
3.6: Applied Optimization Problems
In Section 3.3 we learned about extreme values -- the largest and smallest values a function attains on an
interval. We motivated our interest in such values by discussing how it made sense to want to know the
highest/lowest values of a stock or the fastest/slowest an object was moving. In this section, we apply the
concepts of extreme values to solve "word problems," i.e., problems stated in terms of situations that require
us to create the appropriate mathematical framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic of optimization.

Solving Optimization Problems over a Closed, Bounded Interval

Example : Optimization: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create a rectangular enclosure
for his dog with the fencing that provides the maximal area. What dimensions provide the maximal
area?

Solution

One can likely guess the correct answer -- that is great. We will proceed to show how calculus can
provide this answer in a context that proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice in Figure , either with
green grass and nice fence boards or as a simple rectangle. Either way, drawing a rectangle forces us to
realize that we need to know the dimensions of this rectangle so we can create an area function -- after
all, we are trying to maximize the area.

Figure : A sketch of the enclosure in Example .

We let  and  denote the lengths of the sides of the rectangle. Clearly,

We do not yet know how to handle functions with 2 variables; we need to reduce this down to a single
variable. We know more about the situation: the man has 100 feet of fencing. By knowing the perimeter of
the rectangle must be 100, we can create another equation:

We now have 2 equations and 2 unknowns. In the latter equation, we solve for :
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Area = xy. (3.6.1)

Perimeter = 100 = 2x + 2y. (3.6.2)
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y = 50 − x. (3.6.3)



Now substitute this expression for  in the area equation:

Note we now have an equation of one variable; we can truly call the Area a function of .

This function only makes sense when , otherwise we get negative values of area. So we find the
extreme values of  on the interval .

To find the critical points, we take the derivative of  and set it equal to 0, then solve for .

We solve  to find ; this is the only critical point. We evaluate  at the endpoints of our
interval and at this critical point to find the extreme values; in this case, all we care about is the maximum.

Clearly  and , whereas . This is the maximum. Since we earlier found 
, we find that  is also . Thus the dimensions of the rectangular enclosure with perimeter of

100 ft. with maximum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people create a design then buy fencing
to meet their needs, and not buy fencing and plan later.) But it models well the necessary process: create
equations that describe a situation, reduce an equation to a single variable, then find the needed extreme
value.

"In real life," problems are much more complex. The equations are often not reducible to a single variable
(hence multi--variable calculus is needed) and the equations themselves may be difficult to form.
Understanding the principles here will provide a good foundation for the mathematics you will likely
encounter later.

We outline here the basic process of solving these optimization problems.

Key Idea 6: Solving Optimization Problems
1. Understand the problem. Clearly identify what quantity is to be maximized or minimized. Make a

sketch if helpful.
2. Create equations relevant to the context of the problem, using the information given. (One of these

should describe the quantity to be optimized. We'll call this the fundamental equation.)
3. If the fundamental equation defines the quantity to be optimized as a function of more than one

variable, reduce it to a single variable function using substitutions derived from the other equations.
4. Identify the domain of this function, keeping in mind the context of the problem.
5. Find the extreme values of this function on the determined domain.
6. Identify the values of all relevant quantities of the problem.

We will use Key Idea 6 in a variety of examples.

Example : Optimization: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a small dog, and a large
yard that contains a stream (that is mostly straight). She wants to create a rectangular enclosure with
maximal area that uses the stream as one side. (Apparently, her dog won't swim away.) What
dimensions provide the maximal area?

Solution

We will follow the steps outlined by Key Idea 6.

1. We are maximizing area. A sketch of the region will help; Figure  gives two sketches of the
proposed enclosed area. A key feature of the sketches is to acknowledge that one side is not fenced.

y

Area = A(x) = x(50 − x). (3.6.4)
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Figure : A sketch of the enclosure in Example .
2. We want to maximize the area; as in the example before, \[\text{Area} = xy.\[ This is our

fundamental equation. This defines area as a function of two variables, so we need another equation
to reduce it to one variable.  
We again appeal to the perimeter; here the perimeter is \[\text{Perimeter} = 100 = x+2y.\[ Note how
this is different than in our previous example.

