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What is optimization?
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Economic Dispatch and Optimal Power Flow:
Short Introduction on the Board
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Economic Dispatch

subject to:
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min E ¢iPg,
i

ngm S PGi S P(Tzax
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Economic Dispatch

min E ¢iPg,
i

subject to:

> Pa, =Pp

How do you interpret these constraints for a 2-generator system on the
cartesian plane?

and

Let's visualise things!!!
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Let's visualise things!!!
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Graphical representation of the 2-generator
Economic Dispatch

Pg,
A
200 .................... Assumptions
c1 < Co
Pp =150 MW

0< Pg, <100 MW
0< Pg, <200 MW

100 Pg,
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DC-OPF

DC -> no reactive power, voltage magn. =1

min E ¢iPg,
i

subject to:
PE™ < P, < PG
and Power balance is
B-0=Pe—Pp
and node!!!

_(51 - 5]) S -Pij,maz
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Power balance is replaced by power balance on each node!!!

Ups Lowlander
DC -> no reactive power, voltage magn. =1


source: Boyd Stanford
courses:
EE364A: Convex Optimization | and

Mathematical optimization

(mathematical) optimization problem

minimize  fo(x)
subject to  fi(z) <b;, i=1,....m

e r = (x1,...,x,): optimization variables
e fo:R" — R: objective function

e f;:R" - R,i=1,...,m: constraint functions

solution or optimal point =* has smallest value of fy; among all vectors
that satisfy the constraints

Introduction
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Examples

portfolio optimization

e variables: amounts invested in different assets
e constraints: budget, max./min. investment per asset, minimum return

e objective: overall risk or return variance

device sizing in electronic circuits

e variables: device widths and lengths
e constraints: manufacturing limits, timing requirements, maximum area

e objective: power consumption

data fitting

e variables: model parameters
e constraints: prior information, parameter limits

e objective: measure of misfit or prediction error, plus regularization term

Introduction 1-3



Solving optimization problems

general optimization problem

e very difficult to solve

e methods involve some compromise, e.g., very long computation time, or
not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

e |east-squares problems
e linear programming problems

e convex optimization problems

Introduction 1-4



Least-squares

‘ ‘ Al’ . b ‘ ‘ 2 You might have seen this as y=px and we are looking for the
2 slope p. Here the slope is x so do not get confused!!!

minimize

solving least-squares problems

setting derivative equal to zero as we look for the minimum!

e analytical solution: a* = (AT A)~1ATp ore=0rT0r6Tx
e reliable and efficient algorithms and software
e computation time proportional to n2k (A € R**™); less if structured

e a mature technology

using least-squares

e least-squares problems are easy to recognize

e a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)

Introduction 1-5
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You might have seen this as y=px and we are looking for the slope p. Here the slope is x so do not get confused!!!

Ups Lowlander
or p = (y^T x) / (x^T x)

Ups Lowlander
setting derivative equal to zero as we look for the minimum!


Linear programming

minimize ¢!z

subject to alx <b;, i=1,...,m
solving linear programs

e no analytical formula for solution
e reliable and efficient algorithms and software &g Simplex
e computation time proportional to n?m if m > n; less with structure

e a mature technology

using linear programming
e not as easy to recognize as least-squares problems

e a few standard tricks used to convert problems into linear programs
(e.g., problems involving ¢1- or {,-norms, piecewise-linear functions)

Introduction
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Convex optimization problem

minimize  fo(z)
subject to  fi(z) <b;, i=1,....m

e objective and constraint functions are convex:

filax + By) < afi(z) + Bfi(y)
fa+8=1a>0 6>0

e includes least-squares problems and linear programs as special cases

Introduction
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solving convex optimization problems

e no analytical solution
e reliable and efficient algorithms

e computation time (roughly) proportional to max{n?, n*m, F'}, where F
is cost of evaluating f;'s and their first and second derivatives

e almost a technology

using convex optimization

e often difficult to recognize
e many tricks for transforming problems into convex form

e surprisingly many problems can be solved via convex optimization

Introduction
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Example

m lamps illuminating n (small, flat) patches

lamp power p;

illumination I
intensity Ij, at patch k depends linearly on lamp powers p;:

m
—2
I, = E akiDj, ax;j = rp,; max{cosfy;,0}
J=1

problem: achieve desired illumination I4es with bounded lamp powers

minimize  maxg—1_. p |log I — log I
subjectto 0<p; <pmax, J=1,...,m

Introduction



how to solve?

