@e3
¼ �ðG13e1 þ B13f1Þ; @DP1

@f3
¼ B13e1 � G13f1

@DQ1

@e1
¼ ½ðG11f1 þ B11e1Þ þ ðG12f2 þ B12e2Þ þ ðG13f3 þ B13e3Þ� þ B11e1 � G11f1

@DQ1

@f1
¼ �½ðG11e1 � B11f1Þ þ ðG12e2 � B12f2Þ þ ðG13e3 � B13f3Þ� þ G11e1 þ B11f1

@DQ1

@e2
¼ @DP1

@f2
;

@DQ1

@f2
¼ � @DP1

@e2
@DQ1

@e3
¼ @DP1

@f3
;

@DQ1

@f3
¼ � @DP1

@e3
@DP4

@e4
¼ �½ðG42e2 � B42f2Þ þ ðG44e4 � B44f4Þ� � G44e4 � B44f4

@DP4

@f4
¼ �½ðG42f2 þ B42e2Þ þ ðG44f4 þ B44e4Þ� þ B44e4 � G44f4

Table 2.1 Voltage initial values

Node 1 2 3 4 5

eð0Þ 1.00000 1.00000 1.00000 1.05000 1.05000

f ð0Þ 0.00000 0.00000 0.00000 0.00000 0.00000
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@DV2
4

@e4
¼ �2e4

@DV2
4

@f4
¼ �2f4

Thus according to (2.60), the correction equation of the first iteration can be written

as

�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150
�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471
0:62402 3:90015 �1:45390 �73:67881 0:82897 3:11203 0:00000 63:49206
3:90015 0:62402 �60:28283 1:45390 3:11203 �0:82897 63:49206 0:00000
�0:75471 2:64150 0:82897 3:11203 �1:58459 �39:98688
2:64150 �0:75471 3:11203 �0:82897 �32:38884 1:58459

0:00000 66:66666 0:00000 �63:49206
0:00000 0:00000 �2:10000 0:00000

2
66666666664

3
77777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775

¼

�1:60000
�0:55000
�2:00000
5:69799
�3:70000
2:04901
5:00000
0:00000

2
66666666664

3
77777777775

the above equation, the elements in italic have maximal absolute value in each row

of the Jacobian matrix. Obviously, if elements are arranged this way, the maximal

elements do not appear at the diagonal positions.

It should be noted that this situation is not accidental. From the above equation

we can conclude that the maximal element of each row is @DPi

@fi
or @DQi

@ei
. This is

because the active power is mainly related to the vertical component of voltage

while the reactive power is mainly related to the horizontal component of voltage in

high voltage power systems.

To reduce the rounding error of the calculations, the maximal elements should

be located in diagonal positions. There are two methods to satisfy this requirement:

the first is to exchange positions of the equations relative to DQ and DP, i.e., to
exchange odd numbered rows with even numbered rows; the second method is to

exchange the variables De and Df , i.e., to exchange odd numbered columns with

even numbered columns of the Jacobian matrix.

We now introduce the first approach. Thus the above equation will be rearranged

as,
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�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471
�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150
3:90015 0:62402 �60:28283 1:45390 3:11203 �0:82897 63:49206 0:00000
0:62402 3:90015 �1:45390 �73:67881 0:82897 3:11203 0:00000 63:49206
2:64150 �0:75471 3:11203 �0:82897 �32:38884 1:58459
�0:75471 2:64150 0:82897 3:11203 �1:58459 �39:98688

�2:10000 0:00000
0:00000 66:66666 0:00000 �63:49206

2
66666666664

3
77777777775

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775

¼

�0:55000
�1:60000
5:69799
�2:00000
2:04901
�3:70000
0:00000
5:00000

2
66666666664

3
77777777775

We can see the maximal element of each row appears in the diagonal position

except for row 8.

As described in Section 2.3.4, the iteration procedure adopts the strategy of

immediately eliminating the rows related to a node after forming them (see

Fig. 2.7). The equations related to node 1 are formed as

�6:04166 1:37874 3:90015 �0:62402 2:64150 �0:75471 0 0 ..
. �0:55000

�1:37874 �6:54166 0:62402 3:90015 0:75471 2:64150 0 0 ..
. �1:60000

2
4

3
5

After the elimination operation is executed, the first and second row of the upper

triangular matrix can be obtained:

1:00000 �0:22820 �0:64554 0:10328 �0:43721 0:12491 0 0 ..
.
0:09103

1:00000 0:03879 �0:58961 �0:02215 �0:41038 0 0 ..
.
0:21505

2
4

3
5

Then we establish the equations related to node 2, the corresponding augmented

matrix is

3:90015 �0:62402 �60:28283 1:45390 3:11203 �0:82987 63:49206
0:62402 3:90015 �1:45390 �73:67881 0:82987 3:11203 0:0

�
0:0 ..

.
5:69799

63:49206 ..
. �2:0

3
5

Executing the elimination operation, the third and forth rows of the upper triangular

matrix become:
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1:00000 �0:02090 �0:08348 0:02090 �1:09894 0:00000 ..
. �0:09184

1:00000 �0:01528 �0:06609 0:01859 �0:88943 ..
.

0:04253

2
4

3
5

Continuing this procedure until the eliminating operation procedure is finished, we

have the upper triangular matrix:

1:00000 �0:22820 �0:64554 0:10328 �0:43721 0:12491 ..
.

0:09103

1:00000 0:03879 �0:58961 �0:02215 �0:41038 ..
.

0:21505

1:00000 �0:02090 �0:08348 0:02090 �1:09894 0:00000 ..
. �0:09148

1:00000 �0:01528 �0:06609 0:01850 �0:88943 ..
.

0:04253

1:00000 �0:03303 �0:17246 0:03146 ..
. �0:07548

1:00000 �0:02816 �0:11194 ..
.

0:12021

1:00000 0:00000 ..
.

0:00000

1:00000 ..
. �0:45748

2
66666666666666664

3
77777777777777775

After the backward substitution operation, the correcting increments of node

voltages can be obtained,

De1
Df1
De2
Df2
De3
Df3
De4
Df4

2
66666666664

3
77777777775
¼

0:03356
0:03348
�0:10538
�0:36070
�0:05881
0:06900
0:00000
�0:45748

2
66666666664

3
77777777775

Modifying the node voltage, the voltage vector becomes:

e1
f1
e2
f2
e3
f3
e4
f4

2
66666666664

3
77777777775
¼

0:96643
�0:33481
1:10533
0:36070
1:05881
�0:66900
1:05000
0:45748

2
66666666664

3
77777777775

Using this voltage vector as the initial voltage value, we can repeat above opera-

tions. If the tolerance is set to e ¼ 10�6, the calculation converges after five

iterations. The evolution process of node voltages and power mismatches is

shown in Tables 2.2 and 2.3.
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To reveal the convergence property, the maximal power mismatches (with # in

Table 2.3) in the iterative process are shown in Fig. 2.9.