3. We now reduce the fundamental equation to a single variable. In the perimeter equation, solve for :
. We can now write Area as \[\text{Area} = A(x) = x(50-x/2) = 50x - \frac12x^2.\[

Area is now defined as a function of one variable.
4. We want the area to be nonnegative. Since , we want  and .

The latter inequality implies that , so .
5. We now find the extreme values. At the endpoints, the minimum is found, giving an area of 0. 

Find the critical points. We have ; setting this equal to 0 and solving for  returns 
. This gives an area of \[A(50) = 50(25) = 1250.\[

0 0

50 (50)(25)

100 0

2. We earlier set ; thus . Thus our rectangle will have two sides of length 25 and
one side of length 50, with a total area of 1250 ft .

Keep in mind as we do these problems that we are practicing a process; that is, we are learning to turn a
situation into a system of equations. These equations allow us to write a certain quantity as a function of one
variable, which we then optimize.

Example : Optimization: minimizing cost
A power line needs to be run from a power station located on the beach to an offshore facility. Figure 

 shows the distances between the power station to the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a power line under water. How
much of the power line should be run along the land to minimize the overall cost? What is the minimal
cost?
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Figure : Running a power line from the power station to an offshore facility with minimal cost in
Example 

Solution

We will follow the strategy of Key Idea 6 implicitly, without specifically numbering steps.

There are two immediate solutions that we could consider, each of which we will reject through
"common sense." First, we could minimize the distance by directly connecting the two locations with a
straight line. However, this requires that all the wire be laid underwater, the most costly option.
Second, we could minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having the longest distance of
all, probably ensuring a non--minimal cost.

The optimal solution likely has the line being run along the ground for a while, then underwater, as the
figure implies. We need to label our unknown distances -- the distance run along the ground and the
distance run underwater. Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure .

Figure : Labeling unknown distances in Example .

By choosing  as we did, we make the expression under the square root simple. We now create the cost
function.

So we have . This function only makes sense on the interval 
. While we are fairly certain the endpoints will not give a minimal cost, we still evaluate  at

each to verify.

We now find the critical values of . We compute  as

Recognize that this is never undefined. Setting  and solving for , we have:
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Evaluating  at  gives a cost of about $370,000. The distance the power line is laid along
land is  ft., and the underwater distance is  ft.

An open-top box is to be made from a  in. by  in. the piece of cardboard by removing a square
from each corner of the box and folding up the flaps on each side. What size square should be cut out of
each corner to get a box with the maximum volume?

Solution

Step 1: Let  be the side length of the square to be removed from each corner (Figure ). Then, the
remaining four flaps can be folded up to form an open-top box. Let  be the volume of the resulting
box.

Figure : A square with side length x inches is removed from each corner of the piece of cardboard.
The remaining flaps are folded to form an open-top box.

Step 2: We are trying to maximize the volume of a box. Therefore, the problem is to maximize .

Step 3: As mentioned in step , are trying to maximize the volume of a box. The volume of a box is

where and  are the length, width, and height, respectively.

Step 4: From Figure , we see that the height of the box is  inches, the length is  inches, and
the width is  inches. Therefore, the volume of the box is
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c(x) x = 416.67

5000 − 416.67 = 4583.33 ≈ 1083+416.672 10002− −−−−−−−−−−−−√

Example : Maximizing the Volume of a Box3.6.4
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Step 5: To determine the domain of consideration, let’s examine Figure . Certainly, we need 
Furthermore, the side length of the square cannot be greater than or equal to half the length of the
shorter side,  in.; otherwise, one of the flaps would be completely cut off. Therefore, we are trying to
determine whether there is a maximum volume of the box for  over the open interval  Since 
is a continuous function over the closed interval , we know  will have an absolute maximum
over the closed interval. Therefore, we consider  over the closed interval  and check whether the
absolute maximum occurs at an interior point.

Step 6: Since  is a continuous function over the closed, bounded interval  must have an
absolute maximum (and an absolute minimum). Since  at the endpoints and  for 

 the maximum must occur at a critical point. The derivative is

To find the critical points, we need to solve the equation

Dividing both sides of this equation by , the problem simplifies to solving the equation

Using the quadratic formula, we find that the critical points are

Since  is not in the domain of consideration, the only critical point we need to consider is 
. Therefore, the volume is maximized if we let  The maximum volume is

as shown in the following graph.