1.
2.

of course these are approximate (suboptimal) ‘solutions’

use uniform power: p; = p, vary p

use least-squares:

round p; if pj > Pmax or p; < 0

. use weighted least-squares:

minimize Zzzl(lk — Ides)2 + Z;n:l wj(pj - pmax/2)2

iteratively adjust weights w; until 0 < p; < prax
use linear programming:

minimize  maxp—=1_ . |[{x — Ldes|

subjectto 0<p; <pmax, J=1,...,m

which can be solved via linear programming

Introduction
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5. use convex optimization: problem is equivalent to

minimize  fo(p) = maxg=1,. n h(Ix/Ides)
subjectto 0<p; <pmax, J=1,...,m

with h(u) = max{u,1/u}

5

fo 1s convex because maximum of convex functions is convex

exact solution obtained with effort ~ modest factor x least-squares effort

Introduction
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps ri<=05sump.i

2. no more than half of the lamps are on (p; > ()  uneedbinaries for that

e answer: with (1), still easy to solve; with (2), extremely difficult

e moral: (untrained) intuition doesn't always work; without the proper
background very easy problems can appear quite similar to very difficult
problems

Introduction 1-12
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u need binaries for that!

Ups Lowlander
p_i <= 0.5 sum p_i


Stochastic programming

e stochastic programming

e 'certainty equivalent’ problem

e violation/shortfall constraints and penalties
e Monte Carlo sampling methods

e validation

sources: Nemirovsky & Shapiro

EE364A — Stochastic Programming
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Stochastic programming

e objective and constraint functions f;(x,w) depend on optimization
variable x and a random variable w

e w models

— parameter variation and uncertainty
— random variation in implementation, manufacture, operation

e value of w is not known, but its distribution is

e goal: choose = so that

— constraints are satisfied on average, or with high probability
— objective is small on average, or with high probability

EE364A — Stochastic Programming
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Stochastic programming

e basic stochastic programming problem:

minimize  Fy(x) = E fo(z,w)
subject to Fi(z) =E fi(z,w) <0, i=1,....,m

— variable is x

— problem data are f;, distribution of w
o if fi(x,w) are convex in x for each w

— F; are convex

— hence stochastic programming problem is convex

e F; have analytical expressions in only a few cases;
in other cases we will solve the problem approximately

It's not easy to ga

EE364A — Stochastic Programming


Ups Lowlander
It's not easy to go from the distributin of omega to the distribution of Fo, or Fi


Example with analytic form for F;
o f(z)=|Ax — b||%, with A, b random
o '(z) =E f(x) = 2 Px — 2¢q"x + r, where

P=E(ATA), ¢=EA"), r=E(]3)

e only need second moments of (A,b)

e stochastic constraint E f(x) < 0 can be expressed as standard
qu ad I’atiC | nequa | Ity remember? because it is a square...

EE364A — Stochastic Programming
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remember? because it is a square...


‘Certainty-equivalent’ problem

e ‘certainty-equivalent’ (a.k.a. ‘mean field’) problem:

minimize  fo(z, Ew)
subject to  fi(z,Ew) <0, 1=1,...,m

e roughly speaking: ignore parameter variation

e if f; convex in w for each z, then

- fi(z,Ew) < E fi(z,w)
— so optimal value of certainty-equivalent problem is lower bound on
optimal value of stochastic problem

EE364A — Stochastic Programming
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Solving stochastic programming problems

e analytical solution in special cases, e.g., when expectations can be
found analytically

— w enters quadratically in f;
— w takes on finitely many values

e general case: approximate solution via (Monte Carlo) sampling

Run Monte Carlo -> Make scenarios -> run d¢

EE364A — Stochastic Programming


Ups Lowlander
Run Monte Carlo -> Make scenarios -> run deterministic opt. for each scenario


Monte Carlo sampling method

e a general method for (approximately) solving stochastic programming
problem

e generate N samples (realizations) wy,...,wy, with associated
probabilities 71, ..., mx (usually 7; = 1/N)

Here, is the case where we seek to minimize the
average of all scenarios. This is not the only case! You
can have robust, or chance-constrainded, etc!