In the iteration process, especially when it approaches convergence, the changes

of the diagonal elements in the Jacobian are not very significant. To illustrate this

point, the changes of the diagonal elements are given in Table 2.4.

The calculation results of node voltages are shown in Table 2.5.

Table 2.2 Node voltages in iterative process

Iterating

No. e1 f1 e2 f2 e3 f3 e4 f4
1 0.96643 �0.33481 1.10538 0.36074 1.05881 �0.06900 1.05000 0.45748

2 0.87365 �0.07006 1.03350 0.32886 1.03564 �0.07694 0.97694 0.38919

3 0.85947 �0.07176 1.02608 0.33047 1.03355 �0.07737 0.97464 0.39061

4 0.85915 �0.07182 1.02600 0.33047 1.03351 �0.07738 0.97461 0.39067

5 0.85915 �0.07182 1.02600 0.33047 1.03351 �0.07738 0.97461 0.39067

Table 2.3 Node power mismatches in iterative process

Iterating

No. DQ1 DP1 DQ2 DP2 DQ3 DP3 DP4

1 �0.55000 �1.60000 5.69799# �2.00000 2.04901 �3.70000 5.00000

2 �0.07263 �0.03473 �6.00881# 2.10426 �0.37144 0.04904 �2.39001
3 �0.02569 �0.06011 �0.41159# 0.15764 �0.00924 0.00329 �0.16193
4 �0.00078 �0.00032 �0.0030# �0.00054 �0.00002 0.00000 0.00069

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10−2

10−3

10−4

10−1

100

101

1 2 3 4 5 6 7 Iterations

Power error

Fig. 2.9 Convergence property of

Newton–Raphson method
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2.4 Fast Decoupled Method

2.4.1 Introduction to Fast Decoupled Method

The basic idea of the fast decoupled method is expressing the nodal power as a

function of voltages in polar form; separately solving the active and reactive power

equations [9] by using active power mismatch to modify voltage angle and using

reactive power mismatch to modify voltage magnitude. In this way, the computing

burden of load flow calculation is alleviated significantly. In the following, the

derivation of the fast decoupled method from the Newton method is discussed.

As described previously, the core of the Newton load flow approach is to solve

the correction equation. When the nodal power equation is expressed in polar form,

the correction equation is (see (2.50)),

DP
DQ

� �
¼ H N

J L

� �
Du

DV=V

� �
ð2:65Þ

or can be written as,

DP ¼ HDuþ NDV=V

DQ ¼ JDuþ LDV=V
ð2:66Þ

This equation is derived strictly from the mathematical viewpoint. It does not take

the characteristics of power systems into consideration.

We know that in high voltage power system the active power flow is mainly

related to the angle of the nodal voltage phasor while reactive power flow is mainly

Table 2.4 Diagonal elements of Jacobian matrix in iterative process

Iterating

no.

@DQ1

@e1

@DP1

@f1

@DQ2

@e2

@DP2

@f2

@DQ3

@e3

@DP3

@f3

@DV2
4

@e4

@DP4

@f4

1 6.04166 6.54166 60.28283 73.67881 32.38884 39.08688 1.05000 63.49206

2 5.22590 6.84268 79.81886 69.30868 36.62734 38.83341 0.96259 70.18293

3 4.37415 6.42613 69.78933 69.61682 35.38612 38.39351 0.97528 65.61929

4 4.23077 6.38634 68.89682 69.52026 35.29706 38.33158 0.97463 65.14834

5 4.22720 6.38577 68.88900 69.51747 35.29572 38.33048 0.97461 65.14332

Table 2.5 Node voltage vectors

Node Magnitude Angle (�)
1 0.86215 �4.77851
2 1.07791 17.85353

3 1.03641 �4.28193
4 1.05000 21.84332

5 1.05000 0.00000
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related to its magnitude. The experiences of many load flow calculations tell us that

the element values of matrix N and J in (2.66) are usually relatively small.

Therefore, the first step to simplify the Newton method is to neglect N and J, and

(2.66) is simplified to

DP ¼ HDu

DQ ¼ LDV=V

)
ð2:67Þ

Thus a simultaneous linear equation of dimension 2n is simplified to two simulta-

neous linear equations of dimension n.
The second important step to simplify the Newton method is to approximate the

coefficient matrices of (2.67) as constant and symmetric matrices.

As the phase angle difference across a transmission line usually is not very large

(does not exceed 10��20�), so the following relations hold,

cos yij � 1

Gij sin yij 	 Bij

)
ð2:68Þ

Furthermore, the admittance BLi corresponding to the node reactive power is

certainly far smaller than the imaginary part of the node self-admittance, i.e.,

BLi ¼ Qi

V2
i

	 Bii

Accordingly,

Qi 	 V2
i Bii ð2:69Þ

Based on the above relationships, the element expressions of coefficient matrix in

(2.67) can be represented as (see (2.41), (2.42), (2.48), and (2.49)):

Hii ¼ V2
i Bii

Hij ¼ ViVjBij

Lii ¼ V2
i Bii

Lij ¼ ViVjBij

9>>>>=
>>>>;

ð2:70Þ

Therefore, the coefficient matrix in (2.67) can be written as

H ¼ L ¼
V2
1B11 V1V2B12 . . . V1VnB1n

V2V1B21 V2
2B22 . . . V2VnB2n

..

.

VnV1Bn1 VnV2Bn2 . . . V2
nBnn

2
6664

3
7775 ð2:71Þ
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It can be further represented as the product of the following matrices:

H ¼ L ¼
V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1

V2 0

0 . .
.

Vn

2
6664

3
7775 ð2:72Þ

Substituting (2.72) into (2.67), we can rewrite the correction equations as follows:

DP1

DP2

..

.

DPn

2
6664

3
7775 ¼

V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1Dy1
V2Dy2

..

.

VnDyn

2
6664

3
7775 ð2:73Þ

and

DQ1

DQ2

..

.

DQn

2
6664

3
7775 ¼

V1

V2 0

0 . .
.

Vn

2
6664

3
7775

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

DV1

DV2

..

.

DVn

2
6664

3
7775 ð2:74Þ

Multiplying both sides of the above equation with matrix,

V1

V2

. .
.

Vn

2
6664

3
7775
�1

¼

1
V1

1
V2

. .
.

1
Vn

2
66664

3
77775

one can obtain

DP1=V1

DP2=V2

..

.

DPn=Vn

2
6664

3
7775 ¼

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

V1Dy1
V2Dy2

..

.

VnDyn

2
6664

3
7775 ð2:75Þ

and

DQ1=V1

DQ2=V2

..

.

DQn=Vn

2
6664

3
7775 ¼

B11 B12 . . . B1n

B21 B22 . . . B2n

..