Figure : Maximizing the volume of the box leads to finding the maximum value of a cubic
polynomial.

Watch a video about optimizing the volume of a box.

Suppose the dimensions of the cardboard in Example  are 20 in. by 30 in. Let  be the side length
of each square and write the volume of the open-top box as a function of . Determine the domain of
consideration for .
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Hint
The volume of the box is 

Answer

 The domain is .

An island is  due north of its closest point along a straight shoreline. A visitor is staying at a cabin
on the shore that is  west of that point. The visitor is planning to go from the cabin to the island.
Suppose the visitor runs at a rate of  and swims at a rate of . How far should the visitor run
before swimming to minimize the time it takes to reach the island?

Solution

Step 1: Let  be the distance running and let  be the distance swimming (Figure ). Let  be the
time it takes to get from the cabin to the island.

Figure : How can we choose  and y to minimize the travel time from the cabin to the island?

Step 2: The problem is to minimize .

Step 3: To find the time spent traveling from the cabin to the island, add the time spent running and the
time spent swimming. Since Distance = Rate × Time  the time spent running is

,

and the time spent swimming is

.

Therefore, the total time spent traveling is

.

Step 4: From Figure , the line segment of  miles forms the hypotenuse of a right triangle with legs
of length  and . Therefore, by the Pythagorean theorem, , and we obtain 

. Thus, the total time spent traveling is given by the function

.

Step 5: From Figure , we see that . Therefore,  is the domain of consideration.

Step 6: Since  is a continuous function over a closed, bounded interval, it has a maximum and a
minimum. Let’s begin by looking for any critical points of  over the interval  The derivative is

L ⋅ W ⋅ H.

V (x) = x(20 − 2x)(30 − 2x). [0, 10]

Example : Minimizing Travel Time3.6.5
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If , then

Therefore,

Squaring both sides of this equation, we see that if  satisfies this equation, then  must satisfy

which implies

We conclude that if  is a critical point, then  satisfies

Therefore, the possibilities for critical points are

Since  is not in the domain, it is not a possibility for a critical point. On the other hand, 
 is in the domain. Since we squared both sides of Equation to arrive at the possible

critical points, it remains to verify that  satisfies Equation. Since  does
satisfy that equation, we conclude that  is a critical point, and it is the only one. To
justify that the time is minimized for this value of x, we just need to check the values of  at the
endpoints  and , and compare them with the value of  at the critical point 

. We find that  and , whereas

Therefore, we conclude that  has a local minimum at .

Suppose the island is  from shore, and the distance from the cabin to the point on the shore closest
to the island is . Suppose a visitor swims at the rate of  and runs at a rate of . Let 
denote the distance the visitor will run before swimming, and find a function for the time it takes the
visitor to get from the cabin to the island.

Hint
The time 

Answer
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In business, companies are interested in maximizing revenue. In the following example, we consider a
scenario in which a company has collected data on how many cars it is able to lease, depending on the price
it charges its customers to rent a car. Let’s use these data to determine the price the company should charge
to maximize the amount of money it brings in.

Owners of a car rental company have determined that if they charge customers  dollars per day to rent
a car, where , the number of cars  they rent per day can be modeled by the linear
function . If they charge  per day or less, they will rent all their cars. If they charge

 per day or more, they will not rent any cars. Assuming the owners plan to charge customers
between  per day and  per day to rent a car, how much should they charge to maximize their
revenue?

Solution

Step 1: Let  be the price charged per car per day and let n be the number of cars rented per day. Let 
be the revenue per day.

Step 2: The problem is to maximize 

Step 3: The revenue (per day) is equal to the number of cars rented per day times the price charged per
car per day—that is, 

Step 4: Since the number of cars rented per day is modeled by the linear function  the
revenue  can be represented by the function

Step 5: Since the owners plan to charge between  per car per day and  per car per day, the
problem is to find the maximum revenue  for  in the closed interval .

