Πιθανοτική Ανάλυση Ενεργειακών Συστημάτων Καθ. Νικόλαος Χατζηαργυρίου

Τεχνικές Βελτιστοποίησης

Περιεχόμενα

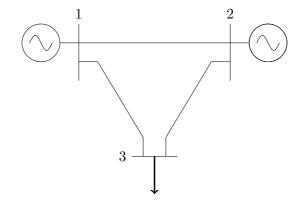
- Εισαγωγή Το πρόβλημα της OPF
- Ορισμοί και βασικές αρχές
- Στοχαστικός προγραμματισμός
- Robust and chance-constrained optimisation
- (Stochastic) Model Predictive Control

Πηγές

- Spyros Chatzivasileiadis, Associate Professor at DTU (http://www.chatziva.com)
 - Course 31765: Optimization in Modern Power Systems
- Stephen P. Boyd, Professor at Stanford University (*web.stanford.edu*/~*boyd*)
 - Course EE364a: Convex Optimization I
 - Course EE364b Convex Optimization II
 - Book: Convex Optimization, Stephen Boyd and Lieven Vandenberghe

What is optimization?

Economic Dispatch and Optimal Power Flow: Short Introduction on the Board



subject to:

 $P_{G_i}^{min} \le P_{G_i} \le P_{G_i}^{max}$

 $\sum_{i} P_{G_i} = P_D$

and

Economic Dispatch

subject to:

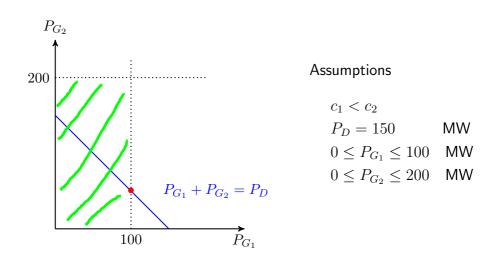
$$P_{G_i}^{min} \le P_{G_i} \le P_{G_i}^{max}$$

and

$$\sum_{i} P_{G_i} = P_D$$

How do you interpret these constraints for a 2-generator system on the cartesian plane?

Graphical representation of the 2-generator Economic Dispatch



DC-OPF

subject to:

 $P_{G_i}^{min} \le P_{G_i} \le P_{G_i}^{max}$

 $\min\sum_i c_i P_{G_i}$

and

 $\mathbf{B}\cdot \boldsymbol{\delta} = \mathbf{P_G} - \mathbf{P_D}$

and

$$\frac{1}{x_{ij}}(\delta_i - \delta_j) \le P_{ij,max}$$

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, \quad i = 1, \dots, m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

solution or **optimal point** x^* has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error, plus regularization term

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs $(e.g., \text{ problems involving } \ell_1 \text{- or } \ell_\infty \text{-norms, piecewise-linear functions})$

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

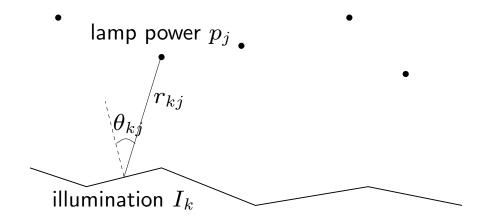
- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches



intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

how to solve?

- 1. use uniform power: $p_j = p$, vary p
- 2. use least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2$$

round p_j if $p_j > p_{\max}$ or $p_j < 0$

3. use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j (p_j - p_{max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\max}$

4. use linear programming:

minimize
$$\max_{k=1,...,n} |I_k - I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

which can be solved via linear programming

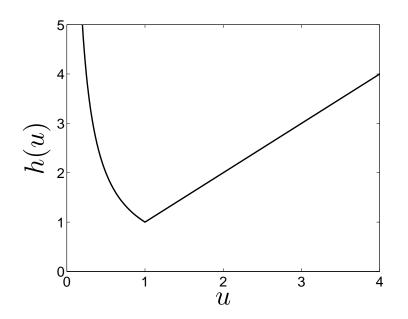
of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{des})$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

with $h(u) = \max\{u, 1/u\}$



 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_j > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Stochastic programming

- stochastic programming
- 'certainty equivalent' problem
- violation/shortfall constraints and penalties
- Monte Carlo sampling methods
- validation

sources: Nemirovsky & Shapiro

Stochastic programming

- objective and constraint functions $f_i(x, \omega)$ depend on optimization variable x and a random variable ω
- ω models
 - parameter variation and uncertainty
 - random variation in implementation, manufacture, operation
- value of ω is not known, but its distribution is
- goal: choose x so that
 - constraints are satisfied on average, or with high probability
 - objective is small on average, or with high probability

Stochastic programming

• basic stochastic programming problem:

minimize
$$F_0(x) = \mathbf{E} f_0(x, \omega)$$

subject to $F_i(x) = \mathbf{E} f_i(x, \omega) \le 0, \quad i = 1, \dots, m$

- variable is x
- problem data are f_i , distribution of ω
- if $f_i(x,\omega)$ are convex in x for each ω
 - F_i are convex
 - hence stochastic programming problem is convex
- F_i have analytical expressions in only a few cases; in other cases we will solve the problem approximately

