Stochastic Finite Element Methods &
Data-driven models in Engineering

Applications

Lecture Notes

version date: 8.04.2021

(under constant development)

Contents

1 Probability Theory

1.1 Probability spaceo
1.2 Properties of Probability Measure
1.3 Random Variables.
1.4 Moments
1.5 Zo-Probability space
1.6 Additional literature

2 Stochastic Processes

2.1 Introduction
2.2 Definitions
2.3 Statistics of Stochastic Processes
2.4 Classes of Stochastic Processes
2.4.1 Stationary processes e
2.4.2 FErgodic processes
2.4.3 Gaussian ProCessesSt e e
2.4.4 Translation processes
2.5 Power spectral Density
2.6 Additional literature

3 Series Expansions of Stochastic Processes

3.1 Inmtuition Lo
3.2 The Karhunen-Loeve series expansion
3.3 The Spectral Representation series expansion.
3.4 The Polynomial Chaos series expansion
3.5 Additional literature

4 The Monte Carlo simulation

4.1 The Stochastic Finite Element Method
4.2 Classical Monte Carlo Integration
4.3 The Monte Carlo simulation
4.4 Additional literature

5 Data-driven modeling
5.1 Introduction,
5.2 Artificial Neural Networks

5.2.1 Feed-forward fully connected deep NNs
5.2.2 Convolutional Neural Networks
5.2.3 Autoencoders
5.2.4 Convolutional Autoencoders
5.3 Radial Basis function interpolation
5.4 Principal Component Analysis and Principal Orthogonal Decomposition . . .
5.5 Stochastic Collocation o
5.6 Gaussian Process regression/Kriging
5.6.1 Linear Regression model with Gaussian noise
5.6.2 More general formulationo
5.7 Additional literature

Spectral Stochastic Finite Element Method

6.1 SSFEM for linear systems
6.2 SSFEM for linear systems with non-Gaussian parameters
6.3 Additional literature

Bayesian Inference
7.1 Additional literature

Sensitivity Analysis
8.1 Additional literature

Application of the finite element method in 3D elasticity
A1 Introduction
A.2 The abstract problem
A.3 The boundary value problem L.
A.4 The variational boundary value problem
A.5 The finite element method L
A.6 Special case: Plane Stress Problems - implementation
A.6.1 Quadrilateral plane stress finite elements
A.6.2 Structure discretization and global system of equations
A.7 Additional literature

Chapter 1

Probability Theory

1.1 Probability space

Let us consider an experiment and denote the set of all possible outcomes of the experiment
as O, called the sample space. The sample space is classified into three categories according
to its cardinality, that is, finite, countably infinite (or denumerable) and uncountable. More
specifically, © is said to be finite if the number of elements 6 € © is finite, countably infinite
if a bijection (one-to-one correspondence and onto) between every 6 € © and the infinite set
of natural numbers can be established and uncountable if it is not countable. For instance,
for the experiment of rolling a die, © is finite since © = {1,2,3,4,5,6}. On the other hand,
for the experiment of performing stress tests on concrete specimens to estimate their yield
stress, the sample space is uncountable.

A non-empty collection of subsets F of O is called a o-algebra on O, if it satisfies the
following properties:

1. the empty set belongs to F:) € F
2. F is closed under complements: A € F = A € F
3. F is closed under countable unions: A; € &, ¢ € I, I = a countable set= U;c;A; € F

Every element of F is called event, or F-measurable subset of ©. The pair (©,%F) constitutes
a measurable space.
Let us also define a real-valued function p on F with the following property:

P02 A) =D p(A;) for A€ F, AinA; =0, i #j (1.1)
=1

The function p is called a measure and the triple (©, %,) a measure space. Also, a measure
with the property p(©) < oo is called a finite measure and the scaled version of this measure,
w(A)/u(©), takes values in the [0, 1] domain. A set function P : F — [0, 1] that satisfies the
following properties:

1. P(O)=1
is called a probability measure or simply probability and the triple (©,%, P) constitutes the
probability space.

1.2 Properties of Probability Measure

In this section some properties of the probability measure P, which are particularly useful
for applications, are provided.

e P(A)<P(B), ACB, A\ Be%F

e P(A)=1—P(A°), AeF

e P(LAUB)=P(A)+P(B)—P(ANB), ABe%

e The above equation generalizes to the union of multiple events as

n i—1

PULA) = Zn: P(A) =)) P(ANA)

i=2 j=1

+ P(ANANAL) =+ (=D)"P(N_A,), AieF

e Given a partition of ©, A; such that U | A; =0, A;NA; =0, for i # j and an event
BeF

P(B) = Xn: P(BN A;)

e Let (©,%, P) be a probability space and an event B € . A new probability measure
can be defined on (©,%) under the assumption that B has occurred. This new measure
is referred to as the conditional probability. The probability of the event A occurring
conditional on the event B is given by the following formula:

P(ANB)

P(AIB) = =55

, A A Be % and P(B) >0
o Let A, € F, i =1,2,---,n be a partition of ©.
The law of total probability states:

=1

P(B)= Y PBAA) =3 P(BIA)P(A)

The Bayes formula states:

_ P(A;)P(B|A;) P(Aj)P(B|A;)
PAIB) === pmy — = S0, P(4,)P(BIA)

1.3 Random Variables

A (continuous) random variable defined over a probability space {©, %, P} is a function X
with domain © and codomain R, that is:

X:060-R
0 — X(0)

The cumulative distribution function (cdf) of a random variable X is the function:
F(z)=P(X <1z), —c0<z <
which satisfies the following properties:
1.O< F(x)<1
2. F'is a non-decreasing function of x
3. F(—o0) =0and F(oo) =1
4. F is right continuous: limx_marF(x) = F(xg) for every x

The derivative of the cdf is called the probability density function (pdf)

_ dF(z)
. Px< X <z+ Ax)
= lim
Az—0 Ax

A pdf satisfies the normalization condition

/_: f(x)dx =1

Also, the following relations are equivalent

Pla <z <b)=F(b)— F(a)
b
~ [t
A d-dimensional vector whose coordinates are random variables is called a random vector
X :

X 0 - R
0— X(0)

The definitions of the pdf and cdf are straightforwardly extended for random vectors. Let
X = (X1, Xs,...,X,) € R? be a random vector with d coordinates. Its joint cumulative
distribution function is defined as:

F(zy,z9,...,2q) = P(X1 < x1,..., Xy <1y4), —00<xq,...,04 <00

and the corresponding joint probability density function is:

6

o¢
f(iKl,.CCQ, e ,xd) = —F(l’l, ce ,.fL'd)

81 ... 0 5
Also, the joint cdf can be obtained by appropriate integration of the joint pdf, that is:

x1 T4
F(xl,xg,...,md):/ / flu, ... ug)duy ... dug, —o0 < y,...,xq < OO
— 0 — 0o

The marginal cumulative distribution function of the variable X,,, for m =1, ..., d is obtained
by integrating out the rest of the variables in the random vector. More specifically,

Fx, (xm) = P(Xim <)

/ / / flug, .. ug)duy ... dug, —o0 <z, < 00

and the corresponding marginal probability density function as

fx,, (xm) = / . / fxy, ..., xq)dxy ... dxy, 1dT,,q ... dxg

Now, let us consider a random vector X € R? whose coordinates X; satisfy the following
relation:

Flay,...,xq) = Fx, (z1) ... Fx,(24)
or, equivalently,

f(mla s >‘Td> = fX1(x1) SR fXd<md)

Then, the X;’s are said to be independent random variables and the above equations are the
necessary and sufficient conditions for independence. Intuitively, the notion of independence
suggests that the value of a random variable X;, obtained through an experiment, does
not give any further knowledge about the value of another random variable X; in the same
experiment.

Lastly, given two random variables X, Y and their joint pdf f, the conditional probability
density function of Y given X is defined by the following relation:

f(z,y)
leX _ fx(l‘)) 0< fx(l’) < o0
0, otherwise

1.4 Moments

Let us first define a linear operator acting on random variables defined over a probability
space (©,%F, P). This operator, acting on a (continuous) random variable X, is defined as:

E[X] = /_Oo o f ()dz

(e e

7

and is called expectation operator, or simply expectation of a random variable X. For random

variables with finite expectations, it is straightforward to prove that the following properties
of E hold:

1. EX +Y]=E[X]+E[Y]
2. E[aX] = aE[X]
3. E[XY] =E[X]E[Y] iff X,Y independent

The expected value of a function of X, g(X) given that X has a probability density function
f(z) is given by:

Elg(X)] = / " g(0) fla)da

o0

The above relations extend to multidimensional cases, where f is replaced by the corresponding
joint density.

We define the n-th moment about the origin of a random variable X as the expectation of
X"™ and denote it as pu,, that is:

wn, = E[X"] = / " f(z)dx
For n = 1, py, usually denoted with m, is called the mean value of X and for n = 2, ps is
the mean square.
Similarly, we define the n-th moment about the mean or n-th central moment of a random
variable X as the expectation of (X —m)™ and denote it as s, that is:

o0

5 = E[(X — m)"] = / (= m)"(2)de

—00
The first central moment s; is zero and the second central moment s, is called the variance,
usually denoted as o2, where o = /s, is the standard deviation. The third and forth central

. " S3 . S4
moments are used in the definition of the skewness v = — and kurtosis k = —. Skewness

g o
and kurtosis are both descriptors of the shape of a pdf, where the former measures the
asymmetry of a pdf and the latter its 'tailedness’.

Some other important quantities that can be defined using the moments are:

e The coefficient of variation for a random variable X

o
C.0.0 = —
m

e The covariance between two random variables X, Y
Cov[X,Y] =E[XY] - E[X]|E[Y]

Note that in the case X =Y, Cov[X, X| = Var[X] where Var[X] is the variance of X
and
Var[X] = E[X? — E*[X] = py — m?

e The correlation coefficient
E[XY]

B \/VCL’I"[X] \/Var[Y]

Lastly, we define the conditional expectation of a random random variable Y given the
event X = x has occurred, as

P

[e.e]

Eszﬂ:/ uf (yl)dy

—00

[T yf(xy)
B /oo Ix(z) 4

1.5 <%,-Probability space

The random variables defined over a probability space (0, %, P) satisfying the property:

E[X? = /_OO 2| f(x)dz < oo

are elements of a vector space, henceforth denoted as %5, defined over the field of real numbers
R. In &, the addition operation corresponds to the usual addition of two real-valued random
variables, and the operation of scalar multiplication corresponds to the usual multiplication
of a real-valued random variable by a real number.

The vector space is also endowed with an inner-product structure induced be the expecta-
tion operator E[-|:

(X,Y) =E[XY]

One can easily verify from the definition of the expectation that for X, Y, Z € &%, the following
inner product properties are satisfied:

L (X)Y)=(Y,X)

2. (X, X)>0and (X, X)=0iff P(X =0) =1 (X = 0)
3. (aX,Y)=0a(X,Y) fora e R

4 (X +Y.2) = (X, Z) + (Y. 2)

The £, space is also complete, which means that every Cauchy sequence in &£y converges in
Z,. As a consequence, &5 is a Hilbert space (complete inner product space) and, thus, there
exists an orthonormal basis that spans &,. This particular conclusion will prove very useful
in the subsequent formulations.

1.6 Additional literature

e Introduction to Probability, D. Bertsekas, J. Tsitsiklis, 2ed, 2008

e Probability, Random Variables and Stochastic Processes, A. Papoulis, S.U. Pillai, 4ed,
2002

Chapter 2

Stochastic Processes

2.1 Introduction

In probability theory, a stochastic process is a mathematical object which is defined as the
collection of an infinite number of random variables. Their study originated from the need to
model dynamic systems that seemed to randomly change over time. The motion of a particle
immersed in a fluid is such an example. Each time the particle is immersed in the fluid, it will
follow a different trajectory as a result of the random microscopic collisions with the molecules
of the fluid. This particular example of a stochastic process is known as the Brownian motion,
named after the botanist Robert Brown, who first observed it in 1827. Since then stochastic
processes have found applications in various fields in science and engineering, including image
and signal processing, earthquake prediction, weather forecasting and finance.

The theory of stochastic processes is an important field in mathematics combining elements
of different branches such as probability theory, measure theory, set theory, Fourier analysis
and real analysis. The aim of this chapter is to revisit the fundamental concepts on stochastic
processes, that will be used throughout these notes.

2.2 Definitions

Let us recall, that a random variable was defined as a rule for assigning to every outcome 6
of an experiment a number X (). In certain applications, however, the experiment ’evolves
with respect to some deterministic parameter ¢ belonging in an interval /. For instance, this
would be the case of an engineering system subjected to random dynamic loads over a time
interval I C R*. Then, the response at a material point of this system would be described
by a collection of random variables {X (¢)} indexed by the parameter ¢ € I, rather than a
single random variable. This collection of random variables over the interval I is called a
stochastic process and is denoted by {X(¢),t € I} or X. In this regard, a stochastic process
can be seen as a generalization of the concept of a random variable, in the sense that it
assigns to every outcome 6 of the experiment, a function X (¢,0), referred to as a realization
or a sample function.

A stochastic process is called a continuous-time real-valued stochastic process if I is the
real axis and each random variable in the collection takes on values in R. If [is the set of
integers, then the process is called discrete-time real-valued stochastic process. Furthermore,
if the process takes on values in R%, d > 1, the the process is called R%-valued stochastic

Y

10

process and the notation {X (t),t € I} or, simply, X will be used. Lastly, if X is indexed
by some space coordinate s € D C R” rather than time ¢, then {X (s),s € D} is called a
random field. The summarize the above we provide the following two definitions:

Let X : I x © — R? be a vector-valued function of two arguments, ¢t € I and 6 € O,
where I C R and (©,%, P) denotes a probability space. Then, X is said to be an Ré-valued
stochastic process, if X (¢) is an R%valued random variable on the probability space (0, %, P)
for each t € 1.

Similarly, let X : D x © — R? be a vector-valued function of two arguments, s € D and
0 € ©, where D C R™ and (©,%, P) denotes a probability space. Then, X is said to be an
R¢-valued random field, if X (s) is an R%valued random variable on the probability space
(0,%, P) for cach s € D.

2.3 Statistics of Stochastic Processes

Let {X(t),t > 0} be an R%valued stochastic process defined over a probability space
(©,%,P). Let n > 1 be an integer, t; > 0, i = 1,...,n, be arbitrary distinct times and
set X, = (X (t1),..., X (tn)). The finite dimensional distributions of order n of X are the
distributions of the random vectors X,,:

d
k=1

where £V = (7,1, ..., 7;4) € R% For example, if X is a real-valued (d = 1) stochastic process,
its finite dimensional distributions are:

Fo (21, xpity, o ty) = P (X (1) > 21, .0, X(t) >) (2.2)

Then, the corresponding finite dimensional densities of X can be derived as:

an
Oxy -+ 0xy,
A complete determination of the statistical properties of a stochastic process can only be
attained through the knowledge of the function F,, (z1, ..., ,;t1, ..., t,) for every x;,t; and n.
However, in most applications, the available information on the process allow us to estimate
at most its first and second order finite dimensional densities. From these, the following
averages can be obtained as follows:

fn (:Cl,...,xn;tl,...,tn) = Fn (l’l,...,ﬂfn;tl,...,tn) (23)

e The mean m(t) of X is the expected value of each random variable X (¢):

m(t) =E[X(t)] = /OO xf (z;t)dx

o0

It should be mentioned that from every process X, a zero-mean process can be obtained,
called centered process, simply by subtracting the mean, that is

11

The autocorrelation Rx(t1,t2) of X is the expected value of the product X (t1)X (t2):

Rx(t1,t2) = E[X (1) X (t2)] = / / T12o f (01, T2; ty, ta)dw1ds
In the case t; = t, =t the autocorrelation function gives the mean-square moment of
each random variable X (¢), that is, Rx(t,t) = E[X?(t)].