Step 6: Since  is a continuous function over the closed, bounded interval , it has an absolute
maximum (and an absolute minimum) in that interval. To find the maximum value, look for critical
points. The derivative is  Therefore, the critical point is  When 

 When . When .

Therefore, the absolute maximum occurs at . The car rental company should charge  per
day per car to maximize revenue as shown in the following figure.

Figure : To maximize revenue, a car rental company has to balance the price of a rental against the
number of cars people will rent at that price.

A car rental company charges its customers  dollars per day, where . It has found that
the number of cars rented per day can be modeled by the linear function  How much
should the company charge each customer to maximize revenue?

Example : Maximizing Revenue3.6.6
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n(p) = 750 − 5p.



Hint
 where  is the number of cars rented and  is the price charged per car.

Answer

The company should charge  per car per day.

A rectangle is to be inscribed in the ellipse

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Solution

Step 1: For a rectangle to be inscribed in the ellipse, the sides of the rectangle must be parallel to the
axes. Let  be the length of the rectangle and  be its width. Let  be the area of the rectangle.

Figure : We want to maximize the area of a rectangle inscribed in an ellipse.

Step 2: The problem is to maximize .

Step 3: The area of the rectangle is 

Step 4: Let  be the corner of the rectangle that lies in the first quadrant, as shown in Figure .

We can write length  and width . Since  and , we have .

Therefore, the area is

Step 5: From Figure , we see that to inscribe a rectangle in the ellipse, the -coordinate of the
corner in the first quadrant must satisfy . Therefore, the problem reduces to looking for the
maximum value of  over the open interval . Since  will have an absolute maximum (and
absolute minimum) over the closed interval , we consider  over the interval 

. If the absolute maximum occurs at an interior point, then we have found an absolute maximum
in the open interval.

Step 6: As mentioned earlier,  is a continuous function over the closed, bounded interval .
Therefore, it has an absolute maximum (and absolute minimum). At the endpoints  and 

 For .

Therefore, the maximum must occur at a critical point. Taking the derivative of , we obtain

R(p) = n × p, n p

$75

Example : Maximizing the Area of an Inscribed Rectangle3.6.7
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To find critical points, we need to find where  We can see that if  is a solution of

,

then  must satisfy

Therefore,  Thus,  are the possible solutions of Equation. Since we are considering 
over the interval ,  is a possibility for a critical point, but  is not. Therefore, we
check whether  is a solution of Equation. Since  is a solution of Equation , we conclude
that  is the only critical point of  in the interval .

Therefore,  must have an absolute maximum at the critical point . To determine the
dimensions of the rectangle, we need to find the length  and the width . If  then

Therefore, the dimensions of the rectangle are  and . The area of

this rectangle is

Modify the area function  if the rectangle is to be inscribed in the unit circle . What is the
domain of consideration?

Hint
If  is the vertex of the square that lies in the first quadrant, then the area of the square is 

Answer

 The domain of consideration is .

Solving Optimization Problems when the Interval Is Not Closed or Is Unbounded
In the previous examples, we considered functions on closed, bounded domains. Consequently, by the
extreme value theorem, we were guaranteed that the functions had absolute extrema. Let’s now consider
functions for which the domain is neither closed nor bounded.

Many functions still have at least one absolute extrema, even if the domain is not closed or the domain is
unbounded. For example, the function  over  has an absolute minimum of  at 

. Therefore, we can still consider functions over unbounded domains or open intervals and determine
whether they have any absolute extrema. In the next example, we try to minimize a function over an
unbounded domain. We will see that, although the domain of consideration is  the function has an
absolute minimum.

(x)A′ = 2 + 2x ⋅ (−2x)4 − x2− −−−−√ 1

2 4 − x2− −−−−√

= 2 −4 − x2− −−−−√ 2x2

4 − x2− −−−−√

= .
8 − 4x2

4 − x2− −−−−√

(x) = 0.A′ x

= 0
8 − 4x2

4 − x2− −−−−√

x

8 − 4 = 0.x2 (3.6.20)
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Exercise 3.6.5
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f(x) = + 4x2 (−∞, ∞) 4
x = 0

(0, ∞),



In the following example, we look at constructing a box of least surface area with a prescribed volume. It is
not difficult to show that for a closed-top box, by symmetry, among all boxes with a specified volume, a
cube will have the smallest surface area. Consequently, we consider the modified problem of determining
which open-topped box with a specified volume has the smallest surface area.