. ..
.

Bn1 Bn2 . . . Bnn

2
6664

3
7775

DV1

DV2

..

.

DVn

2
6664

3
7775 ð2:76Þ

2.4 Fast Decoupled Method 103



The above two equations are the correction equations of the fast decoupled load

flow method. The coefficient matrix is merely the imaginary part of the nodal

admittance matrix of the system, and is thus a symmetric, constant matrix. Com-

bining with the power mismatch equation (2.13), we obtain the basic equations of

the fast decoupled load flow model

DPi ¼ Pis � Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:77Þ

DQi ¼ Qis � Vi

X
j2i

VjðGij sin yij � Bij cos yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:78Þ

The iterative process can be briefly summarized in the following steps:

1. Specify node voltage vector initial value yð0Þi , V
ð0Þ
i

2. Calculate the node active power mismatch DPi according to (2.77), and then

calculate DPi=Vi

3. Solving correction equation (2.75), calculate the node voltage angle correction

Dyi
4. Modify the node voltage angle yi

yðtÞi ¼ yðt�1Þi Dyðt�1Þi ð2:79Þ

5. Calculate node reactive power mismatch DQi according to (2.78), and then

calculate DQi=Vi

6. Solving correction equation (2.76), calculate the node voltage magnitude cor-

rection DVi,

7. Modify the node voltage magnitude Vi;

V
ðtÞ
i ¼ V

ðt�1Þ
i � DVðt�1Þi ð2:80Þ

8. Back to step (2) to continue the iterative process, until all node power mis-

matches DPi and DQi satisfy convergence conditions.

2.4.2 Correction Equations of Fast Decoupled Method

The main difference between the fast decoupled method and the Newton method

stems from their correction equations. Comparing with correction (2.40) or (2.54)

of the Newton method, the two correction equations of the fast decoupled method

have the following features:

1. Equations (2.75) and (2.76) are two simultaneous linear equations of dimension

n instead of a simultaneous linear equation of dimension 2n
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2. In (2.75) and (2.76), all elements of the coefficient matrix remain constant during

the iterative process

3. In (2.75) and (2.76), the coefficient matrix is symmetric.

The benefit of the first feature for computing speed and storage is obvious. The

second feature alleviates the computing burden in forming and eliminating

the Jacobian within the iterative process. We can first form the factor table for the

coefficient matrix of the correction equation (see (2.76)) by triangularization. Then

we can carry out elimination and backward substitution operations for different

constant terms DP=V and DQ=V through repeatedly using the factor table. In this

way, the correction equation can be solved very quickly. The third feature can

further improve efficiency in forming and storing the factor table.

All the simplifications adopted by the fast decoupled method only affect the

structure of the correction equation. In other words, they only affect the iteration

process, but do not affect the final results. The fast decoupled method and the

Newton method use the same mathematical model of (2.13), if adopting the same

convergence criteria we should expect the same accuracy of results.

It seems that (2.75) and (2.76) derived above have the same coefficient matrix,

but in practice the coefficient matrixes of the two correction equations in the fast

decoupled algorithms are different. We can simply write them as

DP=V ¼ B0VDu ð2:81Þ
DQ=V ¼ B00DV ð2:82Þ

Here V is a diagonal matrix with the diagonal elements being the node voltage

magnitudes.

First, we should point out that the dimensions of B0 and B00 are different. The

dimension of B0 is n� 1 while the dimension of B00 is lower than n� 1. This is

because (2.82) dose not include the equations related to PV nodes. Hence if the

system has r PV nodes, then the dimension of B00 should be n� r � 1.

To improve the convergence, we use different methods to treat B0 and B00, and
how we treat B0 and B00 will result in different fast decoupled methods, are not

merely the imaginary part of the admittance matrix.

As described above, (2.81) and (2.82) are the correction equations based on a

series of simplifications. Equation (2.81) modifies the voltage phase angles accord-

ing to the active power mismatch; (2.82) modifies the voltage magnitudes according

to the reactive power mismatch. To speed up convergence, the factors that have no

or less effect on the voltage angle should be removed from B0. Therefore, we use the
imaginary part of admittance to form B0 without considering the effects of shunt

capacitor and transformer’s off-nominal taps. To be specific, the off-diagonal and

diagonal elements of B0 can be calculated according to following equations:

B0ij ¼ �
xij

r2ij þ x2ij
; B0ii ¼

X
j2i

xij
r2ij þ x2ij

¼
X
j2i

B0ij ð2:83Þ

where rij and xij is the resistance and reactance of branch ij, respectively.
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Theoretically, the factors that have less effect on voltage magnitude should be

removed from B00. For example, the effect of line resistance to B00 should be

removed. Therefore, the off-diagonal and diagonal elements of B00 can be calculated
according to the following equations:

B00ij ¼ �
1

xij
; B00ii ¼

X
j2i

1

xij
� bio B00ii ¼

X
j2i

1

xij
� bio ð2:84Þ

where bio is the shunt admittance of the grounding branch of node i.
If B0 and B00 are formed according to (2.83) and (2.84), the fast decoupled

method is usually called the BX algorithm. Another algorithm opposite to BX
method is called the XB algorithm in which B0 used in the DP � Dy iteration is

formed according to (2.84), while B00 used in the DQ � DV iteration is formed

according to (2.83). Although these two algorithms have different correction

equations, their convergence rates are almost the same. Several IEEE standard

test systems have been calculated to compare the convergence of these algorithms.

Table 2.6 shows the number of iterations needed to converge for these test systems.

Many load flow calculations indicate that BX and XB methods can converge for

most load flow problems for which the Newton method can converge. The authors

of [9, 10] explain the implications of the simplifications made in the fast decoupled

method. Wong et al. [19] propose a robust fast decoupled algorithm to especially

treat the possible convergence problem caused by high r=x networks. Bacher and

Tinney [26] adopt the sparse vector technique to improve the efficiency of the fast

decoupled method.

From the above discussion we know that the fast decoupled method uses

different correction equations to the Newton method, hence the convergence

properties are also different. Mathematically speaking, the iteration method based

on a fixed coefficient matrix to solve a nonlinear equation belongs to ‘‘the constant

slope method.’’ Its convergence process has the characteristic of the geometric

series. If the iteration procedure is plotted on a logarithmic coordinate, the conver-

gence characteristic is nearly a straight line. In contrast, convergence of the Newton

method has a quadratic property and is quite similar to a parabola. Fig. 2.10 shows

the typical convergence properties of the two methods.