The autocovariance Cx (t1,ts) of X is the expectation of the product (X (t1) —m
(X (t2) — m(t2)), which is the covariance of the random variables X (¢;) and X (t3):

(t1))
Cx(t1,t2) = E[(X(t1) — m(t1)) (X(t2) — m(ta))]

= /Oo (.171 — m(tl)) (IL‘Q — m(tz)) f(Il,[EQ;tl, tg)dl'ldl‘g

After some algebra, it can be shown that:
Cx(t1,t2) = Rx(t1,t2) — m(t1)m(t2)

and in the case t; = to = t, C(¢,t) equals the variance of each random variable X ().
Also, it is evident, that for zero mean processes C'x (t1,t2) = Rx(t1,12).

The correlation coefficient px(t1,t2) is defined as the ratio:
CX(tl t2)
px(t,t2) = ’
\/CX (tl b1) CX (tz ,tg)

Correlation and covariance between two stochastic process X and Y, known as cross-
correlation and cross-covariance are defined in a similar fashion:

Rxy(ti,t2) = E[(X(t1)) (Y(t2)))]

and

Cxy(ti,t2) = E[(X(t1) — mx(t1)) (Y(t2) — my(t2))]

2.4 Classes of Stochastic Processes

2.4.1 Stationary processes

A stochastic process X is called stationary in the strict sense or strictly stationary if

o @y, o Ty ty, s tn) = fo (@1, oo, Tpy ity + 7,y by + 7) (2.4)

for any n > 1 and time shift 7. The above definition implies that a process is strictly
stationary if its joint pdf does not change when shifted in time. This assumption is quite
restrictive and rarely met in real life phenomena. A milder assumption is that of wide-sense
stationarity or weak stationarity.

12

A stochastic process X is called stationary in the wide sense or weakly stationary if its
mean is constant
E[X(t)] = m (= cnst) (2.5)

and its autocorrelation depends only on the time lag 7 =t; — ¢,

Rx<t1, tg) = R(tl — tQ) = R(T) = E [X(T)Q] (26)

From equations (2.5) and (2.6) that the variance of a wide-sense stationary process is constant
with respect to time

Var [X(t)] = Cx(t,t) = o* (= cnst) (2.7)

2.4.2 Ergodic processes

A stochastic process X is said to be ergodic if the ensemble averages are equal to time
averages. In other words, if every statistical property of the process can be obtained from
one realization (of sufficient length) of the process. Weaker ergodicity conditions are that of
ergodicity of the mean and ergodicity of the autocorrelation expressed through equations (2.8)
and (2.9), respectively :

m=E[X(0)] = lim % Xt (2.8)
R(r)=E[XO)X(t+71)] = T11_1>1010 ﬁ/ X)X (t+7)dt (2.9)

Note that an ergodic process is always stationary, but the reverse is not always true, as
shown in fig. 2.1.

Wide-sense stationary (WSS)

Strictly stationary

)

Figure 2.1: ergodic = strictly stationary = wide-sense stationary

2.4.3 Gaussian processes

A stochastic process X is said to be Gaussian if the joint pdf of the random variables
{X(t1),...,X(t,)} is Gaussian for any n and t;, i = 1,...,n. A weakly-stationary Gaussian
process possesses the favorable property of being completely defined by its mean value m, its

13

standard deviation ¢ and its autocorrelation function. The pdf of the random variable X (t)
is given by

1 (z—m)?

f(z) = U\/ﬂexp_ 207 (2.10)

This implies that a weakly-stationary Gaussian process is also stationary in the strict sense.

2.4.4 Translation processes

Generally, when a stochastic process X is not Gaussian it is practically impossible to estimate
the joint pdf of the random variables. However, a class of non-Gaussian stochastic processes
with given marginal distribution and second moment information can be defined via a
nonlinear marginal transformation (translation), g, of an underlying Gaussian field, G(t),
that is

Xt)=g(G1)=F"'1od(G) (2.11)

where F' is an arbitrary distribution with density f, ® is the cdf of the Gaussian distribution
N(0,1) and G is a Gaussian process with E[G(t)] = 0 and E[G(t)?] = 1. The marginal
distribution of X is F' and the finite dimensional density of order n of X is given by

f xp) (1)
n(X1, .., Ty ex —— 2.12
fala) = Grdeile || p\—3¥' Py (2.12)
where, p = E[G(t,)G(t,)], yp = Lo F(zp), p,q=1,...,n, ¢ is the density of N(0,1), and

Y= (yla "'7yn>‘
However, the existence of a translation field with the desired characteristics is not always

guaranteed. This is due to the fact that the marginal distribution X (¢) imposes constraints
to its correlation structure. Therefore, the following compatibility equation must be satisfied
between F' and Rx (1)

/ / (G1) F™1 o @ (G) f(Gh, G2; Rg(1))dG1dGo (2.13)

with G4 = G(t), Gy = G(t+ 7) and f(G1,Ga; Ri(7)) denotes the joint density of G and Gs.
If F" and Rx(7) are proven to be incompatible then one has to resort to translation fields
that match approximately the target marginal distribution and/or autocorrelation function.

2.5 Power spectral Density

Let X be a weakly stationary stochastic process in L?(©, %, P). It can be easily verified that
the autocorrelation function Ry (t1,ts) is positive definite, that is

n

ZiRX(thtj)Cicj 2 0 (214)

i=1 j=1

for all finite sequences of points ¢, ...,t, and all choices of real numbers ¢y, ..., ¢,.

14

Bochner’s Theorem states that a continuous function r : R — C is positive definite if and
only if it admits a representation of the form

TX(T):l/moemWSX(wﬁﬂw) (2.15)

—0o0
where Sy is a real-valued, positive and bounded function. The autocorrelation function Rx
of a weakly stationary process satisfies the conditions of Bochner’s theorem and therefore
it has a representation of the form of eq. (2.15). In this context, the function Sx is called
the spectral density function of X and the variable w is the angular frequency. Under this
prism, the autocorrelation and the spectral density functions are Fourier pairs that satisfy
the following equations, known as Wiener-Khinchin relations:

Rx (1) = /_00 e“TSx (w)dw (2.16)
Sx((JJ) = % /_OO G_MTRx(T)dT (217)

Using Euler’s formula, €™ = cos(wT) + isin(w7) and using the fact that sin(wr) is odd,
while cos(wT), Rx(7) and Sx(w) are even functions, then the integrals of the above equations
can be simplified as:

Rx (1) = 2/000 cos(wT)8(w)dw (2.18)
Sx(w) = %/000 cos(wT)R(T)dT (2.19)

From eq. (2.18) one observes that the area under Sx(w) is Rx(0). If E[X(¢)] = 0, this
area is the variance of X. So, in essence, the spectral density of Sx tells us how the ”energy”
E[X?(t)] = Rx(0) of the process X is distributed along the values of w !. Now, since Sx(w) is
an even function and negative values of w lack any physical interpretation, instead of Sy (w),
we prefer to use the one-sided spectral density Gx(w) defined as:

Gy (w) = {ESX(“’)’ y ig (2.20)

For example, a particularly common correlation function used to describe wide-sense
stationary processes is the Gaussian correlation function given by the relation:
||
Rx (1) =co%™ % (2.21)
where o2 is the variance of the process and A is called the correlation length parameter. In
this case, the corresponding two-sided power spectrum Sx(w) and one-sided power spectrum
Gx(w) are:

1This sentence will make more sense once we have talked about the Spectral Representation method.

15

8}((0.}) = m, —00 < w < o0 (222)
202\
= > .
Gx(w) 0% 1) w>0 (2.23)
(2.24)

9 T
— G(w)
8 50 —— S{w)
7
40
° 5
1
n:x 5 & 30
e
:
4 a 2
3
10
2
0
20 15 10 5 0 5 10 15 20 2 1.5 1 0.5 0 05 1 15 2

Figure 2.2: Gaussian correlation function and corresponding power spectra for ¢ = 3 and A = 10

2.6 Additional literature

e Stochastic Calculus, M. Grigoriu, 2002

e Probability, Random Variables and Stochastic Processes, A. Papoulis, S.U. Pillai, 4ed,
2002

16

Chapter 3

Series Expansions of Stochastic
Processes

3.1 Intuition

In the previous chapters, we saw that the complete probabilistic description of a random
variable is given by its corresponding probability density function. On the other hand, for
a random process { X (t),t € I}, or just X (¢), we need all joint density functions of all the
combinations of the random variables that compose the process, in order to fully determine it.
Since a random process involves an infinite number of random variables, it becomes evident
that we cannot know all of its joint pdf’s. Therefore most applications of engineering or
scientific interest, which include stochastic processes, are mathematically and computationally
intractable.

In this section, we will explore ways to represent a stochastic process as a series of a finite
number of random variables. To achieve this goal, we will rely on the additional structure
(stationarity, ergodicity or L*-integrability) that the process may possess. Ultimately, we will
end up with a good approximation of the original process that would also allow us to perform
computations.

3.2 The Karhunen-Loeéve series expansion

The first series expansion method that we will discuss is the Karhunen-Loeve expansion. This
method applies to stationary processes ! and exploits the autocorrelation structure of the
process. The Karhunen-Loéve expansion of a zero-mean random process X () is based on the
spectral decomposition of its covariance function? defined as

Cx(t,s) =ox(t)-ox(s) - p(t,s) (3.1)

where p is the correlation coefficient. By definition, Cx (¢, s) is bounded, symmetric and
non-negative definite. We can associate to C'x a linear operator acting on functions f(t) as
follows:

it can be extended to the case of non-stationary processes
2autocorrelation and autocovariance are the same thing here, since we talk about zero-mean processes

17

o0 = [Cxlt9)f(s)ds 32)

D

where @ is the domain in which the stochastic processes is defined. Then, Mercer’s theorem
states that C'x has the following representation or eigendecomposition:

Cx(t,8) =D Auga(t)pa(s) (3:3)

where ¢, and)\, are orthogonal deterministic eigenfunctions and eigenvalues of the covariance
function C'x, respectively, derived from the solution of the eigenvalue problem

/@ Ox(t,5) - puls)ds = A - pu(t) (3.4)

This eigenvalue problem in also known in the literature as the homogeneous Fredholm integral
equation of the second kind.

So the first thing in the Karhunen-Loeve expansion is to obtain the eigenvalues and
eigenfunctions of the linear operator Ty, by solving eq.(3.4). In practice, an analytical
solution of eq.(3.4) can only be attained in a few cases, such as the case of the Gaussian

[t—s] il

correlation function Cx (¢, s) = 0%e™ x = g%~ x = Cx(7) 3. In the general case, a numerical
solution to eq.(3.4) is the only viable option.
The eigenfunctions form a complete orthogonal set satisfying the equation:

[%Sﬁk(t)QOz(t)dt = O (3.5)

where ¢y, is the Kronecker-delta function. Then, the process X (¢) can be represented as
follows :

X(t) = Z V- eut) &, tED (3.6)

where &, := &,(6) is a set of uncorrelated random variables with mean E[,(6)] = 0 and
covariance function E[&,(6) - &(0)] = 6 which can be expressed as

jA_ /@ X(1) - pu(t)dt (3.7)

Equation (3.6) is known to converge in the mean square sense for any distribution of X (¢). The
KL expansion of a Gaussian process has the property that &, () are independent standard
normal variables, or in other words, they follow the N (0, 1) distribution. For practical
implementation, the infinite series of eq. (3.6) is truncated after a finite number of terms, M,
giving the approximation

gn:

X)Xt = VA enlt) & (3.8)

3See textbook ”Stochastic Finite Element Methods”, pp. 32-34

18

The corresponding covariance function is then approximated by

Cx(t,8) =D Anga(t)pals) (3.9)

This truncated series is optimal in the mean square since the eigenvalues A, of eq. (3.8)
are converging fast to zero (Fig.3.1). Thus, the choice of the covariance eigenfunction basis
{@n(t)} is optimal in the sense that the mean square error resulting from a truncation after
the M-th term is minimized.

=

(&)
T
1

IS
T
1

N
T
1

Eigenvalues

i
T
1

=g
8 9 10

o

I I
1 2 3 5 6

4 7
KL order (M)
Figure 3.1: Decaying eigenvalues from the solution of the Fredholm integral of the second kind for M = 10.

The variance error e,,, after truncating the expansion in M terms can be easily computed as

evar = Var[X(£,0) = X(t,0)] = 0% — > - 92(1) (3.10)

The righthand side of the above equation means that the KL expansion always under-represents
the true variance of the field.

Now, let’s discuss how eq. (3.8) can be utilized in order to generate realizations from a
zero-mean Gaussian process X (t), given the eigenvalues {\, }}, and eigenfunctions {¢, }1L .

1. To generate the j-th realization, we draw a random value for each &,, n = 1,...M from
the standard Gaussian distribution W/ (0,1) and obtain &, ..., &,
2. We insert these values to eq. (3.8) in order to obtain the j-th realization:

() =3 VA oalt) - (3.11)

3. To generate additional realizations, we simply draw new random values for &,, n =1,...M,
each from W (0, 1)

19

Another interesting case that will be examined here, is the application of KL expansion
method to the modeling of Lognormal fields. Lognormal fields are frequently used in order to
model phenomena, which cannot admit negative values, e.g. material properties. Let us recall
that if Y is a random variable such that Y Lognormal(m, s?), then there is an underlying
Gaussian random variable Y “@ussian g(1, 52 that satisfies the relation:

Y = egp(y Gaussian) (3.12)

The parameters p and o of the underlying Gaussian are given from the following relations:
m2
=n| —— 3.13
u=tn () (3.13)
2
o= ln(——+1> (3.14)

m?2

Therefore, if X (t) is a stationary lognormal field with mean m and variance %, we can find
an underlying Gaussian field X “@ssian(¢) with y and o2. Then, we represent X “eussian(¢)
using the KL series expansion and we obtain:

X = eap(XCi (1))~ exp(Y v Andn(t)En) (3.15)

Lastly, for random processes where the analytical solution of the Fredholm integral equation
cannot be obtained, a numerical solution is necessary. One major category of such solution
schemes are the expansion methods such as the Galerkin, the collocation and the Rayleigh-
Ritz methods. Galerkin methods are essentially error minimization schemes with respect
to some residual calculated over the entire domain of the solution. Assuming that each
eigenfunction ¢, (t) of C'x(t,s) may be represented by its expansion over a polynomial basis
{hi(-)}, defined in the solution space, as:

[e.e]
Pult) =D d - hi(t) (3.16)
i=1
where d' are unknown coefficients to be estimated, the Galerkin procedure targets to an

optimal approximation of the eigenfunctions ¢, (-) after truncating the above series in N
terms and computing the residual as:

ex(t) = zdey. { /% Ce(t, 5) - hils)ds — ; - ha(t) (3.17)
i=1
Requiring the residual to be orthogonal to the space spanned by the same basis we get
<en,h; >::/ en(t)-hj(t)dt=0, j=1,...,N (3.18)
which leads to the following matrixiigenvalue equation:
C-D=A-B:-D (3.19)

20

where

B, — /@ halt) - by (1)t (3.20)
Cij = /% /;b Ce(t,5) - hals)ds (3.21)
D;; = d (3.22)

Ay =8\, (3.23)

where C,D, B and A are N x N-dimensional matrices. This generalized algebraic eigenvalue
problem of eq. (3.19) can be solved for D and A and with backsubstitution we can estimate
the eigenfunctions of the covariance kernel. This solution scheme can be implemented using
piecewise polynomials for the basis {h;(-)} of the expansion.