A rectangular box with a square base, an open top, and a volume of  is to be constructed. What
should the dimensions of the box be to minimize the surface area of the box? What is the minimum
surface area?

Solution

Step 1: Draw a rectangular box and introduce the variable  to represent the length of each side of the
square base; let  represent the height of the box. Let  denote the surface area of the open-top box.

Figure : We want to minimize the surface area of a square-based box with a given volume.

Step 2: We need to minimize the surface area. Therefore, we need to minimize .

Step 3: Since the box has an open top, we need only determine the area of the four vertical sides and the
base. The area of each of the four vertical sides is  The area of the base is . Therefore, the surface
area of the box is

.

Step 4: Since the volume of this box is  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the surface area as a

function of  only:

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the
other hand,  is allowed to have any positive value. Note that as  becomes large, the height of the box 

 becomes correspondingly small so that . Similarly, as  becomes small, the height of the
box becomes correspondingly large. We conclude that the domain is the open, unbounded interval 

. Note that, unlike the previous examples, we cannot reduce our problem to looking for an
absolute maximum or absolute minimum over a closed, bounded interval. However, in the next step,
we discover why this function must have an absolute minimum over the interval 

Step 6: Note that as  Also, as . Since  is a continuous function
that approaches infinity at the ends, it must have an absolute minimum at some . This
minimum must occur at a critical point of . The derivative is

Therefore,  when . Solving this equation for , we obtain , so 

 Since this is the only critical point of , the absolute minimum must occur at 

Example : Minimizing Surface Area3.6.8
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 (see Figure ).

When , . Therefore, the dimensions of the box should be 

and  With these dimensions, the surface area is

Figure : We can use a graph to determine the dimensions of a box of given the volume and the
minimum surface area.

Consider the same open-top box, which is to have volume . Suppose the cost of the material for
the base is  and the cost of the material for the sides is  and we are trying to minimize
the cost of this box. Write the cost as a function of the side lengths of the base. (Let  be the side length
of the base and  be the height of the box.)

Hint

If the cost of one of the sides is  the cost of that side is 

Answer

 dollars

An open-topped cylindrical can is to have volume . The material for the bottom of the can costs
, for its curved side costs  Find the dimensions of the can that minimize the

cost of the can.

Solution

Step 1: Draw a cylindrical can and introduce the variable  to represent the radius of the circular base;
let  represent the height of the can. Let  denote the cost to produce a can.

Figure : We want to minimize the cost of the open-topped cylindrical can with a given volume

Step 2: Given: Volume of the can . We need to minimize the cost. Therefore, we need to
minimize .

x = 6 2
–√3 3.6.9
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Step 3: Since the can has an open top, we need only determine the cost to produce the bottom and the
cost to produce the side.

Figure : Surface area of the curved side and the area of the bottom

The surface area of the curved side is  The area of the bottom is . Therefore, the cost to produce
the can is

, with .

Step 4: Since the volume of this can  and the volume is given as , the constraint equation is

.

Solving the constraint equation for , we have . Therefore, we can write the cost as a function

of \ (r\) only:

.

Therefore, .

Step 5: Since we are requiring that , we cannot have . Therefore, we need . On the
other hand,  is allowed to have any positive value. Note that as  becomes large, the height of the can 

 becomes correspondingly small so that . Similarly, as  becomes small, the height of the
can becomes correspondingly large. We conclude that the domain is the open, unbounded interval 

. In the next step, we discover why this function must have an absolute minimum over the
interval 

Step 6: Note that as  Also, as . Since  is a continuous function
that approaches infinity at the ends, it must have an absolute minimum at some . This
minimum must occur at a critical point of . The derivative is

Therefore,  when . Solving this equation for , we obtain , so 

Since this is the only critical point of , the absolute minimum must occur at .

When , . Therefore, the dimensions of the can sho uld be  and 

.