Figure 2.10 illustrates that the Newton method converges slower at the early

stages, but once converged to some degree its convergence speed becomes very

fast. The fast decoupled method converges almost at the same speed throughout the

iteration procedure. If the specified convergence criterion is smaller than the errors

Table 2.6 Convergence comparison of BX method and XB
method

Systems Newton BX XB

IEEE-5 bus 4 10 10

IEEE-30 bus 3 5 5

IEEE-57 bus 3 6 6

IEEE-118 bus 3 6 7
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at point A in Fig. 2.10, the iteration number of the fast decoupled method is larger

than that of the Newton method. It can be roughly considered that a linear relation

exists between the iteration number and the required precision when using the fast

decoupled method.

Although the iteration number of the fast decoupled method is larger, its

computing requirement in each iteration is far less than that of the Newton method.

So the computing speed of the fast decoupled method is much higher than the

Newton method.

2.4.3 Flowchart of Fast Decoupled Method

The principle flowchart of the fast decoupled method is shown in Fig. 2.11 which

illustrates the main procedure and logical structure of the load flow calculation.

The symbols used in Fig. 2.11 are first introduced below:

t: counter for the iteration number

K01 a flag with ‘‘0’’ and ‘‘1’’ states, ‘‘0’’ indicates the active power iteration; while

‘‘1’’ the reactive power iteration. A whole iteration includes an active power

iteration and a reactive power iteration.

Power
error

Iterations
5

1e-5

1e-2

1e-3

1e-4

1e-1

1

10 15

Newton Method

P   Q Decoupled Method

A

Fig. 2.10 Convergence properties of fast decoupled method and Newton method
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DW: power mismatch vector: when K01 ¼ 0, DWðK01Þ is the mismatch of active

power; when K01 ¼ 1, DWðK01Þ is the mismatch of reactive power.

V: Voltage vector: when K01 ¼ 0, VðK01Þ represents voltage angle; when

K01 ¼ 1, VðK01Þ represents voltage magnitude.

ERM: Store the maximal power mismatch in an iteration: when K01 ¼ 0, ERM

(K01) stores the maximal active power mismatch; when K01 ¼ 1, ERM(K01)
stores the maximal reactive power mismatch;

e: Convergence criterion.

From the figure one can see, after inputting the problem data, the admittance matrix

is formed. Then according to (2.83) the matrix B0 is obtained, and triangularized to
form the first factor table (block in Fig. 2.11).

Calculate coefficient matrix B�, and form the first factor table

Input information and original data, and deal with original data

Give voltage initial value on each node

Output the results of load flow

Calculate [ DW(K01 ) /V] ;ERM(K01)

Solve modified equation (2.81)or(2.

82) , and modify V K 01

Calculate coefficient matrix B�, and form the second factor table

Form admittance matrix

ERM(0) < < ERM (1)<

true

false

No Yes

6

10

9

8

7

5

4

3

2

1

e e

t = 0, k 01= 0 

Fig. 2.11 Principle flowchart of P� Q decoupled load flow program
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After considering shunt capacitances of transmission lines and grounding branches

of off-nominal taps of transformer, matrixB00 can be formed according to (2.84), and

then triangularized to form the second factor table (block in Fig. 2.11).

It should be point out that B0 and B00 can be formed at the same time when

forming the admittance matrix. Meanwhile, the admittance matrix (block) should

be stored for calculating the power mismatches according to (2.77) and (2.78).

In the flowchart, the iteration procedure is composed of blocks.

In block the initial voltage values are set accordingly for PQ nodes and PV
nodes. For PQ node, the voltage magnitude can be set as the average voltage of the

system; for a PV node, the voltage magnitude is set to the specified value. The

voltage angle can be set to 0 as initial value for all nodes.

Block establishes the original state for iteration. The iteration procedure starts

with a P � y iteration, thus K01 is set to ‘‘0.’’

The iteration procedure in Fig. 2.11 follows 1y and 1V mode. That is to say the

iteration procedure is carries out by alternately solving P � y and Q � V correction

equations.

Blockcalculates thenodepowermismatchaccordingto(2.77) or (2.78) and records

the maximal mismatch in ERM(K01) for checking the convergence condition.

Block solves correction equations, and further modifies the voltage magnitude

and angle. Block establishes the state for the next iteration and counts the iteration

number.

Block checks whether the iteration procedure converges. When both the P � y
and Q � V iterations converge, the iteration procedure comes to an end, otherwise

the process continues to the next iteration.

[Example 2.2] Using the fast decoupled method to calculate the load flow of the

system shown in Fig. 2.8.

[Solution] The calculating procedure follows the flow chart of Fig. 2.11.

The admittance matrix of the system can be found in Example 1.l. The factor table

used in P � y iteration is

�0:15286 �0:59620 �0:40379
�0:01466 �0:06874 �0:93125

�0:02769 �0:12087
�0:26061

2
664

3
775

It should be pointed out that B0 used in forming the above factor table should be

calculated according to (2.83). The factor table in Q � V iteration is

�0:15135 �0:60541 �0:43243
�0:01541 �0:07804

�0:02895

2
4

3
5
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Matrix B00 used in forming the above factor table is calculated by (2.84).

Because matrix B00 does not include the elements related to PV nodes, it is a three-

dimensional matrix,

B00 ¼
�6:60714 4:0000 2:85714
4:0000 �67:30197 3:33333
2:85714 3:33333 �36:17480

2
4

3
5

It is easy to establish the above factor table by an elimination operation on B00.
The initial values of node voltages are similar to example 2.1 except the polar

form is used here. The average operation voltage of system is:

V0 ¼ 1:00000

Then the initial value of node voltage vector is:

V
ð0Þ
1 ¼ V

ð0Þ
2 ¼ V

ð0Þ
3 ¼ 1:00000

V
ð0Þ
4 ¼ V

ð0Þ
5 ¼ 1:05000

yð0Þ1 ¼ yð0Þ2 ¼ yð0Þ3 ¼ yð0Þ4 ¼ yð0Þ5 ¼ 0

According to (2.77) and (2.78), the functions of node power mismatches are given

as follows:

DP1 ¼ P1s � V1½V1G11 þ V2ðG12 cos y12 þ B12 sin y12Þ þ
þ V3ðG13 cos y13 þ B13 sin y13Þ�

DQ1 ¼ Q1s � V1½�V1B11 þ V2ðG12 sin y12 � B12 cos y12Þ þ
þ V3ðG13 sin y13 � B13 cos y13Þ�

. . . . . .