3.3 The Spectral Representation series expansion

The spectral representation method was proposed by Shinozuka and Deodatis in 1991 and
it is a method for generating sample functions that are ergodic in the mean value and
autocorrelation. Its main property is that it expands the stochastic field onto a series
of trigonometric functions with random phase angles. For a zero-mean, one-dimensional
stationary stochastic process X (¢) with autocorrelation function Rx (¢, s) and two-sided power
spectral function Sx(w) it was proven that

N—-1
1
Xt)=v2- Z (2Sx (wk) - Aw)? - cos(wy - t + Dy) (3.24)
k=0
as N — oo. In the above equation, Aw = %¢, with w, being an upper cutoff frequency
beyond which the power spectrum may assumed to be zero for either mathematical or physical
purposes. Also, wy, = kAw for k = 1, ... are the frequencies of the power-spectrum (2Sy),
(2Sx (wy) are the values of the spectrum at each frequency wy and @, are the random phase
angles, which are random variables following the uniform distribution U [0, 27].

For practical applications, eq. (3.24) can be utilized as a simulation algorithm in order
to generate realizations f(t) of the process X (t). First, a number N is considered, which
will be the number of random terms in the expansion. Then, to generate a realization of
the process, we draw N values for the random phase angles {@k}fcvz_ol from the U[0, 27]
distribution, denoted as {qﬁk}kN::)l, and evaluate the following relation

ft)=v2- i Ay - cos(wg - t+ @) (3.25)

where,

21

A, = (QSX(wk)-Aw)% fork=0,1,...,N -1 (3.26)

wr = k-Aw
w
Aw = —=
“ N

Ag = 0 or Sx(wp=0)=0
O~ U[0,27], independent

The following figure will help us to better understand the procedure.

G(w)
A
E.=G(w,)Aw
N-1
f(t) = \/EZ v G(wp)Aw - cos(wyt + ©y)
\ k=0
Wo (:'-1'1 Wn wu] w o
N-1
Aw E, ~ o
n=0

Figure 3.2: Illustration of the method

Some remarks:

e Note that the simulated process is asymptotically Gaussian as N becomes large due to
the central limit theorem

e The simulated process is periodic with period:

B 27
Aw

e The coefficient Ay is chosen zero such that the temporal mean value averaged over the
whole simulation time 7y = % of the generated stochastic process X (¢, 6) remains zero
in each generated sample. This is because if some power spectral contribution is added
at w = 0, a random variable term is always present, shifting the temporal (sample)

average apart from being zero.

T, (3.27)

e Instead of writing 25y (w) in eq. (3.24) we can simply write Gx (wy)

22

e As mentioned, w, in eq.(3.26) corresponds to the upper-cut off frequency after which
the power spectrum becomes practically zero. In order to estimate this frequency we
use the following criterion:

7Sx(w)dw —(1—¢) fSX(w)dw (3.28)

where € < 1 is the ’admissible relative error’. The target autocorrelation function R (7)

is given by
Ry(1) = /Sx(w)eiwdw:/2sx(w) cos wrdw (3.29)
—Wy 0

The difference between these two functions

o0

e (7) = Ry(7) — Ry (7) = / 2S¢ (w) cos(wr)dw (3.30)

Wy

corresponds to the mean square simulation error due to the truncation of the spectral
density function for |w| > w,, which is termed ’truncation error’.

e It must be mentioned that the step At of the generated sample functions must satisfy
the following condition in order to avoid aliasing.

At< L (3.31)
Wy,

e The simulations generated with this simulation algorithm satisfy the following ergodic
property:

(1) = %/OTf(t)dt _E[X(£)] = 0, either when T = Tp or as T — 0o
(3.32)

(fO) ft+1)) = %/Tf(t)f(t + 7)dt = Rx (1), either when T'=Tj or as T' — oo
0
(3.33)

3.4 The Polynomial Chaos series expansion

The third series expansion that we will examine is the Polynomial Chaos. In order for this
expansion to apply we only require for the process to be L?integrable. To better illustrate
the method, let us first consider a random variable X, which belongs to the Hilbert space L?
(E[X?] < 00). Thus, X can be written as a series expansion with respect to set of orthogonal
basis functions {®; ({&;}}Z,) }ien, which constitute the Hilbert basis of the space such that:

23

X = Zm(é) (3.34)

where W;(€) := W, ({&},) are the multivariate orthogonal polynomials, which form the
so-called polynomial chaos basis defined by means of M random variables {¢; jj\il. The
coefficients ¢; € R are the coordinates of the random variable X with respect to the chosen
basis. The type of polynomials is chosen according to the probability measure of the input
random variable X. For instance, if X is a Gaussian random variable, the univariate Hermite
polynomials are chosen because they produce the optimal basis. These are given by the

following recurrent relation:

U, (6) = (—1)"eT—e 7 (3.35)

where £ is a standard normal variable. It should be mentioned, that the classic Polynomial
Chaos series expansion refers to the basis vectors formed by the Hermite polynomials. For
other types of random variables, different families of polynomials were proven to produce
optimal bases, leading to the so-called generalized Polynomial Chaos. For example, the
Legendre-Chaos is preferred for modeling uniform random variables and the Laguerre-chaos
for random variables following the gamma distribution. In the frame of this course, we will
only focus on the Hermite-chaos (aka Wiener chaos).

To apply this method and express the random variable in this series expansion requires
the evaluation of the coefficients ¢;. But before we do this, let us first address the case where
X = X(t) is a stochastic process. In this case, the coefficients are ¢; = ¢(t), that is, real
functions with respect to time. Then,

X(t) =Y a(t)wi(e) (3.36)
ieN
Subsequently, we truncate the above series after a finite number P of terms, which gives us
the approximation:

P-1

X(1) ~ S aHwi(e) (3.37)

i=0
It is of great significance that the polynomial basis {¥;} of Hermite-Chaos forms a complete
orthonormal basis, satisfying the following properties:

Uy =1
E[U,)=0, i>0
E[0,0;] = (0;0;) = (U7)dy; (3.38)

where, (-,-) denotes the inner product:

(€. 15 = [W(©W,€)du(e) (3.39)
with du being the Gaussian measure:

24

b e
du(§) = (27T)Me dg (3.40)

We will provide an example of a stochastic ordinary differential equation* to demonstrate the
use of the Polynomial chaos:

Example We consider the ode

dil—(tt) = —ky, y(0)=79g (3.41)

where the decay rate coefficient k is considered to be a random variable k(f) with a certain
probability density function f(k) and mean value k.

Since k is a random variable we can write

k=3 k() (3.42)

and for the unknown random process y(t), we can write

1) = 3 nw(e) (343

By substituting these two expansions into the ODE, we obtain

DR AR D) SR AGIAGIIA (3.4

Now, we will convert the above equation into a system of linear and deterministic ODEs
using the Galerkin projection technique. In this regard, we take the inner products of the
RHS and LHS of the equation with W (), for [=0,..., P — 1 and we get

5 dy;f) (), () = (= D_ 3 WU,k (1), Wi©)), for [=0,....P 1 (3.45)

Now we will exploit the linearity of the inner product and the orthogonality of the basis
functions, which gives us the following set of equations:

dyl(t) 1 P-1P-1

i=0 j=0

with € = (¥;U,;¥;). We can solve the above system of deterministic ODEs using any
conventional solver in order to obtain the coefficients of the PC expansion y;(¢). So, with this

4In some more rigorous mathematical texts, the term stochastic ode is reserved only for ode’s driven by white-noise or a
semi-martingale in general

25

approach we essentially managed to convert the stochastic ODE into a set of deterministic
ODEs, which is solvable with standard numerical tools. The one-dimensional Hermite
polynomials are given in table 3.1

In the example given above we used the univariate Hermite polynomials. The reason why
we used univariate is because the system had only one random variable, k. If the system had
two random variables k; and ks we would use the bivariate polynomials given in table 3.2,
and so forth, depending on the number of random variables in the system we study. In later
chapters, we will talk about stochastic collocation and the Spectral Stochastic Finite Element
Method. In the frame of these methods we will deal with n-dimensional random vectors, where
we will use the n-variate Hermite polynomials. These are given by the following recurrent
relation:

leT n o" _1lgT
Hy (&, -0 &) = €2% 5(=1) R 26 & (3.47)

n

Then, Y can be represented as:

oo 11 oo i1 12

Y = COHO + Z CilHl(gil) + Z Z Ci1i2H2(§i1a 512) + Z Z Z Ci1i2i3H3(fi17§i2’ 513) +

i1=1 i1=110=1 i1=11i2=113=1
(3.48)

The above equation can be written more conveniently as:

Y = Z &V;(8) (3.49)

with W;(x) being on an one-to-one correspondence with H,(x;,, ..., x;,) °. As mentioned, the
polynomial basis {¥} of Hermite-Chaos forms a complete orthonormal basis, satisfying the
properties of eq: (3.38).

The one-dimensional and two-dimensional Hermite polynomial chaoses are given in tables
3.1 and 3.2, respectively.

Table 3.1: One-Dimensional Polynomial Chaoses

j order of polynomial chaos " Polynomial Chaos ¥; (¥?)
0 p=0 1 1
1 p=1 3 1
2 p=2 &2 -1 2
3 p=3 & —3¢ 6

5it’s just a rearrangement of the terms in eq. (3.48) which simplifies the notation

26

Table 3.2: Two-Dimensional Polynomial Chaoses

j order of polynomial chaos '™ Polynomial Chaos ¥; (¥?)
0 p=0 1 1
1 p=1 3 1
2 & 1
3 p=2 £ -1 2
4 €1 1
5 §1é2 2
6 p=3 & — 34 6
7 £ — & 2
8 &€& 2
9 £ — 3% 6

3.5 Additional literature

e B. Sudret and A. Der Kiureghian, Stochastic Finite Element Methods and Reliability, A
State-of-the-Art Report (available online)

e R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, 1991

e M. Shinozuka and G. Deodatis, Simulation of Stochastic Processes by Spectral Represen-
tation, Appl. Mech. Rev, 1991

27

Chapter 4

The Monte Carlo simulation

4.1 The Stochastic Finite Element Method

Most problems in physics and engineering are described by (systems of) ordinary differential
equations or partial differential equations. For instance, the heat flow along a uniform rod is
given by the equation:

or k o°T
ot cpdx?
where T := T'(x) is the temperature field, k is the thermal conductivity of the material, ¢ is
the specific heat capacity and p is the material density.
Another example is from structural dynamics, where the equations of motion of 2-D linear
elasticity can be written as:

(4.1)

: E 0 (0u Ov_ ou
10 T an—nas\ar Tay) T Pae (42)
s E__0 (0w ov_ o
it tan—way\ax T ay) = o (4:3)

where u = (u,v) is the displacement vector field, E is the modulus of elasticity, v is the
Poisson ratio and p is the material mass density.

Both equations involve some parameters such as k, ¢, p in eq. (4.1) and E,v in eq. (4.2).
In this section we will focus on problems where the parameters are considered to be stochastic.
For instance, the modulus of elasticity £ can be modeled as a random variable or, more
generally, as a random field £ := F(x). This implies that the solution u(x,t) will also be
a random field. In this regard, we can define now the Stochastic Finite Element Method
as the set of numerical and mathematical methods developed to solve systems of
PDEs that involve random parameters.

For the purposes of illustration, in the continuation of this chapter we will consider the
simplest case, that of linear static (or steady-state) problems governed by parametrized pde’s
of the form:

N (u(z:€)) = f(z;§), ze€QEEE
B(u(xz;0) =b(x;€), xe€INEc= (4.4)

28

where u (x; €) is the field of interest (scalar or vector field), N is a linear differential operator
that involves spatial derivatives, and f(x; &) is a source field. Furthermore, 9 is the operator
for the boundary conditions defined on the boundary 02 of the domain 2 and £ € = is a
vector of uncertain parameters that include randomness in the system parameters, loading
or boundary conditions. Here we use the notation (-; &) to state explicitly dependence on
the stochastic quantities. Since analytic tools to solve such equations apply only for specific
cases, the most generic way to solve them is using numerical methods, the finite element
method in particular, as it is the most versatile approach. A reminder of the general idea of
FEM is given in the Appendix. Eventually, FEM will produce a linear system of equations of
the form:

KU = F(§) (4.5)

with U € R" denoting the unknown vector of nodal values of the response. This will be an
n x n linear system of equations with n being the number of degrees of freedom from the
finite element discretization.

4.2 Classical Monte Carlo Integration

Before showing how simulation techniques can be employed to solve stochastic systems of the
form of eq. (4.5), we first need to develop their properties in some detail. This is more easily
accomplished by looking at the generic problem of evaluating the integral

Ey[h(X)] = /% h(x)f ()d (4.6)

A natural way to approximate the above integral, is to generate values {x;}!", from the
density f and compute the empirical average

o — % zmj h(z) (@7)

By the Strong Law of large numbers, h,,, converges almost surely to E[h(X)] as m — oc.
Moreover, when h? has a finite expectation under f, the speed of convergence of h,, can be
estimated from the sample’s variance

U = —5 Y _[1(;) = P (4.8)

because, for m large, the quantity

him — By [A(X)]
o

is approximately distributed as a W (0, 1) variable. This allows us to construct a convergence
test and confidence bounds on the approximation of E[h(X)].

(4.9)

Example Let us consider the function h(x) = [cos(50x) + sin(20x)]* and integrate it over
the [0, 1] domain. To calculate the integral we generate samples {z;}Y, from the uniform

29

distribution U[0, 1] and approximate fol h(z)dz with + SV h(x;). The exact value of the
integral is 0.965.

h(x) = [cos(50*x) + sin(20*x)]?; L

——mean
35 —_—
1050 mean + 1 st.dev. | |
mean - 1 st.dev.
37 i<
.
o
o
@
— ()
g £
< <
ke
=
o
£ 09
[}
0.85
08 S S R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
X number of samples
(a) function h(x) (b) Mean + one standard error

Figure 4.1: Example of Monte Carlo integration

As an exercise, you can try to evaluate the integral h(x)f(z), where f(z) is the pdf of the
standard normal distribution.