With these dimensions, the cost is
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Pop cans to hold  ml are made in the shape of right circular cylinders. Find the dimensions of the
can that minimize the surface area.

Answer
Add answer text here and it will automatically be hidden if you have a "AutoNum" template active
on the page.

Find the point on the curve  that is closest to the point 

In the exercises, you will see a variety of situations that require you to combine problem--solving skills with
calculus. Focus on the process; learn how to form equations from situations that can be manipulated into
what you need. Eschew memorizing how to do "this kind of problem" as opposed to "that kind of problem."
Learning a process will benefit one far longer than memorizing a specific technique.

The next section introduces our final application of the derivative: differentials. Given , they offer a
method of approximating the change in  after  changes by a small amount.

Key Concepts
To solve an optimization problem, begin by drawing a picture and introducing variables.
Find an equation relating the variables.
Find a function of one variable to describe the quantity that is to be minimized or maximized.
Look for critical points to locate local extrema.

Glossary
optimization problems

problems that are solved by finding the maximum or minimum value of a function
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3.6E: Exercises

Exercise 
For the following exercises, answer by proof, counterexample, or explanation.

1) When you find the maximum for an optimization problem, why do you need to check the sign of the
derivative around the critical points?

Answer
The critical points can be the minima, maxima, or neither.

2) Why do you need to check the endpoints for optimization problems?

3) True or False. For every continuous nonlinear function, you can find the value xx that maximizes the
function.

Answer
False;  has a minimum only

4) True or False. For every continuous nonconstant function on a closed, finite domain, there exists at
least one xx that minimizes or maximizes the function

Exercise 
To carry a suitcase on an airplane, the length+width+height of the box must be less than or equal to
62in. Assuming the height is fixed, show that the maximum volume is 

What height allows you to have the largest volume?

Answer

Under Construction

Exercise 
You are constructing a cardboard box with the dimensions 2m by 4m. You then cut equal-size squares
from each corner so you may fold the edges. What are the dimensions of the box with the largest
volume?

Answer
Under Construction

Exercise 
Find the positive integer that minimizes the sum of the number and its reciprocal.

Answer

3.6E.1

y = −x2

3.6E.2

V = h(31 − (12)h)

3.6E.3

3.6E.4
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Exercise 
For the following exercises, consider the construction of a pen to enclose an area.

1) You have 400ft of fencing to construct a rectangular pen for cattle. What are the dimensions of the
pen that maximize the area?

Answer
100ft x 100ft

2) You have 800ft of fencing to make a pen for hogs. If you have a river on one side of your property,
what is the dimension of the rectangular pen that maximizes the area?

3) You need to construct a fence around an area of 1600ft. 1600ft. What are the dimensions of the
rectangular pen to minimize the amount of material needed?

Answer

40ft x 40ft

Exercise 
Two poles are connected by a wire that is also connected to the ground. The first pole is 20ft tall and the
second pole is 10ft tall. There is a distance of 30ft between the two poles. Where should the wire be
anchored to the ground to minimize the amount of wire needed?

Answer
Under Construction

Exercise 
You are moving into a new apartment and notice there is a corner where the hallway narrows from 8ft
to 6ft. What is the length of the longest item that can be carried horizontally around the corner?

3.6E.5

3.6E.6

3.6E.7



Answer
19.73 ft

Exercise 
1) A patient’s pulse measures 70bpm,80bpm, then 120bpm. To determine an accurate measurement of
pulse, the doctor wants to know what value minimizes the expression 

?

2) In the previous problem, assume the patient was nervous during the third measurement, so we only
weight that value half as much as the others. What is the value that minimizes 

?

Answer

84bpm

Exercise 
You can run at a speed of 66 mph and swim at a speed of 33 mph and are located on the shore, 44 miles
east of an island that is 11 mile north of the shoreline. How far should you run west to minimize the
time needed to reach the island?

Answer
Under Construction

Exercise 
For the following problems, consider a lifeguard at a circular pool with diameter 40m. He must reach
someone who is drowning on the exact opposite side of the pool, at position C. The lifeguard swims
with a speed v and runs around the pool at speed w=3v.