DP4 ¼ P4s � V4½V2ðG42 cos y42 þ B42 sin y42Þ þ V4G44�

For the first P � y iteration the node power mismatch can be calculated as

DPð0Þ ¼
�1:60000
�2:00000
�3:70000
5:00000

2
664

3
775

Thus we have the right-hand term of the correction equation,
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DP
V

� �ð0Þ
¼
�1:60000
�2:00000
�3:70000
4:76190

2
664

3
775

Using the first factor table to execute elimination and backward substitution opera-

tions, we obtain the correcting value of node y as

Dyð0Þ ¼
0:09455
�0:30580
0:07994
�0:38081

2
664

3
775

Note that in the P � y iteration, after solving the correction equation, we should

obtain V0Du (see (2.81)). But in this example, the calculation is based on per unit

and V0 ¼ I, hence,

V0Duð0Þ ¼ Duð0Þ

After modifying the node voltage angle, we get uð1Þ as

uð1Þ ¼ uð0Þ � Duð0Þ ¼
�0:09455
0:30580
�0:07994
0:38080

2
664

3
775

The Q � V iteration is carried out next. The node reactive power mismatches are

DQð0Þ ¼
�1:11284
5:52890
1:41242

2
4

3
5

The right-hand term of the correction equation is

DQ
V

� �ð0Þ
¼
�1:11284
5:52890
1:41242

2
4

3
5

Solving this equation, we obtain the voltage correct vector for PQ nodes:

DVð0Þ ¼
0:10493
�0:07779
�0:03793

2
4

3
5
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The modified node voltages can be calculated (see (2.80)):

Vð1Þ ¼ Vð0Þ � DVð0Þ ¼
0:89057
1:07779
1:03793

2
4

3
5

Thus the first iteration is complete.

The iteration procedure repeats the above steps until the convergence condition

is satisfied. When e ¼ 10�5, the iteration procedure converges after ten iterations.

The evolution of the node voltages is demonstrated in Table 2.7.

Table 2.8 shows the evolution of the maximal errors of the node powers and

voltages in the iteration procedure.

The convergence property of the fast decoupled method used in this example is

displayed in Fig. 2.12. From this figure we can see that the convergence characteris-

tic of the fast decoupled method on a logarithmic coordinate is nearly a straight line.

At the beginning, its convergence speed is faster than that of the Newton method.

The result of load flow calculation is shown in Fig. 2.13.

Table 2.7 Node voltage changes in the iteration process

Iterating No. y1 V1 y2 V2 y3 V3 y4
1 �0.09455 0.89507 0.30580 1.07779 �0.07995 1.03793 0.38080

2 �0.08227 0.87158 0.30728 1.07857 �0.07405 1.03743 0.37652

3 �0.08239 0.86512 0.31048 1.07813 �0.07448 1.03673 0.38010

4 �0.08316 0.86309 0.31117 1.07798 �0.07468 1.03652 0.38079

5 �0.08332 0.86244 0.31152 1.07794 �0.07471 1.03644 0.38115

6 �0.08339 0.86222 0.31162 1.07792 �0.07473 1.03642 0.38126

7 �0.08341 0.86215 0.31166 1.07791 �0.07473 1.03641 0.38129

8 �0.08342 0.86213 0.31167 1.07791 �0.07474 1.03640 0.38131

9 �0.08342 0.86212 0.31167 1.07791 �0.07474 1.03640 0.38131

10 �0.08342 0.86212 0.31168 1.07791 �0.07474 1.03641 0.38131

Note: the angles in the table are in rad

Table 2.8 Changes of maximal node power and voltage errors

Iterating No. DPM DQM DyM DVM

1 5.00000 5.52890 0.38080 0.10493

2 0.38391 0.15916 0.01228 0.02348

3 0.02660 0.03398 0.00358 0.00647

4 0.00898 0.01054 0.00077 0.00202

5 0.00279 0.00339 0.00036 0.00066

6 0.00095 0.00111 0.00011 0.00022

7 0.00031 0.00037 0.00004 0.00007

8 0.00010 0.00012 0.00001 0.00002

9 0.00003 0.00004 0.00000 0.00001

10 0.00001 0.00001 0.00000 0.00000
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2.5 Static Security Analysis and Compensation Method

2.5.1 Survey of Static Security Analysis

Static security analysis is widely used in power system planning and dispatching to

check the operation states when some system equipment sustains forced outages. It

will answer the questions such as ‘‘what will happen if a 500 kV line is disconnected.’’

When the results show that the power flows and voltages all are in the acceptable

range, the system is static secure. When the results show that some transmission

equipments are overloaded or the bus voltages of some nodes are beyond the

constraints, the system is not static secure. Therefore static security analysis is a

Power
error

Iterations
2 10864

1e-6

1e-1

1e-2

1e-3

1e-4

1e-5

1

Fig. 2.12 Convergence property of P� Q decoupled method
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1.050001.03641.0779
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j0.4713
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Fig. 2.13 Load flow calculation results
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very important part in power system security analysis and is discussed in this

section. The dynamic performance analysis of power systems will be presented in

the last two chapters of this book.

The static security analysis can be used in evaluating the enduring capability of a

planning scheme, or an operating schedule of the power system. The static security

analysis usually checks the typical forced outages of generator units or transmission

equipments, onefold or two-fold. Sometimes it also inspects multi-fold outages, or

common mode failures, e.g., those caused by relay system failures.

In power system planning, all credible outage cases should be considered in the

static security analysis. According to the result of the static security analysis the system

planner usually needs to add some redundant devices or to adjust the network scheme.

In power system operation, to avoid equipment damage and large area blackouts,

the static security analysis, both online and off-line, is essential [21, 22]. In

particular, the power market evolution introduces many uncertain factors to system

operation, and increasing demands on the security monitor and control system.

Since the dynamic performance of the power system is not involved, the static

security analysis is substantially a steady analysis problem. Through load flow

calculations for all possible contingencies, we can judge whether the system is

secure or not. Unfortunately, since the number of possible contingencies in static

security analysis is very large, it is almost impossible to complete the task by the

conventional load flow analysis method in a reasonable period of time for on-line or

real-time use. Therefore, many special methods for static security analysis have

been developed, such as the compensation method, DC load flow model and the

sensitivity method, etc. These methods will be presented below.

2.5.2 Compensation Method

When a minor change of the network topology occurs in a power system, we can still

use the original admittance matrix, even the original factor table to calculate the load

flow after such a change. To accomplish thiswe usually use the compensationmethod.

The compensation method is a very useful tool in power system analysis, not

only used in the static security evaluation but also widely applied in the dynamic

performance study and short circuit current calculation.

We first introduce the basic principles of the compensation method.

Assume the admittance matrix and the factor table of network N shown in

Fig. 2.14 have been formed, and the currents injected into the nodes are known,

I ¼ _I1 . . . _Ii . . . _Ij . . . _In
� 	T

The problem in question is: when an impedance Zij is added across nodes i and j,
how to solve the voltage V under the new condition by using the factor table of the

original network N:

_V ¼ _V1
_V2 . . . . . . _Vn

� 	T
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If we can get the current injecting into network N,

I ¼

_I1
_I2
..
.

_Ii þ _Iij

..

.

_Ij � _Iij

..

.