Lastly, we would like to mention that there are more elaborate techniques to assess the
convergence of estimators (based on the Central Limit Theorem, Cauchy priors, etc.), however,
in practical applications, a convergence plot such as the one in 4.1b is satisfactory.

4.3 The Monte Carlo simulation

Now let us return to our initial problem of solving eq. (4.5). Suppose that we have already
identified the sources of randomness in our system, that is, the random variables, & and we
know their distributions, as well as their joint distribution. An important note here concerns
the case where the system under consideration involves random fields, which as we said
are a family of infinite random variables. In such problems the series expansion methods
help us reduce the random variables in the system to a finite number. Since we are dealing
with stochastic systems, it is evident the quantities of interest U will be random variables?.
Therefore, our aim is to find the probability density functions of these quantities.

The (brute force or crude) Monte Carlo simulation for solving eq. (4.5) consists
in generating a large number N, of samples §;), ¢ = 1,.., Ngp from their probability
distribution and for each of these samples to solve the deterministic problem

K(f(i))U(E(i)) = F(E(i)) (4'10)
The next step is to collect the N, response vectors U; := U (E(i)) and perform a statistical

post-processing in order to extract useful information such as mean value, variance, histogram,
empirical pdf/cdf, etc. For instance,

Lor random fields if the problem was dynamic

30

Nsim

1
U, (4.11)
j=1

E[U] ~ o

In a similar manner, higher order moments of response quantities can be estimated and finally,
the entire pdf can be constructed from the statistical post-process of the Ny, samples.

Pros

e The Monte Carlo simulation is applicable to every problem type (linear/nolinear,
static/dynamic, etc.).

e The computational cost of the method remains invariant with respect to the number of
random variables involved.

e [t’s very easy to implement.

Cons

e The cost of performing a large number of simulations may be prohibitive for complex
systems (imagine if each simulation takes from several minutes to several hours).

Closing this section, we briefly discuss ways to overcome the only limitation that MCS
has, namely, its computational cost. The first approach is to exploit parallel programming
architectures in order to run multiple simulations simultaneously. It is evident that MCS is
"embarassingly” parallel, which renders this approach straightforward to implement. However,
it has specific hardware requirements or access to supercomputers that are not always available
to the researcher. An alternative approach, would be to substitute our complex model with a
model that mimics the behavior of the original and is easier to solve. We call such models
surrogates or meta-models. In most cases, the construction of a meta-model relies on the
some information we have about the system in the form of data, hence, they are usually
called data-driven models.

4.4 Additional literature

31

Chapter 5

Data-driven modeling

5.1 Introduction

The great advances in computational technology over the last two decades enabled the use
of high-fidelity physics-based mathematical models to describe complex physical systems,
arising in all areas of engineering and science. These detailed models are better able to
describe the underlying physics of the problem and thus provide accurate representations of
the system’s behavior. Nevertheless, for many applications such as nonlinear and/or dynamic
systems with high-dimensionality, the computational cost can still be considerably high. This
cost becomes prohibitive in the case of parametrized systems, which arise in the fields of
stochastic analysis, sensitivity analysis, parameter inference or optimization, where a large
number of repeated simulations is required. To circumvent this problem, metamodels (or
surrogate models) may be employed in order to replace the original model by a function that
emulates the complex system’s behavior at significantly smaller cost per model evaluation.

To describe the problem in a more concrete setting, let as consider a computational model
M, which takes M-dimensional vectors x as inputs and maps them to R":

M:xeDCRY —»yecR" (5.1)
A surrogate model M can then be defined as:
M:xeDCRM—yecR" (5.2)
such that B
M~ M (5.3)

The construction of the surrogate model can be based on an assumption about the
functional shape of M and/or some information about the system’s behavior obtained either
from experimental measurements or from limited runs of the original model. The latter are
usually referred to as synthetic data. Further, M is considered as a black box, in the sense that
the inner mechanisms of the model are unknown and only the output y = M(x) is accessible.
As an example, a finite element model constitutes a surrogate model, since it approximates
the solution of the system’s governing equations that cannot be solved analytically.

To make things more clear, we will consider a simple example of a surrogate model. Let’s
suppose that we have a model M that takes as input an x € R and outputs a y € R. Let us
also suppose that we know nothing about the model’s mechanisms with regards to how it

32

processes x and gives us y, but instead we have a set of measurements given in the form of
pairs (z;,;), i = 1,..., N. Then, we can construct a metamodel by assuming a functional
shape for the model, i.e. we can assume a linear model of the form y = ax + b, with a and b
being the metamodel’s parameters. Then, the goal is to calibrate the a, b parameters in order
to have a good agreement between the model and the surrogate. In this particular example,
the parameters that give the best fit (in the least-squares approach) are:

~

j— br
Zi\;(% —Z)(yi — 9)
i (@ — 7)?

with Z,y being the average of x; and y;, respectively. Obviously, we could assume more
elaborate functions such as higher-order polynomials or neural networks, which we will see
later on, that involve more parameters and allow us to capture more complex model behaviors.
The general premise, however, is the same: we use data (experimental or synthetic) to
calibrate the parameters in our metamodel.

Since, the construction of a (meta-)model depends on data, we refer to this approach as
data-driven modeling, and the derived models are called data-driven models. Nowadays,
the term data-driven is associated to Machine Learning (although not exclusively), implying
the utilization of computer automated methods to build our models.

We will say a few words about Machine Learning (ML), just to get the general idea.
ML is an application of artificial intelligence that involves the study of algorithms and
statistical models that computer systems use to perform a specific task without using explicit
instructions, relying on pattern recognition and inference instead. The process of learning
begins with observations or data, such as examples, direct experience, or instructions, in order
to look for patterns in data and make better decisions in the future based on the examples
that the user provided. The primary aim is to allow the computers to learn automatically
without human intervention or assistance and adjust actions accordingly. ML algorithms can
be broadly classified into supervised or unsupervised. The algorithms in the first category are
able a build a mathematical model from a set of labeled data, that is, a set which contains
both the inputs and the desired outputs. Then, the system can provide targets (predictions)
for any new input after sufficient training. In contrast, unsupervised ML algorithms are used
in order to construct a mathematical model from a set of data which contains only inputs and
no desired output labels. Unsupervised learning is used for discovering patterns in the data
and grouping the inputs into categories (feature learning). Other classes of ML algorithms
include semi-supervised learning algorithms, active learning algorithms and reinforcement
learning algorithms.

It becomes evident from the above that ML algorithms are perfect candidates for con-
structing surrogate models of complex physical systems. The data set that will be used to
train the algorithm may come either from a limited number of runs of the original complex
model (simulation-based approach) or some experiments. In this chapter, we will discuss
several Machine Learning algorithms and how to apply them in the context of computational
mechanics in order to construct accurate and cheap-to-evaluate metamodels.

(5.4)

Q>
Il

o>
I

(5.5)

33

5.2 Artificial Neural Networks

5.2.1 Feed-forward fully connected deep NNs

In this section, we will discuss about the most common type of neural networks, that
is, feed-forward fully-connected neural networks are presented in a concise manner. NNs
are information-processing mathematical models inspired by the biological neural networks
that constitute the human brain. As its original counterpart, they are able to learn from
observational data, that is, by considering examples without being programmed with any
task-specific rules. The basic component of an NN is the artificial neuron. An artificial
neuron, denoted with 7 is a processing unit which performs the following operations:

1. It receives an input signal z; from the synapse 7
2. Tt multiplies the signal by the synaptic weight wj;

3. It sums all input signals x; with their respective weights w;;, for all the synapses
t=1,...,n and adds a bias term b;.

4. Tt processes the sum of the input signals through an activation function ¢(-), for example
the sigmoid or the hyperbolic tangent function, and outputs the result y;.

In mathematical terms, the neuron j can be described by the equation:

Y = 90(2 w;j;x; + b;) (5.6)
i=1

Output: yjzgo{xTw+bj)

Neuron j
Activation function: ¢

Weighted sum: x w+b;

weights

X1 X3 Xn inputs
Figure 5.1: Nonlinear model of a neuron, labeled j

A schematic representation of the computational model of a nonlinear neuron is depicted in
fig. 5.1. Some typical examples of activation functions are:

34

e The ReLU function

©(S) = maz(0,.S) (5.7)
e The sigmoid function <
o(S) = 1708 (5.8)
e The tanh function 5 s
p(5) = P (5.9)

In this context, an NN is an oriented graph with neurons being the nodes of the graph
and the synapses being the oriented edges. The synaptic weights are calibrated through a
training process based on observational data. Depending on the interconnection of neurons,
different types of neural networks arise. Among them, the most popular and widely applied
type is the feed-forward neural network (FFNN), also known as a multilayer perceptron. In
terms of the architecture, an FFNN consists of the input layer, the hidden layer(s) and the
output layer. NNs with more than one hidden layer are referred to as deep neural networks.
In terms of connectivity, in FFNN neurons from a layer can only be connected with neurons
from the next layer towards the output layer. This means that the information moves in only
one direction, forward, from the input nodes, through the hidden nodes (if they exist) and to
the output nodes. An example of an FFNN network architecture is given in figure 5.2.

Input layer hidden layers Qutput layer

Figure 5.2: Example of a generic feedforward neural network

For a specific choice of network architecture, to train the network a set of N, labeled data
{Z,)} 1<k<n,, is first provided. Next, a loss function is specified, such as the mean square
error, which is given by the expression:

Nir
MSE=3 5, - #ul3 € R (5.10)

k=1
where, y, is the target output for the input x; and gy, is the respective network’s output.
Then, the training of the network consists in finding the optimal weights w = (w;;) that
minimize M SE = MSE(w). Some commonly preferred algorithms to solve this (non-convex)

35

optimization problem are the stochastic gradient descent algorithm, the Levenberg-Marquardt
algorithm, Adam, stochastic gradient descent. We won’t go into details with respect to these
solvers, as they are already available in most neural network packages (Tensorflow, PyTorch,
Matlab Deep Learning Toolbox, etc.).

Based on the above, FFNNs essentially establish a non-linear map from the space of the
input data to the space of the output data. Their powerful approximation properties are
well-established from numerous applications, as well as from a theoretical standpoint, due to
the universal function approximation theorem which states that:A FFNN with one hidden
layer, that contains a finite number of neurons and has non-constant, bounded and continuous
activation functions, can approximate any continuous function defined on a compact subset
of R™.

Even though the aforementioned theorem proves that FFNN are universal function
approximators, yet, they do not provide any guidelines for selecting the exact network
architecture, nor the number of samples required to train the network. In addition, to identify
the network parameters only heuristics can be employed to solve the non-convex optimization
problem. As a consequence, the optimal network architecture and parameters are achieved in
practice via a trial-and-error process which can be quite cumbersome (if not intractable) for
large-scale problems.

Example 1.

Consider the following neural network

Input4 b,;=0.1

Inputy Hidden

Figure 5.3: An example of a fully-connected feed-forward neural network

In this case

y = 1.1max(0, —1.5x; + 1.4x5 4+ 0.1) + 0.9maxz(0, 2.1z, + 0.6x9 — 0.2) (5.11)

Example 2: Construction of a surrogate

As a more practical example to demonstrate the usage of NNs as surrogates in the service
of the Monte Carlo simulation, let us consider the following: We want to estimate the ultimate
compressive strength, P,, of concrete specimens.

36

Nonlinear
material law

Random parameters
e Height of the specimen

e Radius of the specimen
e Moduli E, Er
e Yield stress

Figure 5.4: An example of a fully-connected feed-forward neural network

In this problem, we consider the following as random variables

1. The height of the specimen, denoted with the r.v. &

2. The radius of the specimen, denoted with the r.v. &

3. The moduli of elasticity, denoted with the r.v. &3 and &
4. The yield stress, denoted with the r.v. &5

In this problem we have 5 random variables, written as a random vector & = (&, ...,&5).
It is obvious that the ultimate strength P, of the specimen will be a random variable, so
we need to estimate its probabilistic characteristics. In the context of brute force Monte
Carlo, we would generate Ny, realizations of the random vector &, that is {&,}i™, solve
the problem Ny, times and statistically process the results {(Pu)z}fvzsim However, this is a
computationally intensive process.

Instead, we could perform only Ny, simulations of the model, with N;, < N, and then
build a neural network using as input the 5-tuples {(&)s, ..., (&)i}2*; and output the values
{(P,):} N, After successfully training the network, we can use it to obtain the values of P,
for any new realization of £ at minimum cost.

As a closing remark, we would like to state that FFNNs face difficulties when the di-
mensionality of the input space and/or output space becomes too large. This ”curse of
dimensionality” problem however can be tackled with other network architectures, as we will
see later on.

37

5.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) is another class of deep neural networks commonly
applied to tasks such as pattern recognition in images and videos, image segmentation
and classification, time-series analysis and more. The main advantage they have over fully
connected feedforward NNs is that they can handle data with high dimensionality. In CNNs
the input is a tensor (which is viewed as nD-array), such as a set of images, which can be
given by the 4D-matrix: (number of images) x (image height) x (image width) x (input
channels). Imagine the dimensionality of the input space if you wanted to analyse a set of
images of resolution 1024 x 768. CNNs can handle such problems using some layers of specific
type such as convolutional layers and pooling layers. So, in general, a CNN can be built by
stacking together a set of dense !, convolutional, pooling and normalization layers.

Convolutional layers

Convolutional layers take as input an n-D array M and apply a filter F (a.k.a. kernel) of
specified size to the elements of M in a moving window fashion. This process is schematically
depicted in figure 5.5. Essentially, the objective of the convolution operation is to extract the
most important features from the input and use them to encode it. To better clarify this
process, let us consider a 2 — D array M = [m;;| and its encoded version M = [p;;], called
feature map, which is obtained after applying a filter W = [w;] of size f; X f,,, moving with
vertical stride s, and horizontal stride s,. The element j;; of M is given by the equation:

In Jw i =1X 5, +u
=305 {],ZJXSW 512

where b is the bias term and w,, is the element of the filter W that gives the connection
weight between elements of M " and the elements of M within the respective window.

Sh 2

SU:

Figure 5.5: Schematic representation of a 2-D convolutional filter with strides s, = 2 and s, = 2.

This layer architecture is significantly more economical than that of a fully connected layer
since the parameters involved are only the f; X f,, elements of the filter w;; and the bias term

ldifferent term for fully connected

38

b. The filter parameters do not require to be manually defined, instead the convolutional
layer will automatically learn the most appropriate filter for the task. Also, a convolutional
layer can have multiple filters, in which case it outputs one feature map M ;" per each
filter k. This enables it to detect multiple features anywhere in its inputs. Additionally,
several convolutional layers can be stacked in order to build deep architectures which allow
the network to concentrate on small low-level features in this first layer and progressively
assemble them into larger higher-level features in the subsequent layers. In this more general
case, the element p;;, at the ¢g-th convolutional layer, corresponding to row ¢, column j of
the k feature map M " is obtained as:

L {z”_z’xsv+u

Hijk = Z Z Z Mirjigr * Wyok'k + by With

u=1 v=1 k’'=1

(5.13)

ji=7Xsp+wv
where now f, is the number of feature maps in the previous layer (layer ¢ — 1), my the
value located in row ', column j’ of the ¢ — 1 layer’s feature map k&’ and by is the bias term
for the k-th feature map (in layer q). Also, wyurk 1S the connection weight between the values
in feature map k of layer ¢ and its input located at row u, column v at the window of the &’
feature map. To simplify the notation, the application of several convolutional layers, with
multiple filters each, to an array M will be expressed as

M = ConvNN (M) (5.14)

with Conv N N(-) denoting the mapping from the initial input space to its encoded represen-
tation.