3.6E.8

(x− 70 + (x− 80 + (x− 120)2 )2 )2

(x− 70 + (x− 80 + 12(x− 120)2 )2 )2

3.6E.9

3.6E.10



1) Find a function that measures the total amount of time it takes to reach the drowning person as a
function of the swim angle, θ.

2) Find at what angle θ the lifeguard should swim to reach the drowning person in the least amount of
time.

Answer
Under Construction

Exercise 
For the following exercises, consider a limousine that gets at speed v, the
chauffeur costs $15/h, and gas is $3.5/gal.

1) Find the cost per mile at speed v.

2) Find the cheapest driving speed.

Answer

Approximately 34.02mph

Exercise 
For the following exercises, consider a pizzeria that sell pizzas for a revenue of  and costs 

, where x represents the number of pizzas.

1) Find the profit function for the number of pizzas. How many pizzas gives the largest profit per
pizza?

2) Assume that  and . How many pizzas sold maximizes the profit?

Answer
44

3) Assume that , and . How many pizzas sold maximizes the profit?

Exercise 
Consider a wire 4ft long cut into two pieces. One piece forms a circle with radius r and the other forms
a square of side x.

Choose x to maximize the sum of their areas.

Answer

Under Construction

Exercise 

3.6E.11

m(v) = (120 − 2v)5mi/gal

3.6E.12

R(x) = ax

C(x) = b+ cx+dx2

R(x) = 10x C(x) = 2x+x2

R(x) = 15x C(x) = 60 + 3x+ 12x2
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For the following exercises, consider two non-negative numbers x and y such that .
Maximize and minimize the quantities.

1) 

Answer

Maximal: ; minimal:  and 

2) 

3) 

Answer
Maximal: ; minimal: none

4) 

Exercise 
For the following exercises, draw the given optimization problem and solve.

1) Find the volume of the largest right circular cylinder that fits in a sphere of radius 11.

Answer
Under Construction

2) Find the volume of the largest right cone that fits in a sphere of radius 11.

3) Find the area of the largest rectangle that fits into the triangle with sides x=0,y=0 and 

Answer
Under Construction

4) Find the largest volume of a cylinder that fits into a cone that has base radius R and height h.

5) Find the dimensions of the closed cylinder volume V=16π that has the least amount of surface area.

Answer

r=2,h=4

6) Find the dimensions of a right cone with surface area S=4π that has the largest volume.

Exercise 
For the following exercises, consider the points on the given graphs. Use a calculator to graph the
functions.

1) Where is the line  closest to the origin?

Answer
(2,1)

2) Where is the line y=5−2x closest to point (1,1)?

3) Where is the parabola  closest to point (2,0)?

Answer

(0.8351,0.6974)

4) Where is the parabola  closest to point (0,3)?

x+y = 10

xy

x = 5,y = 5 x = 0,y = 10x = 0,y = 10 y = 0,x = 10y = 0,x = 10

x2y2

y− 1x

x = 1,y = 9

−yx2
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Exercise 
For the following exercises, set up, but do not evaluate, each optimization problem.

1) A window is composed of a semicircle placed on top of a rectangle. If you have 20ft of window-
framing materials for the outer frame, what is the maximum size of the window you can create? Use r
to represent the radius of the semicircle.

Answer

2) You have a garden row of 20 watermelon plants that produce an average of 30 watermelons apiece.
For any additional watermelon plants planted, the output per watermelon plant drops by one
watermelon. How many extra watermelon plants should you plant?

3) You are constructing a box for your cat to sleep in. The plush material for the square bottom of the
box costs  and the material for the sides costs . You need a box with volume . Find the
dimensions of the box that minimize cost. Use x to represent the length of the side of the box.

Answer

4) You are building five identical pens adjacent to each other with a total area of , as shown in
the following figure. What dimensions should you use to minimize the amount of fencing?

5) You are the manager of an apartment complex with 50 units. When you set rent at $800/month, all
apartments are rented. As you increase rent by $25/month, one fewer apartment is rented. Maintenance
costs run $50/month for each occupied unit. What is the rent that maximizes the total amount of profit?

Answer
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A = 20r − 2 − 12πr2 r2
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C(x) = 5 + 32xx2
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P (x) = (50 − x)(800 + 25x − 50)
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