_In

2
66666666666664

3
77777777777775

ð2:85Þ

Thus the node voltage vector V can be calculated by an elimination and substitution

manipulation on I0 employing the original factor table. But before the node voltage

vector is obtained, the current _Iij flowing into branch Zij is unknown. Therefore, the
node voltage cannot be calculated directly according to I0.

On the basis of the superposition principle, we can decompose network N shown

in Fig. 2.14 into two equivalent networks, as showing in Fig. 2.15a, b. The node

voltage vector V can be decomposed as

V ¼ Vð0Þ þ Vð1Þ ð2:86Þ

where Vð0Þ is related to the original network without the added line, see Fig. 2.15a.

Since the node injecting current vector I is known, Vð0Þ can be easily calculated by

using the factor table of original network N:

Vð0Þ ¼ _V
ð0Þ
1

_V
ð0Þ
2 . . . _V

ð0Þ
i . . . _V

ð0Þ
j . . . _V

ð0Þ
n

h iT
ð2:87Þ
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Fig. 2.14 Equivalent circuit for

network branch changing
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Now we discuss how to calculateVð1Þ in Fig. 2.15b. In this figure, the current vector
injected into the original network is

Ið1Þ ¼

0

..

.

..

.

_Iij
0

..

.

� _Iij
0

..

.

2
666666666666664

3
777777777777775

¼ _Iij

0

..

.

..

.

1

0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:88Þ

where _Iij is an unknown variable at this stage. But let _Iij ¼ 1, the node voltage can

be calculated by using the original factor table:

VðijÞ ¼ _V
ðijÞ
1

_V
ðijÞ
2 . . . _V

ðijÞ
i . . . _V

ðijÞ
j . . . _V

ðijÞ
n

h iT
ð2:89Þ

Because the network is linear, if the _Iij can be obtained, then the final voltage vector
can be calculated by the following equation:

)0(
1V

)0(
2V

)0(
iV

)0(
jV

)0(
nV

iI

jI

1I

2I

nI

)1(
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)1(
2V

)1(
iV

)1(
jV
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nV

ijI

0

0

0

ijI−

(b)(a)

N N

Fig. 2.15 Principle of compensation method
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V ¼

_V
ð0Þ
1

_V
ð0Þ
2

..

.

..

.

_V
ð0Þ
n

2
6666664

3
7777775
þ _Iij

_V
ðijÞ
1

_V
ðijÞ
2

..

.

..

.

_V
ðijÞ
n

2
6666664

3
7777775

ð2:90Þ

Therefore, the problem we face now is to get _Iij. Here we need utilize the equivalent
generator principle.

As mentioned before, Vð0Þ is the node voltage when branch Zij is open. If we
consider the whole system as the equivalent source of branch Zij, then the no-load

voltage of this source is

_E ¼ _V
ð0Þ
i � _V

ð0Þ
j ð2:91Þ

The equivalent internal impedance, ZT , is

ZT ¼ _V
ðijÞ
i � _V

ðijÞ
j ð2:92Þ

where ( _V
ðijÞ
i � _V

ðijÞ
j ) is the voltage drop between nodes i and j due to injecting

positive and negative unit current into these nodes. Thus we have the equivalent

circuit shown in Fig. 2.16, and can obtain _Iij directly:

_Iij ¼ �
_V
ð0Þ
i � _V

ð0Þ
j

Z0ij
ð2:93Þ

where

Z0ij ¼ ZT þ Zij ð2:94Þ

N

Iij

j

i

ZT

ZijE

Fig. 2.16 Equivalent circuit to get

Iij
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Substituting _Iij into (2.90), we finally obtain node voltage vector V.

The basic principle of compensation method has been introduced. In the prac-

tice, the compensation method can be used according to the following steps:

1. Find VðijÞ for the injecting unit current vector by using the factor table of the

original normal network.

_Iij ¼

0

..

.

..

.

1

0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:95Þ

2. Calculate the internal impedance, ZT, by (2.92), and then obtain Z0ij by (2.94).

3. Calculate Vð0Þ by using the original factor table for the injected current vector I

(see Fig. 2.15a).

4 Obtain the current _Iij flowing into branch Zij by (2.93).

5. Solving node voltage vector V according to (2.90).

In theory, the compensation method can also be used when more than one operation

occurs simultaneously in the network. In this case, the above calculation steps

should be used recursively.

Now, we will show how to use the compensation method to analysis the

contingency state in the fast decoupled method.

The correction of (2.81) and (2.82) can be considered as the node equations of

the network based on ‘‘admittance matrix’’ B0 and B00, and the injecting currents

DP=V and DQ=V, respectively. The node voltages V0Du and DV are the variables

to be solved. In this way, the above calculation process can be followed directly.

When branch ij trips, the branch impedances added between i and j for B0 and B00

should be (see Fig. 2.14):

Z0ij ¼
�1
Bij

; Z00ij ¼ �xij; ð2:96Þ

If the tripped branch is a nonnominal tap transformer, the current representation in

(2.95) should be changed as
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IðijÞ ¼

0

..

.

..

.

nT
0

..

.

�1
0

..

.

2
666666666666664

3
777777777777775

 i

 j

ð2:97Þ

where nT is the nonnominal tap on the node j side of the transformer. In this

situation, (2.91), (2.92), and (2.93) should be revised, respectively, as

_E ¼ nT _V
ð0Þ
i � _V

ð0Þ
j ð2:98Þ

ZT ¼ nT _V
ðijÞ
i � _V

ðijÞ
j ð2:99Þ

_Iij ¼ �
nT _V

ð0Þ
i � _V

ð0Þ
j

Z0ij
ð2:100Þ

where Z0ij ¼ ZT þ Zij.

It should be noted, in above line outage operation, only the series branch of the

opened line (or transformer) is considered in (2.96). Rigorously speaking, the shunt

branches for line charging capacitance (and transformer ground branches) should

also be tripped simultaneously. However, tripping three branches at the same time

makes the calculation too complicated. Fortunately, practice indicates that the

errors caused by neglecting grounding branches are not very significant. Therefore,

the grounding branches can be neglected when the compensation method is used to

analyze line outage states.

2.6 DC Load Flow Method

The DC load flow simplifies the AC load flow to a linear circuit problem. Conse-

quently, it makes the steady state analysis of the power system very efficient. The

main shortcoming of the DC load flow model is that it cannot be used in checking

voltage limit violations. Because the DC load flow uses a linear model, it is not only

suitable to efficiently treat the problem of line outages, but is also suitable to form

linear optimization problems. Therefore, the DC load flow method has been widely

used in power system planning and operating problems.
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2.6.1 Model of DC Load Flow

The node active power equations of an AC load flow are given by (2.9),

Pi ¼ Vi

X
j2i

VjðGij cos yij þ Bij sin yijÞ ði ¼ 1; 2; . . . ; nÞ ð2:101Þ

Branch active power is

Pij ¼ ViVjðGij cos yij þ Bij sin yijÞ � tijGijV
2
i ð2:102Þ

where tij is the circuit transformer ratio per unit of branch ij, yij is the phase angle
difference across branch ij;Gij;Bij are the real and imaginary parts of corresponding

elements of the node admittance matrix, respectively.

yij ¼ yi � yj ð2:103Þ

Gij þ jBij ¼ � 1

rij þ jxij
¼ �rij

r2ij þ x2ij
þ j

xij
r2ij þ x2ij

ð2:104Þ

where, rij; xij are resistance and reactance of line ij. When i ¼ j,

Gii ¼ �
X
j2i
j 6¼i

Gij

Bii ¼ �
X
j2i
j 6¼i

Bij

Under assumptions applied in the fast decoupled method, the above AC load flow

equations can be simplified to the following equations.