e form sample average approximations

N
Fy(z) = ijfi(a:,wj), i=0,...,m
j=1

e these are RVs (via wy,...,wy) with mean E f;(z,w) = F;(x)

EE364A — Stochastic Programming
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Here, is the case where we seek to minimize the average of all scenarios. This is not the only case! You can have robust, or chance-constrainded, etc!


e now solve finite event problem

minimize  Fy(x)
subject to F;(z) <0, i=1,...,m

e solution z7 .. and optimal value Fy(x} ..) are random variables

(hopefully close to * and p*, optimal value of original problem)

e theory says

— (with some technical conditions) as N — oo, x% .. — x*
= EFo(2],e) < p°

EE364A — Stochastic Programming
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Out-of-sample validation

e a practical method to check if N is ‘large enough’

e use a second set of samples (‘validation set’) w{?, ... w¥¥, with
probabilities 772, ... w3 (usually M > N)

(original set of samples called ‘training set’)

® eva | u ate use your solution form before to see if it works with real data

val val Val -
F T2 s gﬂ' filxl s wi™), 1=0,....m

A

o if [}(x Fval( our confidence that =}, .. ~ x* is enhanced

mcs) mcs)

e if not, increase N and re-compute 77, .

EE364A — Stochastic Programming
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Ups Lowlander
use your solution form before to see if it works with real data

Ups Lowlander



Example

e we consider problem

minimize  Fy(x) = Emax,;(Ax + b);
subject to Fi(x) = Emax;(Cx +d); <0

with optimization variable x € R"

AER™™ beR™, CeR"™, decR" are random
e we consider instance with n =10, m =20, k=5
e certainty-equivalent optimal value yields lower bound 19.1
e we use Monte Carlo sampling with N = 10, 100, 1000

e validation set uses M = 10000

EE364A — Stochastic Programming
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N =10 | N =100 | N =1000
Fy (training) 51.8 54.0 55.4
Fy (validation) 56.0 54.8 55.2
Fy (training) 0 0 0
Fy (validation) 1.3 0.7 —0.03

we conclude:

e N =10 is too few samples

e N = 100 is better, but not enough

e N = 1000 is probably fine

EE364A — Stochastic Programming
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Robust Optimization

e definitions of robust optimization
e robust linear programs
e robust cone programs

e chance constraints

EE364b, Stanford University
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Robust optimization
convex objective fy : R" — R, uncertainty set U, and f; : R" xU — R,

x — fi(x,u) convex for all u € U
general form
minimize fo(x)
subject to fi(z,u) <Oforalluel,i=1,...,m.
equivalent to
minimize fo(x)

subject to sup fi(z,u) <0,i=1,...,m.
ueU

We want the max of the constraint reali:

e Bertsimas, Ben-Tal, EI-Ghaoui, Nemirovski (1990s—now)

EE364b, Stanford University
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We want the max of the constraint realization to be within limits!


Setting up robust problem

if we want the same for the objective function we do:
e can always replace objective fy with sup, ¢, fo(z,u), rewrite in
epigraph form to
minimize t
subject to sup fo(x,u) < t,sup fi(x,u) <0, i=1,...,m
u u

e equality constraints make no sense: a robust equality a’ (z + u) = b for
all w e U?

three questions:

e is robust formulation useful?
e is robust formulation computable?

e how should we choose U7

EE364b, Stanford University 2
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if we want the same for the objective function we do:


Chance constrained optimization

e chance constraints and percentile optimization
e chance constraints for log-concave distributions

e convex approximation of chance constraints

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro

EE364A — Chance Constrained Optimization



Chance constraints and percentile optimization

e ‘chance constraints’ (7 is ‘confidence level’):
Prob(f;(z,w) <0) > 17

— convex in some cases (later)
— generally interested in n = 0.9, 0.95, 0.99
— 1 = 0.999 meaningless (unless you're sure about the distribution tails)

e percentile optimization (7 is ‘n-percentile’):
How to do the same for the objective function!
minimize 7y

subject to Prob(fy(z,w) <~v)>n

— convex or quasi-convex in some cases (later)

EE364A — Chance Constrained Optimization 2
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Ups Lowlander
How to do the same for the objective function!