Depending on the application, the convolutional filters can either be one, two or three
dimensional with the difference between them being the way they slide across the data. For
instance, if the focus is on processing time series data, then 1-D convolutional filters, such as
the one depicted in figure 5.6, can be used to scan the data only in the time axis.

o/ p=zzzoo-——--- ~ o
Time Il | | B = — !
o\ ——r
=B
| | _———F
[_——-—"T -
[L= | -
I:"’ l//

Figure 5.6: Schematic representation of an 1-D convolutional filter with stride s = 2.

Pooling layers
Aside of convolutional and dense layers, another important layer type often employed
in CNNs are the pooling layes. Pooling layers are quite similar to convolutional layers in

the sense that they downsample the input in order to decrease its size, however, they do

39

not involve any trainable parameters. Their goal is to reduce the computational load, the
memory usage, and the number of parameters. The latter is particularly useful since it also
limits the risk of overfitting. Each neuron in a pooling layer is linked to a limited number of
neurons in the previous layer, located within a small window. The window’s size and stride
are user defined.

Common types of pooling layers include the max pooling layer and the average pooling
layer. The first outputs the maximum value from the portion of the input covered by the filter
and all other inputs are neglected. Accordingly, average pooling layers return the average
from the portion of the input. Aside from its dimensionality reduction properties, the pooling
operation can be useful for extracting dominant features of the input such as translational,
rotational and scale invariance. Nevertheless, caution should be exercised regarding the usage
of pooling layers because the corresponding accuracy loss might outweigh the benefits they
provide.

2 6 12 2

9 12

..‘

9 7 1 5 Average pooling 6 5

Figure 5.7: Examples of pooling.

Max pooling

Now, let us give two examples of CNNs, in order to better illustrate their application

Example 1: CNN for vehicle classification

Given a set of images depicting various vehicles (car, truck, van, bus, ..., bicycle), we
can train a CNN that classifies them into their respective categories. In fig. 5.8 the generic
architecture of such a CNN is illustrated. For example, if we give a training input image
depicting a car, the respective output will be the vector [1,0,0,...,0]. We experiment with
different combinations of convolutional, pooling and dense layers until we have obtained
an adequate level of accuracy. Once we have trained the CNN, we can feed any other
image of a vehicle to the CNN and it will give as an output vector of coefficients in the
[0, 1] range that will be used to classify the vehicle. For instance, if the output vector is
[0.18,0.67,0.12, ...,0.01] then we can infer that the image depicted a truck.

40

— CAR
— TRUCK
— VAN

et
5

ﬁ d — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN RUC o SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 5.8: Example of a CNN that classifies car types

5.2.3 Autoencoders

The autoencoder (AE) concept was introduced in 1986 and it is regarded as a neural network
that learns from an unlabeled data set in an unsupervised manner. The aim of an autoencoder
is to learn a reduced representation for a set of data, referred to as encoding, and then to learn
how to reconstruct the original input from the encoded input with the minimum possible
error. The latter part of the AE is called decoder.

In particular, let X be a subset of R? with & € X denoting an element of the set. Then,
the AE’s encoder and decoder are defined as transition maps ¢, 1 such that:

p: XCR! - HCR (5.15)
Yp:HCR — X CR? (5.16)
¢ v = argmin | X — (4 0) X|* (5.17)

with the dimension [typically being much smaller than d.

Now, let us consider the simplest case, where the encoder has only one hidden layer. It
takes an input € R? and sends it to h = ¢(x) € R’, which in this case can also be written
as

h=oc(Wz+b) (5.18)

with o being an activation function (eg. tanh, ReLU, etc), W a weight matrix and b a bias
vector. The image h of @ is the latent or encoded representation of & and H is the latent or
feature space.

The decoder’s task is to establish the inverse mapping v that will reconstruct the input «,
given its latent representation h. Again, considering an one-hidden layer, the reconstructed
point & = v (h) is given by

& =6(Wh+b) (5.19)

where 7, W and b may be unrelated to those of encoder. Also, the network’s architecture
selected for the encoder can be different than the decoder’s and the number of hidden layer’s
can be greater than one, leading to the so-called deep autoencoders. The general concept
and architecture of an autoencoder is schematically presented in figure 5.9.

41

Decoder
Encoder |
I

o

o

(W, b} ‘ (Wb} .
o

o

@

T Rd ff)ERd

m

Figure 5.9: Schematic representation of a basic autoencoder

In the context of AEs, the loss function becomes the reconstruction error between the
input points «; and their respective output ;. It is usually expressed as the mean-square
error:

N
1 -
Z = NZH%—CI%H% (5.20)
i=1
with || - || denoting the L?>-norm and N being the number of points in the training data set.

It should be explicitly mentioned that even though the minimization of the reconstruction
error implies that the encoder and decoder are trained jointly, however, they can be used
separately.

5.2.4 Convolutional Autoencoders

Despite their powerful dimensionality reduction properties, the classic AEs face significant
challenges when dealing with very high-dimensional inputs, due to the fact that the number
of trainable parameters increases drastically with an increase in the input’s dimensionality.
In addition, AEs are not capable of capturing the spatial features of the input (e.g. when
dealing with images) nor the sequential information in the input (e.g. when dealing with
sequence data).

To remedy these issues, a new type of autoencoders was recently emerged, that of
convolutional autoencoders (CAEs) Similarly to AEs, CAEs also consist of an encoder and a
decoder that are trained to minimize the loss function of eq. (5.20), but they are built from
different layer types. Specifically, in CAEs the encoder part is built using a combination of
convolutional layers, fully connected layers, pooling layers and normalization layers, while the
decoder is built from deconvolutional layers and unpooling layers along with fully connected
and normalization layers. Intuitively, CAEs can be viewed as extensions of ordinary AEs in
the same way that convolutional neural networks are extensions of fully-connected neural

42

networks. We have already discussed about convolutional and pooling layers, so in this
section we review their reverse operations, namely, deconvolution and unpooling.

Deconvolutional Layers

A deconvolutional layer performs the reverse operation of convolution, called deconvolution,
and it is used to construct decoding layers. Their function is to multiply each input value by
a filter elementwise. For instance, a 2D f, x f,, deconvolution filter maps an 1 x 1 spatial
region of the input to an f;, X f, region of the output. Thus, the filters learned in the
deconvolutional layers create a base used for the reconstruction of the inputs’ shape, taking
into consideration the required shape of the output. As before, a deconvolutional layer can
have multiple filters, while several deconvolutional layers can be stacked for building deep
architectures for CAEs. The decoding procedure can be represented as:

M = DeconvN N (M) (5.21)
Unpooling layers

Unpooling layers perform the reverse operation of pooling and their aim is to reconstruct
the original size of each rectangular patch. During the max pooling operation, a matrix is
created which records the location of the maximum values selected during pooling. This
matrix is then employed in the unpooling operation in order to place each value back to
its original pooled location, while setting all other values to zero. In the case of average
unpooling, it assigns the same mean value to all elements of the output window. A schematic
representation of max pooling, average pooling and unpooling is given in figure 5.10.

2 6 12 2

9 12 7 1 5 Averagepooling 6 5

Unpooling Unpooling

Max pooling 9

0 0 12 o 6 6 5 5
9 0 0 0 6 5 5

Figure 5.10: Examples of pooling and unpooling.

6

Based on the above, the CAE’s architecture consists of convolutional/deconvolutional,
pooling/unpooling and dense layers and is typically used for dimensionality reduction and

43

reconstruction purposes. In practice, the CAE’s encoder uses a number of convolutional
layers to compress the input and once the desirable level of reduction has been achieved, the
encoded matrix is flattened into a vector. Then, a dense layer is employed to map this vector
to its latent representation. In the reverse direction, the decoder starts by taking the latent
representation and transforming it into a vector through a denser layer. Subsequently, the
input reconstruction is achieved by the deconvolutional layers. In accordance to eq. (5.20)
the loss for CAEs becomes:

N
1 Or 112
&L = N;\\Mi—Mi\]Q (5.22)
where M; denotes the input arrays used for training and M; = DeconuN N (ConvNN (M))

the corresponding CAE’s output. In figure 5.11, a schematic representation of a deep CAE is
presented.

Encoder
Convolutional Convolutional J Convolutional Convolutional Flatten
layer " layer layer layer layer
¢,
PR
""e,.%
4
Latent vector _ |
representation \
Decoder °
o
)
Deconvolutional Deconvolutional _Deconvolutional Deconvolutional " Reshape N
layer) layer layer layer layer
Figure 5.11: Schematic representation of a deep convolutional autoencoder.
Example: Surrogate based on FFNN and CAEs
Let us consider the 1D Burgers’ equation
ou ou 0*u
ot ox 0%z

where u = u(z,t). The initial conditions were taken as u(z,0) = —sin(7mz) with x € [—1,1]
and the boundary conditions u(+1,¢) = 0 with ¢ € [0,5]. In this model, v is considered a
random variable following the uniform distribution between [0, 1]. In order to obtain exact
solutions of eq. (5.23), a finite difference scheme is employed in both time and space domains,
using a time step of At = 0.0505 sec and spatial discretization Ax = 0.0101 m, leading to
100 and 200 time and spatial points, respectively.

44

The first step to construct a data-driven metamodel is the generation of a sufficient number
of training samples. To this purpose, Burgers’ equation is solved numerically for N = 100
values of v within the range [0, 1]. Subsequently, these solution snapshots are stored in a 3-D
matrix S = [Uy,Us, ..., Uy| € RI00x200x100 " where U; € R?0%1% jg the velocity matrix of
the i-th solution of equation (5.23).

Then, a CAE is trained over this data set and an encoded data matrix S¢ = [21, 29, ..., 2]
is obtained, where each column z; is the 8 x 1 latent vector representation of the solution
matrix U;. The selected CAE’s architecture is presented in figure 5.12.

Encoder
Conv 1-D Conv 1-D Conv 1-D
o 128 filters o AvgPool o 64 filters Avg Pool 4 32filters ~ Flatten o Dense
=) ——————N ———————>—N) o "0)
X ReLU « size=2 '« ReLU =0 SiZe=2 ¢ ReLU 35 ®
100 50
100
[- dimensional vector
representation |
Decoder
Conv 1-D Conv 1-D Conv 1-D
S 200 filters Unpooling o 128 filters « Unpooling 3 64 filters o Reshape o Dense
L | - - ™~ O < A ™
Q - size=2 = ReLU T size=2 o ReLU '35 ®
100 100 50

Figure 5.12: CAE architecture for the solution of Burgers’ equation

The next step of the training procedure is the training of the FFNN in order to establish
the mapping from the problem’s parameters v; to the encoded vector representations z;.
Using the FFNN and the decoder of the autoencoder, we can obtain the solution to the PDE
at new values of v at negligible cost. The idea of this surrogate modeling strategy is given
schematically in the following figures:

45

Step 1: Generate samples

F'_/

Ny
Step 2: Train CAE
Encoder
B
|
Z; € R!
Decoder
Step 3: Train FFNN
0, <

Figure 5.13: Offline phase of the proposed surrogate modeling method

46

Solution space

Parameter space

Encoded space
Figure 5.14: Online phase of the proposed surrogate modeling method

We now demonstrate some results to verify the accuracy of the proposed data-driven

surrogate.
1
05 05
. 0.5
0 0
0
. -0.5 05 -0.5
-1 -1
0 1 2 3 4 5

t(sec)

3 4 5

t(sec)

0 1 2

(b) surrogate model

(a) exact model
Figure 5.15: Solution profile u(z,t) for v = 0.2 predicted by (a) the exact model and (b) the surrogate model

47

-0.2

a:(m)

= 1.01 sec = 2.02 sec
0.2f 7N 0.4 -~
surrogate surrogate
0.1fF |— — —exact 0.21 |— — —exact
o) o)
O O
< o0 < 0
£ £
S S
0.1°f -0.27
-0.2¢= -0.4
-1 -0.5 -1 -0.5 0 0.5 1
fv(m) z(m)
t = 3.03 sec t = 4.04 sec
0.2
surrogate 0.2y surrogate
. 0.1 |— — —exact ol == — exact
Q Q
S} S}
< 0 < 0
£ £
S S |
01l -0.1
-0.21

Figure 5.16: Solution profiles u(z,t) at specific time instants for v = 0.2

06 0.6

05 04 04

0.2 0.2

£ o 0 0

g 02 -0.2
h 0.4 0.4

0.5 l) 0.6 06
-0.8 -0.8

0 1 2

3 4

t(sec)

t(sec)

(a) exact model (b) surrogate model

Figure 5.17: Solution profile u(x,t) for v = 0.8 predicted by (a) the exact model and (b) the surrogate model

48

= 2.02 sec

surrogate
— — —exact

05 0 05 1
z(m)

t = 4.04 sec

surrogate
— — —exact

= 1.01 sec
0.2 1
surrogate
0.1} |— — —exact 0.5}
o) o)
O O
< o0 < 0
£ £
S S
01t -0.5
-0.2 -1
-1 -0.5 0 0.5 1 -1
z(m)
t = 3.03 sec
0.5
surrogate 01r
. — — — exact o005t
Q Q
S} S}
2, 2,
£ £
: : _0.05 -
-0.1f
-0.5
-1 -0.5 0 0.5 1 1
z(m)

Figure 5.18: Solution profiles u(z,t) at specific time instants for v = 0.8

(a)

t(sec)

exact model

0 1 2 3 4 5
t(sec)

(b) surrogate model

Figure 5.19: Mean value of u(z,t) predicted by (a) the exact model and (b) the surrogate model

49

0.2

0.15 0.15
0.1 0.1
0.05 0.05
t(sec) t(sec)
(a) exact model (b) surrogate model

Figure 5.20: Variance of u(x,t) predicted by (a) the exact model and (b) the surrogate model

5.3 Radial Basis function interpolation

Radial basis function methods can provide excellent interpolants for a large number of poorly
distributed data points. Its ability to handle scarce and unevenly distributed data along with
its algebraic simplicity renders this approach particularly popular in the field of machine
learning. The implementation steps of this method are illustrated below.

Let f(x), x € R be a real function of d variables, and let the values f(x;),i=1,..., N,
at the specified locations x;, ¢ = 1, ..., N, be given. The interpolation problem consists in
constructing a function p(x), x € R¢ such that:

p(x;) = f(x;), fori=1,..,N (5.24)

An N-dimensional vector space sl of real functions from R? to R is considered, which is
spanned by a basis a; € o, j = 1, ..., N. Then, the interpolant will take the following form:

p(x) = Z \jaj(x), x &R (5.25)

Then, eq. (5.24) will provide the following linear system of equations

zn:/\jaj(xi) = f(Xi), 1= 1, cory N (526)

that will determine the coefficients \;. These coefficients will be uniquely defined, provided
that the matrix of the system is nonsingular. The matrix of the system is N x N matrix ®
that has the elements ®;; = a;(x;), 1 <14,j < N, of the system is nonsingular. Unfortunately,
the nonsingularity of ® can not be avoided in the general case, unless specific basis functions
are chosen.