Pi ¼
X
j2i

Bijyij ði ¼ 1; 2; . . . ; nÞ

which can be rewritten as,

Pi ¼
X
j2i

Bijyi�
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ

From (2.104), we know the first term in the right hand of the above equation is 0,

thus we have,

Pi ¼ �
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ ð2:105Þ
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The DC flow model usually has no negative sign, thus we redefine Bij as,

Bij ¼ � 1

xij
ð2:106Þ

thus

Bii ¼
X
j2i
j6¼i

1

xij
ð2:107Þ

Finally, we establish the DC flow equation,

Pi ¼
X
j2i

Bijyj ði ¼ 1; 2; . . . ; nÞ ð2:108Þ

or in matrix form,

P ¼ Bu ð2:109Þ

where P is u the node injection power vector and its ith element is given by

Pi ¼ PGi � PDi, here PGi and PDi are the generator output and load at node i,
respectively; is the phase angle vector and B is the matrix whose elements are

defined by (2.106) and (2.107).

Equation (2.109) can also be expressed as follows

u ¼ XP ð2:110Þ

where X is the inverse of matrix B,

X ¼ B�1 ð2:111Þ

Similarly, substituting the simplifying conditions into (2.102), one obtains the

active power flowing into branch ij,

Pij ¼ �Bijyij ¼ yi � yj
xij

ð2:112Þ

or in matrix form,

Pl ¼ BlF ð2:113Þ

If the number of branches is l, Bl is an l� l diagonal matrix whose elements are

branch admittance; Pl is the branch active power vector;F is the end terminal phase

angle difference vector.
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Assuming that the network incidence matrix is A, then one arrives at

F ¼ Au ð2:114Þ

Equations (2.109), (2.110), and (2.113) are basic DC load flow equations which are

linear. Under given system operation conditions, the state variable y may be

obtained through triangularizition or matrix inversion from (2.110), then branch

active power can be obtained from (2.113).

2.6.2 Outage Analysis by DC Load Flow Method

From the above discussion, it can be seen that it is very simple to solve system state

and active power flow by DC load flow equations. It will also be shown that because

these equations are linear, it is possible to carry out fast load flow computation after

adding or tripping a line.

Assuming that the original network nodal impedance matrix is X and a branch k
is connected between nodes i and j. When a line with reactance xk is added in

parallel with branch k, a new network is formed. We now demonstrate how to

obtain the new network state vector in this situation from the original network

impedance matrix and state vector.

Assuming the new network impedance matrix is X0, it can be obtained according
to the branch adding principle of section 1–4 (see (2.1–2.107)),

X0 ¼ X� XLX
T
L

XLL

ð2:115Þ

where XL ¼ Xek,

ek ¼

0

..

.

1

..

.

�1
0

..

.

2
66666666664

3
77777777775

 i

 j
ð2:116Þ

X0 ¼ X� Xeke
T
kX

xk þ eTkXek
ð2:117Þ

Equation (2.117) can be further reduced to,

X0 ¼ Xþ bkXeke
T
kX ð2:118Þ
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where

bk ¼
�1

xk þ wk
ð2:119Þ

wk ¼ eTkXek ¼ Xii þ Xjj � 2Xij ð2:120Þ

where Xii;Xjj;Xij are elements of X.

From (2.118), the incremental change of the nodal impedance matrix is given by:

DX ¼ X0 � X ¼ bkXeke
T
kX ð2:121Þ

According to (2.121) and (2.110), under constant nodal injection power conditions,

the change in original state vector after adding line k is

Du ¼ DXP ¼ bkXekfk ð2:122Þ

where fk ¼ eTk u, is the terminal phase angle difference of branch k before the

change. The new network state vector is given by

u0 ¼ uþ Du ¼ uþ bkXekfk ð2:123Þ

Thus after adding line k, the new network nodal impedance matrix and the new state

vector can be obtained by (2.118) and (2.123) using the original network para-

meters. When line k trips, the above equations can still be applied with xk being

replaced by �xk.
If the outage of branch k causes system disconnection, the new impedance

matrix X0 does not exist and bk of (2.119) becomes infinite, i.e., � xk þ wk ¼ 0.

Therefore, it is very easy to check whether the outage of a branch will cause system

disconnection by using the DC load flow equation. However, it is impossible to

carry out line outage analysis directly.

2.6.3 N-1 Checking and Contingency Ranking Method

A network design has to satisfy certain operational security requirements. As

discussed earlier, a common network operational security requirement is to satisfy

N-l checking, i.e., when one of N branches fails, the system operation criteria

remain within given requirements. At the initial stage of forming a network

configuration, the principle is to ensure that there is no overloading in the network;

i.e., the network satisfies the requirements for securely transmitting power. To this

end, one has to carry out the overload check for successive line outages. If the

outage of a line causes overloading or system disconnection, then the network does

not satisfy N-1 checking.
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The strict N-l checking on all branches needs N line outage analyses, resulting in

a large amount of computing. In practice, some line outages do not cause system

overloading. Therefore, a contingency ranking is carried out according to the

probability of system overload being caused by a line outage, then the checking

is first performed on the lines with higher probability. If the checking of a line

indicates that its outage does not cause overloading, the lines with lower rank are

not subjected to any further checking, which significantly reduces the amount of

computing. Such a process is also called contingency selection. A number of

contingency ranking methods are available in the literature [23, 24], each having

a different criterion for assessing the system contingency. This section describes a

contingency ranking method based on the criterion of system overloading.

To reflect the overall system overloading, a system performance index (PI) is
defined as follows:

PI ¼
XL
l¼1

alwl
Pl

�Pl

� �2

ð2:124Þ

where Pl, active power of line l
�Pl, transmission capacity of branch l
al, number of parallel lines for branch l
wl, weighting factor of line l, which reflects the influence of a fault

L, number of branches in the network

It can be seen from (2.124) that when there is no overloading, Pl= �Pl is not greater

than 1, the PI is small. When there is overloading in the system, Pl= �Pl for the

overloaded line is greater than 1 and the positive exponential element makes the PI
relatively large. Therefore, this index generally reflects the system security. It may

also be possible to use a higher order exponential instead of a square element in the

equation to further obviate the overloading problem.