Value-at-risk and conditional value-at-risk

e value-at-risk of random variable z, at level n:
VaR(z;n) = inf{y | Prob(z <~) > n}

— chance constraint Prob(f;(z,w) < 0) > n same as
VaR(fZ (.CC CU) . 77) < O Gamma: i timi tis sunartiseis f_i gia tin opoia to h% twn allwn timwn ein
Y ) —

In other words, VaR is the worst case within the 95% percentile

Sto stoch. optimization mas noiazei giati mporoume na fixarounr
me to x!

e conditional value-at-risk:
or Expected Shortfall -> what happens to f_i beyond ¢

CVaR(zn) = inf (5 +1/(1 —n) E(z = §)+)

— CVaR(z;n) > VaR(z;n) (more on this later)

EE364A — Chance Constrained Optimization


Ups Lowlander
or Expected Shortfall -> what happens to f_i beyond gamma (at the tails!) -> it is sort of the weighted average of what happens there!

Ups Lowlander
In other words, VaR is the worst case within the 95% percentile

Ups Lowlander
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Gamma: i timi tis sunartiseis f_i gia tin opoia to h% twn allwn timwn einai mikroteres tis 

Ups Lowlander
Sto stoch. optimization mas noiazei giati mporoume na fixaroume to gamma kai na paiksoume me to x!


Model Predictive Control

linear convex optimal control
finite horizon approximation
model predictive control

fast MPC implementations

supply chain management

Prof. S. Boyd, EE364b, Stanford University
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Model predictive control (MPC)

Provlima elegxou pou exei mesa ena provlima veltistopoiisis

at each time t solve the (planning) problem

X: state variable

minimize Zt_|_T E(:C(T% ’U,(T)) u: decision variable

T=t

subject to ()EL{ x()EX, T=t,...,t+T
x(t+1)=Ax(t)+ Bu(r), 7=t,...,t4+T -1
z(t+7T)=0

with variables x(t 4+ 1),...,x(t +T), u(t),...,u(t+ T — 1)
and data z(t), A, B, ¢, X, U

call solution (¢t +1),...,2(t+1T), u(t),...,u(t+T —1)

we interpret these as plan of action for next T’ steps T: horizon

we take u(t) = u(t)

this gives a complicated state feedback control u(t) = ¢mpc(z(t))

Prof. S. Boyd, EE364b, Stanford University 10
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x: state variable
u: decision variable

Ups Lowlander
Provlima elegxou pou exei mesa ena provlima veltistopoiisis

Ups Lowlander
T: horizon


MPC

e goes by many other names, e.g., dynamic matrix control, receding
horizon control, dynamic linear programming, rolling horizon planning

e widely used in (some) industries, typically for systems with slow
dynamics (chemical process plants, supply chain)

e MPC typically works very well in practice, even with short T°

e under some conditions, can give performance guarantees for MPC

Prof. S. Boyd, EE364b, Stanford University 13



Variations on MPC

e add final state cost V(z(t 4+ T')) instead of insisting on z(t + 1) = 0
—ifV =V, MPC gives optimal input

e convert hard constraints to violation penalties

— avoids problem of planning problem infeasibility

e solve MPC problem every K steps, K > 1

— use current plan for K steps; then re-plan

Prof. S. Boyd, EE364b, Stanford University
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Stochastic Model Predictive Control

e stochastic finite horizon control
e stochastic dynamic programming

e certainty equivalent model predictive control

Prof. S. Boyd, EE364b, Stanford University
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Certainty equivalent model predictive control

e at every time t we solve the certainty equivalent problem

minimize S L l(zy,ur) + bp(@r)
subjectto w,ec€U,, T=1t,....T—1
Tr41=Ar, + Bur + ., 7=14,...,T -1

with variables xyy1,..., 21, U, ..., ur—1 and data zy, Wy, ..., Wr_1)

® wWyt,...,Wp_q¢ are predicted values of wy,...,wr_1 based on X;
(e.g., conditional expectations)

e call solution 53,54_1, ce ,53T, ’&t, co ,’&T_l

o we take ¢™P°(X;) = uy

— ¢™P¢is a function of X; since wy, ..., wr_1; are functions of X;

Prof. S. Boyd, EE364b, Stanford University
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Certainty equivalent model predictive control

e widely used, e.g., in ‘revenue management’

e based on (bad) approximations:

— future values of disturbance are exactly as predicted; there is no
future uncertainty
— in future, no recourse is available

e yet, often works very well

Prof. S. Boyd, EE364b, Stanford University
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