50

In the RBF interpolation, we consider a special family of functions ¢ called radial functions,
which satisfy the property ¢(x) = ¢(||x||). We will use these functions to construct the basis
vectors {a;};_; but before we do this let us first give some examples of such functions:

e Gaussian: ¢(r) = e~ ()’

Multiquadric: ¢(r) = /1 + (er)?

1
1+(er)?

Inverse multiquadric: ¢(r) =

Polyharmonic splines of odd degree: ¢(r) =%, k=1,3,5,...

Polyharmonic splines of even degree: ¢(r) = r*~tn(r"), k=2,4,6,...

The first three examples require the tuning of a shape parameter €, while polyharmonic
splines do not have such a dependence.
For a specific choice of ¢, the basis functions are given as:

a;(x) = o([x =x4), 7=1..N (5.27)

and the linear system of eq. (5.26) becomes

dA=f (5.28)

where A and f are the vectors in RY with components)\; and f(x;), i = 1,..., N. Also, the
matrix ¢ has elements

i =o(lxi —x4ll), 1<i,j<N (5.29)

Therefore, ® is a symmetric matrix and in the Gaussian and inverse multiquadric case it is
guaranteed to be positive definite, as well.

Solving the system of eq. (5.28) will provide the coefficients A and the interpolant p
becomes

p(x) = Z No(|[x —xi]), xR (5.30)

5.4 Principal Component Analysis and Principal Orthogonal De-
composition

In this section we will discuss about another data-driven modeling technique, which in
the fields of machine-learning and statistics is known as Principal Component Analysis
(PCA), while its application in computational mechanics is termed Principal Orthogonal
Decomposition (POD)?. There are several ways to describe the method, but the exposition

2 Also, the Karhunen-Loéve series representation is essentially the same method as PCA

51

in this section will focus on the application of PCA for dimensionality reduction in large
data sets and, especially, PDEs.

Let X = [z, ..., 2™)] be an n x N matrix, comprised of N observations. Then, we can
consider the X X7 symmetric matrix, which we view as the empirical sample covariance
matrix of the data set. Since, X X7 is symmetric we can perform an eigendecomposition
and we can write

XX =WAW?" (5.31)

where W = [w(l), s w(”)] is set of orthogonal eigenvectors and A is a diagonal matrix of
eigenvalues. We usually rearrange the eigenvectors in W according to their eigenvalues (in
decreasing order). The advantage that this approach offers us is that we can now dismiss
all eigenvectors, whose eigenvalues are deemed too low to to affect the accuracy of the
representation. For instance, we can dismiss all eigenvectors that have A < 0.05\,,4.. By
keeping only the n,.4 (the subscript red’ stands for reduced) most significant eigenvectors, we
obtain a reduced representation of a vector & € R by writing it as ~ ¢;w™ +...4cp,, d'w("red)
and considering the reduced representation @,.q = [c1, ..., ¢, |7 € R™red.

Example
Let’s consider the vectors ©; = [1,1,0.02]7, z, = [2,0.5,—0.02]7, 3 = [3,1,0.01]7 and

x4 =[1,3,0.01]T. We see that all four vectors approximately lie on the x — y plane. Next, let
X = [x1, 29, 23, 24] € R?*. Performing the eigenvalue analysis of X X* we find:

—0.7836 —0.6212 0.0017 21.3419 0 0
W = 1-0.6212 0.7836 —0.0056| and A = 0 4.9084 0 (5.32)
—0.0022 0.0055 1.0000 0 0 7.51le — 04

We see that the third eigenvalue is very small compared to the other two, so we can dismiss
it and consider

—0.7836 —0.6212
Woea = |—0.6212 0.7836 | and A,.q = {
—0.0022 0.0055

(5.33)

21.3419 0
0 4.9084

Therefore, we get XX ~ WA eaW? ;. Also, we the original data ¥ € R? can be
represented as a vector az(l)d in R2. Tt is easy to check that (V) ~ —1.4049w™ +0.1625w? =

Te

[1,1,0.004)7, thus 2, = [~1.4049,0.16257".

Principal Orthogonal Decomposition

Now let’s us revisit eq. (4.5)

KU = F(§) (5.34)

with U € R” denoting the unknown vector of nodal values of the response. As mentioned,
this will be an n x n linear system of equations with n being the number of degrees of freedom
from the finite element discretization and & denotes the random parameters in this equation.

52

In the context of MCS, we generate N, samples {5(1), o S(NS"”)} and solve Ng;,, times the
n x n linear system. However, if n is large (order of 10* and above) the computational cost
will be significant. In such cases we perform M < N, analyses and build the n x M matrix
V = [uW, ..., u™)] which will be our data set. Next, we perform an eigenvalue analysis on
VVT. Let’s suppose that ¢y, ..., ¢, are the K eigenvectors corresponding to the K largest
eigenvalues (K << n). Then, these eigenvectors form a basis of a 'good’ subspace of the
solution space and thus every solution can be represented in this new and lower-dimensional
basis. In other words, every U can be approximated as

K
UrUei= Y vi, = [, ..., px]v = Pv (5.35)
=1

Inserting the reduced representation of U in eq. (5.34) we get

KU = F(§) =
K(§)®v(§) = F(§) =
'K (¢)®Pv =2 F(¢) =
Kca(§)v = Freq(§) (5.36)

The last system of equations is NOW N,eq X Nyeq, With n,..q < n, therefore, the inversion of
K .4 will be far cheaper and faster than the inversion of the original matrix K. Thus, solving
eq. (5.36) for v, we get v = K;ebFred- Then, we can then send v back to our original space
R™ using the linear transformation U = ®w.

Different variations of POD/PCA

1. Some authors prefer to remove the mean vector & = + Zf\il x() from the data set X
and consider X = [z —z, ..., 2™ — z].

2. In some applications, instead of viewing X X7 as our correlation matrix, we consider a
symmetric positive definite kernel R(z®, (), such as

4 4 (@) _)
R(.’B(Z), Cc(J)) — exp(_w) (5.37)

and perform the eigendecomposition on R € R¥*¥_ This is what we did in the Karhunen-
Loéve series expansion.

3. Performing eigendecomposition on matrices of large dimension is a particularly costly
operation. Its complexity is 0(n?37). Now, if n > N, instead of the matrix X X7 ¢
R™ " we can find the eigenvalues and eigenvectors of X7 X € RV*N. Then, these are
related to those of X X7 as follows:

Assume vRY is an eigenvector of X7 X with eigenvalue A # 0. Then,

53

XT'Xv= =
XXT(Xv) = MNXv)

therefore Xv € R™ is an eigenvector of X X7 with same eigenvalue \.

5.5 Stochastic Collocation

Stochastic collocation (SC) is a data-driven modeling approach, primarily employed for
uncertainty quantification. To carry out SC, one needs only a reliable deterministic simulation
code that can be repetitively solved at different parameter values, just like the Monte-Carlo
simulation.

Specifically, SC is a sampling-based method. The term “collocation” originates from
the deterministic numerical methods for differential equations, where one seeks to satisfy
the governing continuous equations discretely at a set of collocation points. This is to the
contrary of the Galerkin method, where one seeks to satisfy the governing equation in a weak
form. To illustrate the idea, let us consider the simple linear static problem

KU = F(§) (5.38)

with U € R" denoting the unknown vector of nodal values of the response. Also, & =
{&1,..., &4} are the uncertain parameters and = C R? their domain. In uncertainty quantifica-
tion computations, we are primarily interested in the solution dependence in the parameter
space, meaning that we search for the mapping

UEg):E—-R" (5.39)

In stochastic collocation, we seek to enforce the equation (5.38) at a discrete set of nodes,
which are called collocation points. Let O, = {5(1), - E(M)} be a set of prescribed nodes in
the random space, with M being the number of nodes (samples). Then, in SC we enforce eq.
(5.38) at the node £€Y) for all j = 1,..., M, by solving

K(EVU(EY) = F(&Y) (5.40)

Just like in MCS, the result of solving eq. (5.40) is an ensemble of deterministic solutions
UY, 7 =1,..., M. However, there are some differences between MCS and SC. In MCS, the
nodal set ©; is randomly generated according to the distribution of &, while in SC we typically
prefer a structured mesh that explores the totality of E. The major difference, however,
between SC and the classical MC sampling methods is that in SC, the goal is to construct an
accurate approximation to the solution response function using the samples. This is a stronger
goal than estimating the solution statistics. Knowing the response function(surface) of the
solution allows us to immediately derive all of the statistical information of the solution. The
converse does not hold, namely, knowing the solution statistics does not allow us to create
the solution response function. To this end, SC can be classified as strong approximation
methods, whereas the traditional MC methods are weak approximation methods.

54

Definition (stochastic collocation)

Let ©) = {E(l), ...,ﬁ(M)} C E be a set of prescribed nodes in the random space E and
{u}, be the corresponding solutions of eq. (5.40). Then find w(€) ~ w(£) such that it is
an approximation to the true solution (&) in the sense that ||w(&) — w(€)|| is sufficiently
small®.

Now, we assume that w(€) belongs to a vector subspace of L?, and this vector subspace is
the one spanned by a finite number of polynomials in the Polynomial Chaos. We assume that
this subspace is the space of polynomial of degree up to p. Then, if dim= = d, we can write

w(é) = Z ¢y (&) (5.41)

where P = 7" (d+g_1) and ¢; € R" are the unknown vectors of coefficients in the above

expansion. So, the goal is to find these coefficients using the data set of solutions {u(j)}j]‘/i 1
that we already have. There are three approaches to do so: Stochastic Collocation via
Interpolation, Stochastic Collocation via Regression and Stochastic Collocation via Pseudo
Projection. We will focus on Stochastic Collocation via Regression. The idea is the following.

For every sample €9 we know its corresponding solution u¥). Also, we know that
w(EW) = 327 e, U(€Y)). Then, we seek these vectors of coefficients ¢;, i = 0, ..., P — 1 such
that ||w(&) — u(&)||2- These are given by solving

AC=F (5.42)

where

e A is the M x P matrix with entries a;; = ‘Ilj,l(é(i)), i=1,..Mand j=1,...,P

o F=[u, . u™)]T is the M x n matrix built from the solution data set

e C is the P x n matrix of the coefficients in the expansion, that is C = [cy, ..., cp_1]7.

Then we find the matrix C that minimizes |[w(§) — w(§)||2 (known as the least-squares
solution) by the formula

C=(ATA)'A"F=A'F (5.43)

where A" denotes the (Moore-Penrose) pseudo-inverse of A.
As a closing remark, having obtained the matrix of coefficients C, then we can use the
formula of eq. (5.41) to get the solution vector for every other new sample &

new:*

5.6 Gaussian Process regression/Kriging

As a general term, regression belongs to the more general concept of supervised learning.
It is concerned with the prediction of continuous continuities based on a discrete set of

3Typically, we employ LP-norms and most commonly the L2-norm, leading to mean-square approximation

95

labeled data. In this section, we will describe Gaussian Process (GP) methods for regression
problems.

Let us denote our training set of observations as D{(x;, y;)|i = 1,...,n}, where x denotes
an input vector (covariates) of dimension D and y denotes a scalar output or target (dependent
variable). We write the inputs x; of @ as column vectors and form the D x n matrix X,
called the design matrix. Also, the targets are collected in the vector y, so we can write
P = (X,y). We are interested in making inferences about the relationship between inputs
and targets, which in this setting is viewed as a conditional distribution of the targets given
the inputs.

5.6.1 Linear Regression model with Gaussian noise

At this point, we will recall the standard linear regression model with Gaussian noise:

f(x) = 2w, y=f(x)+e (5.44)
where @ is the input vector, w is a vector of weights (parameters) of the linear model, f is
the function value and y is the target value *.We have also assumed that the observed values
y differ from the function values f(x) by additive noise €, and we will further assume that
this noise follows an independent, identically distributed Gaussian distribution with zero
mean and variance o2

€~ WN(0,02) (5.45)

Now, we consider the following likelihood function, namely, the probability density of the
observations given the parameters

T 1 (y; — xTw)’

—1 T 2 T 2
= Qro2)yn2P <—@|y — X w|) = N(X" w,o,I) (5.46)
where | - | denotes the Euclidean length of a vector. Next, we specify a prior ® over the

parameters, which is a probability distribution that expresses our beliefs about the parameters
before we look at the observations. Typically, we put a zero mean Gaussian prior with
covariance matrix X, on the weights

w ~ N(0,%,) (5.47)

Inference in the Bayesian linear model is based on the posterior distribution over the
weights, computed by the Bayes’ rule, which states that

likelihood X prior

posterior = (5.48)

marginal likelihood

40ften a bias weight or offset is included, but as this can be implemented by augmenting the input vector & with an additional
element whose value is always one, we do not explicitly include it in our notation.
5prior, likelihood these terms come from the Bayesian formalism, which we will see in later chapters

56

or,

oyl X w)plaw)
P20 = i)

where the normalizing constant in the denominator, called the marginal likelihood is given by

(5.49)

Py X) = / p(y| X, w)p(w)dw (5.50)

The posterior in eq. (5.49) combines the likelihood and the prior, and captures everything
we know about the parameters. Writing only the terms from the likelihood and prior which
depend on the weights, we obtain

plX) x cap (50 (0= X70)" (v~ X7w)) o ("5, w)
x exp <—% (w—w)" (iXXT + 2;1) (w — 'w)) (5.51)

n

where w = 0,,%(0,2X X" +%,1)~! Xy and we recognize the form of the posterior distribution
as Gaussian with mean @ and covariance matrix A"

p(w|X,y) ~ N(w, A7) (5.52)
with A = 0,2 X X" + 5.

Now that we know the posterior distribution p(w|X,y), we can make predictions of a
new test case x, by averaging over all possible parameter values, weighted by their posterior
probability. In other words, the predictive distribution for f, := f(x,) at @, is given by
averaging the output of all possible linear models w.r.t. the Gaussian posterior

D@, X,) = / P(fu |, w)p(w] X,)

1
=N(=z2lA ' Xy, 2T A 'z, 5.53
9k *
o

n

In essence, the above equation tells us that for each new design point @, the output fq,
will be a random variable with the pdf shown in eq. (5.53). Nevertheless, we can also derive a
deterministic relation by taking fg. to be the most probable value of p(f,|zs, X, y), namely,
the mode of the pdf, which in the Gaussian case is the same as its mean value émfA_lX Y.