A sensitivity analysis of the PI with respect to the change of a line admittance

will reveal the impact of an outage on the system security. When line k fails, the

change in the PI is given by

DPIk ¼ @PI

@Bk
DBk ð2:125Þ

where DBk ¼ Bk, is the admittance of line k. The bigger DPIk is, the larger the

increase in the PI will be, which indicates that the probability of a faulted line k
causing system overloading becomes higher.

DPIk may be calculated from Telegen’s theorem and the adjoint network meth-

od. In the following study, we will derive a formula to calculate DPIk directly using
nominal load flow results.

Assuming that after line k fails other line flows become P0ðl ¼ 1; 2; . . . ; L;
l 6¼ kÞ, the system performance index becomes,
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PI0 ¼
XL
l¼1

alwl
P0l
�Pl

� �2

ð2:126Þ

Hence

DPIk ¼ PI0 � PI ð2:127Þ

For the sake of simplicity, we change the system index to a function of voltage

angles and express it in the matrix form. From (2.113),

Pl ¼ Blfl ð2:128Þ

Substituting the above equation into (2.124) and defining

PIf ¼ PI ¼
XL
l¼1

alwl
ðBlflÞ2

�P2
l

¼ fTwdf ð2:129Þ

where

fT ¼ f1; . . . ;fk; . . . ;fL½ �

and

wd ¼

a1w1B
2
1

�P2
1

0

� � �
akwkB

2
k

�P2
k � � �

0
aLwLB

2
L

�P2
L

2
666666664

3
777777775

Substituting (2.114) into (2.129), one obtains

PIf ¼ uTATwdAu ¼ uTou ð2:130Þ

where

w ¼ ATwdA ð2:131Þ

is a symmetric matrix. Matrix w has the same structure as matrix B. Thus its

formation is equivalent to directly forming the admittance matrix using element

alwlB
2
l =

�P2
l to replace Bl. Similarly, PI0F can be expressed as

PI0f ¼ u0Twu0 ð2:132Þ
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where u0 is the voltage angle vector after the line k fails.

Equation (2.132) contains all elements relevant to line k which should not appear
in the new system performance index PI0. Thus

PI0 ¼ PI0f � wk
ðBkf

0
kÞ2

�P2
k

ð2:133Þ

Substituting (2.130) and (2.133) into (2.127), one obtains

DPIk ¼ PI0f � PIf � wkB
2
k

�P2
k

ðf0kÞ2 ¼ u0Twu0 � uTwu� wkB
2
k

�P2
k

ðf0kÞ2 ð2:134Þ

From (2.123), we know

u0 ¼ uþ bkXekfk

f0k ¼ eky
0 ¼ ð1þ bkwkÞfk

Substituting the above two equations into (2.134), we have

DPIk ¼ ðuþ bkXekfkÞTwðuþ bkXekfkÞ � uTwu� wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k

¼ bkfkðuTwXek þ eTkXwuÞ þ b2kf
2
ke

T
kXwXek �

wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k

ð2:135Þ

Taking into account the symmetry of matrices X and w, let

gk ¼ uTwXek ¼ eTkXwu ¼ eTkR

tk ¼ eTkXwXek ¼ eTkTek
ð2:136Þ

where

R ¼ Xwu
T ¼ XwX

ð2:137Þ

Substituting (2.136) into (2.135), one obtains

DPIk ¼ 2bkfkgk þ b2kf
2
ktk �

wkB
2
k

�P2
k

ð1þ bkwkÞ2f2
k ð2:138Þ

When line k fails, bk in the above equations becomes
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bk ¼
�1

�xk þ wk
¼ Bk

1� Bkwk

Substituting the above equation into (2.138) gives,

DPIk ¼ 2Bkfkgk
1� Bkwk

þ B2
kf

2
ktk

ð1� BkwkÞ2
� wkB

2
kf

2
k

ð1� BkwkÞP2
k

ð2:139Þ

Because Pk ¼ Bkfk,

DPIk ¼ 2Pkgk
1� Bkwk

þ P2
ktk

ð1� BkwkÞ2
� wkP

2
k

ð1� BkwkÞP2
k

ð2:140Þ

Equations (2.138), (2.139), and (2.140) have no essential difference except for

different expressions. Variables in these equations are obtained from the normal

load flow calculation. Under the condition that matrices X, w, R, T have been

formed, it is very convenient to compute DPI after a line outage.
The process of contingency ranking is essential to compute the values of DPI

from (2.138) [or (2.139) and (2.140)] for all lines and arrange them in descending

order of magnitude of DPI. During the line outage analysis, load flow calculation

and overload checking are first carried out on the line with the largest value of DPI,
and then the procedure is continued until there is no overload caused by the outage

of certain lines. The lines with smaller values of DPI are not subjected to further

analysis because the probability of overload caused by other outages is very small.

However, the use of this system performance index may cause a ‘‘screening’’ effect.

For example, the value of DPI for the situation where there is overloading in some

lines and the flow in the other lines is very small may be smaller than that for the

situation where there is no overloading but line flows are large. Therefore, the

contingency ranking by this index may introduce some error. In practice, one may

decide that the line outage analysis is terminated only after a number of consecutive

line outages do not cause system overloading.

Thinking and Problem Solving

1. What functions do the swing bus and PV buses in load flow calculations have?

How should they be selected?

2. Compare the advantages and disadvantages of nodal power equations with

polar coordinates and rectangular coordinates.

3. Give the characteristics of Newton method based modified equations in load

flow calculation.

4. Give the physical meaning of Jacobian elements of the modified equation.
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5. Give the flowchart of the Newton method based load flow calculation by polar

coordinate equations.

6. Design the storage modes of the Jacobian matrix elements of the Newton

method based load flow calculation with two kinds of coordinates.

7. How should node conversion, such as changing a PV node into a PQ node, or

changing a PQ node into a PV node, be implemented in the design of a load

flow program?

8. What simplified suppositions are considered in the P � Q decomposition

method? Why is it that the P � Q decomposition method can obtain the same

calculation accuracy as the Newton method after so many suppositions?

9. How can we improve the convergence of the P � Q decomposition method

when the ratio R/X is very big?

10. How can the compensation method be applied to the case with two branches out

of service?

11. Prove that the DC load flow model has the same solution as that of the

following optimizing problem:

a. obj min
P
ij2B

PijX
2
ij Pij and Xij are the active load flow and reactance of branch

ij, B is the branch set.

b. s.t.
P
ij2i

Pk ¼ 0 ij 2 i denotes all branches that connect to node i.

12. Discuss the issues raised by the N-1 checking method being used as static

security analysis tool for electrical power systems.
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