Example

Example of a linear model f(x) = w; + wex with intercept w; and slope parameter ws.

o7

2
1t
g{'\l
e 0
I=)
w
_1..
_2. o
-2 -1 0 1 2
Intercept, w,
(a)
oF ; ; . - oF - ;
= ="
g 0 g o0
=] =}
w w
-1 -1
-2 -2t
-2 - 1 2 -2 - 1 2

_ 0 _ 0
intercept, w Intercept, w

1 1

(©) (@)

Figure 5.21: Panel (a) shows the contours of the prior distribution p(w) ~ N (0,). Panel (b) shows three
training points marked by crosses. Panel (c) shows contours of the likelihood p(y|X, w), assuming a noise
level of o, = 1; note that the slope is much more "well determined” than the intercept. Panel (d) shows the
posterior p(w|X,y); comparing the maximum of the posterior to the likelihood, we see that the intercept
has been shrunk towards zero whereas the more ”well determined” slope is almost unchanged. All contour
plots give the 1 and 2 standard deviation equi-probability contours. Superimposed on the data in panel (b)
are the predictive mean plus/minus two standard deviations of the predictive distribution p(fi|xs, X, y)

58

5.6.2 More general formulation

Instead of considering the additive noise € in eq. (5.44), we can assume a model of the form:

y(@) = f(z) + 2(x) (5.54)
where f is the regression model in «, with the difference that now {f(z)}", = {w”s(x;)}",
for some function s and z(x) is a zero-mean random process with covariance function

defined as:

C.(x1,x2) = E[z(x1)2(x2)] (5.55)

we can consider the process z(x) to be weakly stationary and we can denote R,(7), 7 =
d(x1,x2) = ||@1 — x2|| its normalized correlation function:

0?R.(7) = C.(x1, T2) (5.56)

where o2 is the variance of the process. A common choice for the correlation model in R is
the exponential kernel we have seen in previous sections ea:p(—w), p being the correlation

length parameter. However, more general correlation models can be chosen from the Matérn
class of functions:

R.(d) = ﬁ (\/2_ g)ym (\/2_ %) (5.57)

Here, I' is the gamma function, K, is the modified Bessel function of the second kind and v, p

are non-negative parameters that control, respectively, the smoothness and the correlation
length of the stochastic process. The likelihood function now becomes

p(y|X,'w,p):(1 1(R)€Ip (_(y—f) R (y—f)> (5.58)

2mo2)? | /det 202

Here, R depends on p and is the n x n matrix of correlations of the n design points with
Rij = R(d(wlﬂ wj))v Y= {yi}?:l and f = {wTS(wi) i1

After some operations, we can evaluate the posterior p(w, o2, p| X, y) by appropriately
adjusting eq. (5.51). We omit these calculations and instead present here the final prediction
formula:

(@) = f(@) + 7' ()R (y — f) (5.59)

where §j(x,) is the GP’s prediction at the design point x, and 7 (z,) = [R(d(x1, T,)), ..., R(d(xn, x,))]
is the vector of correlations between the design point x, and the observation points .

5.7 Additional literature

1. Hands-on Machine Learning with Scikit-Learn, Keras and Tensorflow, Aurelion Geron,
2nd edition

2. Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2006

99

Chapter 6

Spectral Stochastic Finite Element
Method

The spectral stochastic finite element method is an extension of the deterministic finite
element method for problems involving random material properties and\or loading conditions.
For instance, if a material property, such as the modulus of elasticity is considered to be of
stochastic nature, that is, £ = E(6), with 6 denoting the random outcome, then the system’s
response will also be stochastic, U = U(#). This implies that both E and U are elements of
the £%(0,.7, &) probability space, and thus they can be projected onto appropriate bases
of this space.

6.1 SSFEM for linear systems

In the SSFEM approach, it is preferred to use the Karhunen-Loéve expansion when the
stochastic input parameters are Gaussian random fields and the Polynomial Chaos expansion
for the system’s response. More particularly, the truncated KL expansion for a random field
a(x, 6), describing a stochastic input parameter, with given covariance function C(xy,x3) is
defined as

a(x,0) = ao(x) + Z VA (0)p;(x) (6.1)

where, \; are the eigenvalues of C', ¢;(x) are the associated eigenfunctions and &;(6) are
independent standard normal variables.

Using conventional notation, the equation of equilibrium of a linear static system of size
N x N reads

KU=F (6.2)

In the above equation, U is the N x 1 vector of the unknown displacements, resulting from
the finite element discretization, F' the corresponding loading vector and K the N x N global
stiffness matrix, which is obtained after assembling the element stiffness matrices K°:

K¢ = / B'DBdQ. (6.3)
Qe

60

where, D and B stand for the constitutive and the deformation matrix, respectively.
Let us consider now the case the modulus of elasticity E is a Gaussian random field. Then,
the constitutive matrix in point x can be written as:

D(x,0) = E(x,6)D, (6.4)
with D being a constant matrix. The Karhunen-Loéve expansion of F reads:
M
E(x,0) = Eo(x) + Y vV/Ai&(0)¢;(x) (6.5)
j=1

where, Fy(x) is the mean value of the field in point x. Using egs. (6.4) and (6.5), eq. (6.3)
takes the form:

K*(0) =K8+§:K§§j(9) (6.6)

In the above equation, K7 is the element’s mean stiffness matrix and K are deterministic
matrices obtained by:

K =/} /Q ©;(x)B" DyBdS, (6.7)

Assembling the above element contributions in a manner similar to the deterministic case,
the equation of equilibrium for the stochastic case becomes

(m+fK@@W@:F (6.8)

K is the mean global stiffness matrix and K; are deterministic matrices obtained by the
assembly of K7.
Next, the system’s response is projected in a PC basis as follows

U0) = 3 UL0(€) (6.9)

where, { U (&)} -0 = {Vr((&1(0), ..., Ear(0) }1.—, is the PC basis, consisting of the M-dimensional
orthogonal Hermite polynomials of order p. The order of P in Eq. (6.9) is determined by the

following formula
P IM4q—1
P = (> (6.10)
q=0 q

By denoting &,(0) = 1, eq. (6.8) can be more compactly written as

(i Kjfj(9)> (gUk\Pk(e)) =F (6.11)

with the following residual due to the truncation error

61

M P—
€M, P :ZZ kaj ()—F

Galerkin minimization of the residual in the mean square sense leads to

E[EMVP'\IIZ]:O ZZO,L,P—]_

Introducing the notation

cim = BE§V V]

F, = E[V,F|
eq. (6.11) can be rewritten as
M P-1
Z CjlejUk = Fl
7=0 k=0
and denoting
M
Ky=) cukK,
=0

eq. (6.16) rewrites as

P-1
Y KUy =F
k=0

(6.16)

(6.17)

(6.18)

In the above equation, each U, is a N-dimensional vector and each Ky; is a matrix of size
N x N. The P different equations can be cast in a matrix form of size NP x NP as follows:

KU=F
where,
M M M
Zjﬁocj,o,on Zjﬁocj,l,on ZjJOCJ,P—luOKj
i im0 Coa Ky Y igcaKy e 311K
M M M
> im0 Cio.p—1 K D gciipa Ky o 3¢ po 1K
and

Ij = [U07U17 "'7UP—1]T
F =[Fo,Fy,....Fp_i]"

It should be noted here that, in the case that F is deterministic

62

(6.19)

(6.20)

Solving the augmented system of equations in (6.19), will give the PC expansion coefficients

Uy, which, in turn, will produce the final solution

U) = 3 U 0)
k=0

An easy example

(6.24)

Consider the rod shown in the figure below. Use the SSFEM to find the mean value and
standard deviation of the response u using polynomials of degree (a) p =1 and (b) p = 2.

q=280 kN

H N e Cross-section area: A=lcm?
3 ® Modulus of Elasticity:
e g nE :" 7
? E~ N(2*10°,2%10"})

u=:

L=1m

Figure 6.1: Rod with random F

Solution: The equation of equilibrium for the rod reads K - u = ¢, with K =

E ~ N(2-108,2-107), then it can be written as:

E=2-10°+2-10"¢ (= Ey + 0f)

Consequently,
EA EyA EyA
K== totp =Kotk
= 20000 + 2000

EA :
= - Slnce

(6.25)

For M =1 KL-terms’ in this example and for polynomials of degree p = 2, we have P = 3
terms in the PC expansion of the unknown response u. So, u = ugWg + u1 ¥y + usWs, where

p:OZ\I’0:1
:12\11125
p=2: Uy=¢ -1

The next step is to compute the coefficients ¢;j, = E[¢;V; V] using the formula

Cijk:/ giq/j\l/kﬁe 2 d§

For example,

63

(6.26)

o 1 2
0000:/ 1-1-1\/%@—2%:1

00112/001'5'5\/1276_&226%21
0112:/005‘5‘(52—1)\/12—7T€_§22d§:2

Knowing the coefficients c;j, it is straightforward to compute the 3 x 3 augmented matrix K.
We also need the augmented force vector F = [q1, qo, q3]7, where qp = E[q- U], k = 1,2,3. Tt
is easy to verify that ¢; = 280, ¢y = ¢3 = 0.

Eventually, the augmented system becomes:

Koo Ko Ko| |w 7
K Ku K| |uz| = |g (6.27)
Koy Ko1 Koy us qs

and solving this system will return the coefficients ug, u1, us. The solution is

u = UO\IJQ + Ul\Dl + UQ\IIQ

=0.01414 - 1 — 0.001443¢ + 0.000144(£* — 1) (6.28)
Now, we can compute:
E[u] = woE[Vo] + v E[¥;] + usE[¥s] = uy = 0.01414 (6.29)
and
Var[u] = E[u®] — (E[u])? = - - - = wfE[V3] + w3E[W3] = 2.125- 107° (6.30)

Also, we can now generate a very large number of samples for £ from N(0,1) and through
eq. (6.28) find the corresponding values of u. This allows us to produce a histogram, or an
empirical pdf, for u at negligible cost.

6.2 SSFEM for linear systems with non-Gaussian parameters

In the formulation presented in the previous section, Gaussian random fields were considered
for the modeling of the system’s random parameters. This assumption facilitates computations,
however, it can be applied only to problems with small coefficient of variation (~15-20%),
since it can be physically inconsistent in cases where the random parameters are not allowed
to take negative values. Such is the case of the modulus of elasticity, where negative values
of F would result in a displacement vector of infinite variance, and hence the solution would
not belong to the £2(0,.%#, &) probability space. As a consequence the PCE approximation
is not convergent in the £2 sense. An approach to overcome this drawback is to use the PCE
to represent the material property instead of the KL expansion, and will be briefly illustrated
here.

64

The main idea in this approach is to identify an underlying Gaussian field for the corre-
sponding non-Gaussian field. Then, all the equations in the previous section remain valid
under some minor modifications. More specifically, the coefficients ¢;j; in eq. (6.14) will now
be given by the relation:

Cikl = E[\I/J\Ifk\pl] (631)

and the upper bound in the summations in the previous equations will become P instead of
M.

To further illustrate this process, let us consider the case where E is represented by a
lognormal random field, typically used in most applications. In this case, the field can be
represented by the exponential of an underlying Gaussian field, denoted as E(x, #), which
has the following KL expansion:

E%(x,0) = Ej (x) + Z VA& (0)0(x) (6.32)

Then, E (x, 0) = exp(EY(x, 0)) and can be represented using the PCE as:

P-1

E (x,0) = exp(EY(x,0)) =) e;(x)¥;(0) (6.33)

=0
The values of the coefficients e;(x) can be obtained using the orthogonality property of the
VU variables, that is

E[W;E (x,0)]
E [¥]]

For the calculation of the numerator in the above equation, closed form relations can be
found in the literature.

e;(x) = (6.34)

6.3 Additional literature

65

Chapter 7

Bayesian Inference

7.1 Additional literature

66

Chapter 8

Sensitivity Analysis

8.1 Additional literature

67

Appendix A

Application of the finite element
method in 3D elasticity

A.1 Introduction

Without a doubt the development of accurate mathematical models is essential for the study
of physical systems. Under appropriate assumptions concerning the underlying physical
mechanisms and the laws that govern them, these models are most often described by a
differential equation satisfying specific boundary conditions, also referred to as a boundary
value problem (BVP). However, in most practical problems, where complicated geometries,
loading conditions, material properties and nonlinearities are involved, solving analytically the
corresponding BVPs is often impossible. Therefore, the only alternative is to find approximate
solutions using numerical methods. In this regard, the finite element method is the most
powerful computational technique used to obtain numerical solutions of BVPs in engineering.
The aim of this chapter is to revisit the basic principles of the finite element method.
Starting from the abstract formulation of the BVP for the case of 3d elasticity, the variational
BVP is obtained. Then, the finite element approximation technique is used, in order to
convert the differential equations describing the problem into a system of linear equations.

A.2 The abstract problem

Most problems in the theory of elasticity can be written in the following abstract manner:
Let 7" be a normed linear space over R. Let § : 7" — R be a functional which can be
written in the form:

F(v) = %a(v,v) —bv), Ywev (A.1)

where a(+,-) is a continuous, symmetric bilinear form on %" and b is an element of ¥*, which
is the dual space of U'. Typically, ¥ represents the energy of some system under consideration.
Then the problem consists in finding an element u € % such that

u = argmin ¥ (u) (A.2)

uev

68

Often, instead of minimizing § over the entire space 7', a non-empty convex subset K of
Y is preferred, over which the minimum of ¥ is sought, that is

u = argmin ¥ (u) (A.3)
ucek
If we denote the above problem as (P) then the next step is to examine the existence of a
solution to (P) and, if such a solution does exist, its uniqueness.
Let ¥ be a normed linear space. A bilinear form a(-,-) on ¥ is said to be ¥ -elliptic if
there exists a constant ¢ > 0 such that Vv € 7V

a(v,v) > c||v]]? (A.4)

The ¥ -ellipticity of a(-,-) suggests that if a(0,0) = 0, then v = 0. Also, since a(-,-) is
bilinear and symmetric, then it defines an inner-product structure on %'. Thus, ¥ acquires
the structure of a Hilbert space. The existence of a unique solution to (P) is given by the
following theorem:

Theorem 1. Let U be a Banach space and K a closed convexr subset of V. Let a(-,-) be a
symmetric, V -elliptic bilinear form. Then, there ezists a unique solution for the problem (P).

The following corollary stems from this theorem: If & is a subspace of ¥ then the solution
u is characterized by
a(u,v) =b(v), Yve X (A.5)

In order to prove the existence and uniqueness of the solution in theorem 1, the symmetry
of the bilinear form was assumed, which provided the Hilbert space structure. If this condition
is relaxed but instead 7 is assumed to be a Hilbert space and ¥ is taken equal to X, then
the existence and uniqueness of the solution is given by the following theorem, known as the
Lax-Milgram Lemma:

Theorem 2. Let V' be a Hilbert space, a(-,-) be a continuous, V -elliptic bilinear form and
be V*. If (P) is the problem: find w €V such that Vv € V',

a(u,v) = b(v) (A.6)

then (P) has a unique solution.

A.3 The boundary value problem

Let us denote with €2 C R™ an open bounded subset and 0f its boundary. Let us restrict our
attention to the case Q C R3 and its boundary 9§ can be partitioned into two parts 9Qp
and 0Qy. According to the theory of elasticity, the equilibrium equation of a linear isotropic
body occupying €2 which is subjected to body forces f in Q and surface tractions ¢ in the
boundary 0y is:

V-o+f=0inQ (A.7)

where o is the stress tensor and V - o its divergence. Next, the strain tensor is defined as:

69

€= % <Vu + (Vu)T> (A.8)

with u : Q — R3 being the vector field of displacements, that will be developed in the body
under the prescribed loading conditions. The following relations hold between o, € and u:

U Ou;
{%“”:%<%?+%ﬁ (A.9)
aij(w) = A (T enn(w)) 0y + 2pei(w)
for 1 <1,5 < 3, or, equivalently,
o = \T'r(€)lzx3 + 2ue

The latter equation is the well-known Hooke’s law in 3D and A, u are positive constants,
called the Lame’s coefficients, given by:

Ev
A U= (A-11)
= % (A.12)

where E and v are the modulus of elasticity and the Poisson coefficient, respectively. Eq.
(A.10) can also be recast into the more familiar matrix form:

{o} = D{¢€} (A.13)
with,
[011] (€117
022 €29
{o} = |72, {e} = | (A.14)
012 €12
0923 €23
1031 LE31
and
[1— v v v 0 0 0 |
v 1—v v 0 0 0
FE v v 1—-v 0 0 0
— —ay A.15
A+xni—2)| 0 0 0 L2 o o (A-15)
0 0 0 0 =2 0
i 0 0 0 0 0 1’22”_

the 3D elasticity matrix.
Proceeding with the previous formulation, inserting eq. (A.10) to eq. (A.7) gives

—AV (V- u)lsi3) = 20V - €(u) = f (A.16)

70

and after some mathematical operations eq. (A.16) becomes

A+ pw)V(V-u)—pAu=f (A.17)

where Au =V (V- u) — V x (V x u) the Laplacian operator acting on w. This equation is
known as the Navier-Cauchy equation and the boundary value problem of eq. (A.7), that is
=3 2 (oy(w) = fi, n Qfori=12,3
u = u on Jf2p (A.18)
ov =ton 00y

becomes

—A+u)V(V-u)—pAu= fin Q
u = u on Jf2p (A.19)

with v denoting the outward pointing unit normal vector. Equations (A.19) constitute the
system of linear elasticity.

A.4 The variational boundary value problem

The system in eq. (A.19) is referred to as the strong form of the BVP and it requires the
solution vector field to be at least two times continuously differentiable, that is, u € C*(Q). Tt
turns out that this condition can be relaxed using the weak, or variational formulation of the
BVP. This approach offers two advantages; the solution space is enlarged and the Neumann
boundary conditions can be straightforwardly incorporated in the differential equation. In
order to derive the variational BVP of eq. (A.19) some definitions have to be provided first.

The Sobolev space W™?(Q), with m € Z=° and p and integer greater than 1, is given by:

WTP(Q) ={veZLP(Q)|D € LP(Q), Y|a] < m} (A.20)
glel
83:(111---8:102"
are the partial derivatives of order |a|, which are understood in the weak sense. The
Sobolev spaces with p = 2 are particularly important because they also form a Hilbert space

H™ = W™
Consider the vector spaces

where « is a multi-index denoting the n-tuple (ay, as, ...,a,) , a; € Z=° and D* =

U={uecW"”:u=1uondp}
W={wecW"?:w=0ondQp} (A.21)

with U being the space of admissible functions and W the space of test functions. Multiplying
both sides of the equilibrium equation (A.7) with w € W and integrating over) gives:

_/Q(v.a).wdw:/g)f.wdm (A.22)

The following integral formula holds for the left hand side of eq. (A.22)

71

/(V-a)-wdw:—/a:decc+ w - (ov)ds + w - (ov)ds
Q Q 20N oQp
B 0
= —/ o : Vwdx + w - tds + V)ds (A.23)
Q N D

where : denotes the tensor inner product and ds is the differential volume element on 0f).
Also, the last term in eq. (A.23) is zero due to the compact support of w. Therefore, eq.
(A.22) can be rewritten as

/ o : Vwdz = / f - wdx + w - tds (A.24)

Q Q o0

or, due to the symmetry of €

/ o e(w)dr = / f-wdz + w - tds (A.25)

Q Q o0

Applying eq. (A.10) to (A.25) we have:
/ </\ (V-u) I3 + 2pe (u)) : €(w)dx = / [wdx + w - tds (A.26)
Q Q o0

which is equivalent to

/Q)\(V-u)-(v-w)+2ue(u) :e(w)dm:/gf-wd:v+ w - tds (A.27)

N

Next, we define the bilinear form a(-,-) by,

a(u,w) = /Q ()\ (V-u) - (V-w)+2ue(u): e('w))dm

= /Q (A (Vou)- (V-ow)+2u) Gij(u)ﬁz‘j(w)> da

= /Q Zaij(u)eij(w)dw (A.28)

and the linear functional b(-) by:
b(w) = / fwdz + wtds (A.29)
Q 0N
Using the notation of operation theory, eq. (A.27) can be expressed as:

a(u, w) = b(w) (A.30)

Equations (A.27) and (A.30) are known as the variational boundary value problem or the
weak formulation. It can be proven that a and b satisfy the conditions for Theorem 2 to hold,
and, thus, the problem (P), i.e. a(u,w) = b(w) admits a unique solution.

72

In this context, the request for the relation a(u,w) = b(w) to be satisfied for all w € W
can be interpreted via the principle of virtual work with %a(u,u) being the strain energy
and b(u) the potential energy of exterior forces. Generally, these equations cannot be solved
analytically and the finite element method constitutes a generic numerical approach to
approximate the solutions of (A.17) and its generalizations (nonlinear elasticity, dynamic,
etc.).

A.5 The finite element method

In practice, obtaining an exact solution u of eq. (A.25) is not feasible in most applications of
interest. Instead, an approximate solution is sought and the Galerkin approximation technique
can provide it. The main idea behind this approach is to consider a finite-dimensional
subspace Uy, C U, spanned by a finite number of basis vectors {IN;}¥ |, and to find the best
approximation wy, € Uy, of uw € U. Since, U, C U and span{N1, ..., Ny} = Uy, then u,, will
be a linear combination of the basis vectors, that is u, = v1N(x) +voNo(x)+...+ vy N x(x).
Then, then problem consists in finding these coefficients v = (v, vy, ..., v5)T of the linear
combination that minimize the error |[u — wuy||.

The Galerkin approximation considers w = N;, i = 1,..., N as test functions and by
substituting w in eq. (A.30) one obtains:

N
a(N;, Y v;N;)=b(N;), fori=1,..,N (A.31)
j=1
and due to the linearity of a,
N
> a(N;,Nj)v; =b(N;), fori=1,..,N (A.32)
J=1

Equation (A.32) describes a linear system of equations of the form:

[K][v] = [P] (A.33)

where [K] is an N x N matrix with element K;; = a(N;, N;) and [P] is an N x 1 vector
with elements P; = b(IN;). The solution of this system will give the vector of coefficients v
and thus the approximate solution u; to the boundary value problem.

In a similar fashion, the finite element method, which is a variation of the Galerkin
method, considers piecewise polynomials as the basis functions {N;}",. These polynomials
are supported on small patches of €2, called finite elements and are obtained by discretizing
Q2 € R” into polygonal domains. The displacement vector field u;, € U" and test functions
w € W" can be approximated within each element e via the basis functions as:

uj, = Z Nivi = [N°][v°] (A.34)
w® = Z Nfw? = [N°][w®] (A.35)

73

where v$, w¢ are 3 x 1 vectors (case of 3D elasticity), n is the number of nodes in the element
e and [IN?] is 3 X 3n matrix with entries

[N = [N{I3x3 . .. Nyl3x3] (A.36)

The strains and displacements within each element are related via the following relation:

{e(up)} = Z Jv¢ = [B°][v°] (A.37)

w)} = Z[Bﬂwf = [B][wf] (A.38)
i=1
where the 6 x 3 matrix [B{] is introduced, such that
[ON? i
: 0 0
M o
0 L0
8[E2 ONe
o0 ==
[Bf] = | oNe ONE L3 (A.39)
- 0
8@ 8x1
0 ONf ONf
axg 81’2
ONf 0 ON?
| 8x3 81’1 J
and also
[B] = [B]...Bj)] (A.40)
Eq. (A.25) then must be satisfied for every element ¢, or
/ o:e(w)dx = [wdx + / w - tds +/ w - tyds (A.41)
e Qe 92N NONe 99\ N

Using matrix notation the above equation can be written as

[{ew)) Dic(w)ydz = [{w){f}dz+ |

00N NONE

{m%ﬂw+/ {w) {t)ds

90\
(A.42)
The last term in eq. (A.42) accounts for the tractions developed between the element and its
adjacent elements. Inserting eqs. (A.37) and (A.38) into eq. (A.42) gives:

/e (B [w])” D ([B|[v]) d :/

+ /aac\aQN ([N‘[w?])” {ts}ds (A.43)

(IN“J[we])" {f }dz + / (IN“J[we))" {E}ds

O NNONe

e

74

Since w¢ is arbitrary, it can be omitted from the above equation, that is

A [(BT DB e [0 =" [(N f)de o+ " [" (E)ds

GQNﬂé?Qe
AT [N)ds (A4d)
80\ N

In essence, eq. (A.44) represents the n X n system of linear equations

[K*|[v°] = [P*] + [P})] (A.45)
where

Ke| = / (B D[B|d (A.46)

P = [N [(N (Eds (A47)

00 Ny NONE
)= [N (A9
99\ N

The vector [Pj] represents the force vector between the element e and its adjacent elements
and does not need to be calculated since it cancels out when adding all element contributions
to form the global system of equations

[K][v] = [P] (A.49)
The solution of the above linear system will eventually yield the coefficients for the approximate
displacement field uy,.

A.6 Special case: Plane Stress Problems - implementation

In this section, we will discuss about plane stress problems, which are special cases of
3D-elasticity, where the dimension of the structure along one direction (say the z-axis) is
considerable smaller than the other two. Also, the loads are all in the z — y plane. The
displacement field has components u(x,y) in the z-direction (horizontal) and v(x,y) in
y-direction (vertical).

In this case, the strain and stress vectors are:

€r o
let=1¢ |, {ot=|0y (A.50)
Vay Tay

__ Ou _ Ov 6u v
where, €, = 2%, €, =5 Yoy = 5, T oo

Strains and stresses are related using the following equation:

€ 1 1 v 0 o
v | =% | 1 0 = |0y, (A.51)
Vay 0 0 2(1+4vw) Tay

or

Oz E 1 v 0 €x
oy =1z |V I 0] =]g¢ (A.52)
Tu’Cy v 0 O 1_TV ’ny
that is, {o} = E{e}, with E being the elasticity matrix.
P q
o F
ql. "I, U‘ txv
O 1 Ox _._-- -8
e — [
(o) ;
;‘: Y ¥ L
y il I
A H
4 g | M < (8)
.
tF

§9)

Figure A.1: Some examples of plane stress problems (from the book ’Analysis of Structures with the Finite

Element Method’ by M. Papadrakakis)

A.6.1 Quadrilateral plane stress finite elements
In this subsection, we discuss the technology of plane stress quadrilateral elements (quads).

[y Y,V

u‘, U-i US’ U3
& o]
4 3
2b I e e - x:l u
i
]
1 : 2
[. -
u, v, ' Uy U,
| |
23. |

Figure A.2: Quadrilateral plane stress element (from the book ’Analysis of Structures with the Finite Element

Method’ by M. Papadrakakis)

We assume that the displacement field inside the finite element has horizontal u and

vertical v components given by:

76

U =] + 0T + 3y + Ty

V= a5 + g + a7y + agxTy
The above equation can also be written as:

aq
&%)
a3
ul |1 2y zy 0 0 0 O Oy
vl (00 0 0 1 z vy zy| |as
Qg
a7
(Y8

(A.53)

(A.54)

In fig. A.2 we see that at each node ¢ of the 4 nodes of the element we have two
displacements, namely, u;, v;. These are called degrees of freedom, or dofs for short, and
we can associate the unknown parameters {ay, ..., ag} with the dofs {uy,vq, ..., ug, v4}, as

or,

{d} = [Al{a}

which gives

{a} = [A] {d}

Inserting the above relation in eq. (A.54) we get

Wl syt o

which, after some algebra becomes:

_|Ni N Ns Ny O 0 0 O
{“}—{0 0 0 0 N, Ny Ny Nj{d}

with N;, i =1, ..., 4 being the shape functions given by:

7

[uq] 1 —a —b ab 0 0 O 07 Ty
U1 0 0 0 0 1 —a —b ab o7
Us 1 a —-b —ab 0 0 O 0 Qs
val |10 0 O 0 1 a —-b —ab| |y
us| |1 a b ab 0O 0 O 0 Qs
U3 0 0 0 0O 1 a b ab Qg
Uy 1 —a b —ab 0 0 O 0 lo7%e

| V4] 0 0 0 0 1 —a b —ab] |Log]

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

N =30+ 50

1 T Y
N3 = 1_1(5)(g)
Ny=30- 50+ Y

We are in a position now, where we can evaluate the derivatives of the displacements and
obtain a formula for the strain vector.

ou

P Nizuy + No g + N3 gug + Ny puy

v

(9_y = Nl,yvl + NQ,y'UZ + N37yU3 + N47y214

ou Ov

a—y + % = NLyul + Nl,zvl + NgvaQ + N27$U2 + N37yU3 + Ngﬁx’l)g + N47yU4 + N4,$U4 (AGO)

or, using matrix notation:

Uy

U1

Uz

U g Nl,a: 0]\/v27;B 0]\737;76 0 N4’$ 0

{eb=1] vy, [=]0 Ny 0 Ny 0 Ny 0 Nyl |7 (A.61)

u,y+v,m Nl,y Nl,x NQ,y NQ,x N3,y N3,x N4,y N4,:c ’Ug?:

Uy

L V4]

or,

{e} = B{d} (A.62)

with B called the deformation matrix and its entries are:

1 y—2>b 0 —y+b 0 y+0b 0 —y—b 0
= 10 0 z—a 0 —r—a 0 z+4+a 0 —r+a (A.63)
Wlr—a y—b —x—a —y+b z+a y+b —x+a —y—0b

B

Finally, we can now compute the elements stiffness matrix that relates the external forces
at the nodes of the element with the displacements expressed by the element’s dofs. This is
given by the following equation:

k= / BTEBJAV,
VE

y:

y—

b r=a
=t / BTEBdxdy (A.64)
b =—a

78

with ¢ being the thickness of the element in the z-direction.

The result of integration will give

[4r—! +4pr
w
—4r71 4+ 2pr
o Bt —\
T12(1—w?) |27t = 2pr
—p
2r~t — 4pr
L
where, r = ¢, p =

1

4r 4+ 4pr—
A 4r=1 + 4pr

2r — 4pr—! —u 47 4+ 4pr~!
— i 2r=! —dpr A

—2r —2pr~ 1 - —4r +2pr~1
—A —2r7t —2pr n

—4r +2pr~ 1 m —2r —2pr~ 1

2

4r7t 4 4pr
m dr 4+ 4pr~t
—4r~t 4+ 2pr A 4=t + 4pr
= 2r — dpr~! — i
(A.65)

A.6.2 Structure discretization and global system of equations

In this section, we will consider a simple plane stress problem in order to demonstrate the
process of obtaining the global system of equations KU = F'...

A.7 Additional literature

79

4r +4pr~ |

1