Example with analytic form for F_i

•
$$f(x) = ||Ax - b||_2^2$$
, with A, b random

•
$$F(x) = \mathbf{E} f(x) = x^T P x - 2q^T x + r$$
, where

$$P = \mathbf{E}(A^T A), \quad q = \mathbf{E}(A^T b), \quad r = \mathbf{E}(\|b\|_2^2)$$

- only need second moments of (A, b)
- stochastic constraint ${\bf E}\,f(x) \leq 0$ can be expressed as standard quadratic inequality

'Certainty-equivalent' problem

• 'certainty-equivalent' (a.k.a. 'mean field') problem:

minimize
$$f_0(x, \mathbf{E}\omega)$$

subject to $f_i(x, \mathbf{E}\omega) \le 0, \quad i = 1, \dots, m$

- roughly speaking: ignore parameter variation
- if f_i convex in ω for each x, then
 - $f_i(x, \mathbf{E}\,\omega) \le \mathbf{E}\,f_i(x, \omega)$
 - so optimal value of certainty-equivalent problem is lower bound on optimal value of stochastic problem

Solving stochastic programming problems

- analytical solution in special cases, e.g., when expectations can be found analytically
 - ω enters quadratically in f_i
 - ω takes on finitely many values
- general case: approximate solution via (Monte Carlo) sampling

Monte Carlo sampling method

- a general method for (approximately) solving stochastic programming problem
- generate N samples (realizations) $\omega_1, \ldots, \omega_N$, with associated probabilities π_1, \ldots, π_N (usually $\pi_j = 1/N$)
- form sample average approximations

$$\hat{F}_i(x) = \sum_{j=1}^N \pi_j f_i(x, \omega_j), \quad i = 0, \dots, m$$

• these are RVs (via $\omega_1, \ldots, \omega_N$) with mean $\mathbf{E} f_i(x, \omega) = F_i(x)$

• now solve finite event problem

$$\begin{array}{ll} \mbox{minimize} & \hat{F}_0(x) \\ \mbox{subject to} & \hat{F}_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$$

- solution x_{mcs}^{\star} and optimal value $\hat{F}_0(x_{\text{mcs}}^{\star})$ are random variables (hopefully close to x^{\star} and p^{\star} , optimal value of original problem)
- theory says
 - (with some technical conditions) as $N \to \infty$, $x^\star_{\rm mcs} \to x^\star$
 - $\mathbf{E} \hat{F}_0(x_{\mathrm{mcs}}^\star) \le p^\star$

Out-of-sample validation

- a practical method to check if N is 'large enough'
- use a second set of samples ('validation set') $\omega_1^{\text{val}}, \ldots, \omega_M^{\text{val}}$, with probabilities $\pi_1^{\text{val}}, \ldots, \pi_M^{\text{val}}$ (usually $M \gg N$) (original set of samples called 'training set')
- evaluate

$$\hat{F}_i^{\text{val}}(x_{\text{mcs}}^{\star}) = \sum_{j=1}^M \pi_j^{\text{val}} f_i(x_{\text{mcs}}^{\star}, \omega_j^{\text{val}}), \quad i = 0, \dots, m$$

- if $\hat{F}_i(x_{\text{mcs}}^{\star}) \approx \hat{F}_i^{\text{val}}(x_{\text{mcs}}^{\star})$, our confidence that $x_{\text{mcs}}^{\star} \approx x^{\star}$ is enhanced
- if not, increase N and re-compute $x^{\star}_{\rm mcs}$

Example

• we consider problem

minimize
$$F_0(x) = \mathbf{E} \max_i (Ax + b)_i$$

subject to $F_1(x) = \mathbf{E} \max_i (Cx + d)_i \le 0$

with optimization variable $x \in \mathbf{R}^n$

 $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, $C \in \mathbf{R}^{k \times n}$, $d \in \mathbf{R}^k$ are random

- we consider instance with n = 10, m = 20, k = 5
- certainty-equivalent optimal value yields lower bound 19.1
- we use Monte Carlo sampling with N = 10, 100, 1000
- validation set uses ${\cal M}=10000$

	N = 10	N = 100	N = 1000
F_0 (training)	51.8	54.0	55.4
F_0 (validation)	56.0	54.8	55.2
F_1 (training)	0	0	0
F_1 (validation)	1.3	0.7	-0.03

we conclude:

- N = 10 is too few samples
- N = 100 is better, but not enough
- N = 1000 is probably fine

Robust Optimization

- definitions of robust optimization
- robust linear programs
- robust cone programs
- chance constraints

EE364b, Stanford University

Robust optimization

convex objective $f_0 : \mathbf{R}^n \to \mathbf{R}$, uncertainty set \mathcal{U} , and $f_i : \mathbf{R}^n \times \mathcal{U} \to \mathbf{R}$, $x \mapsto f_i(x, u)$ convex for all $u \in \mathcal{U}$

general form

minimize $f_0(x)$ subject to $f_i(x, u) \leq 0$ for all $u \in \mathcal{U}, i = 1, ..., m$.

equivalent to

minimize
$$f_0(x)$$

subject to $\sup_{u \in \mathcal{U}} f_i(x, u) \le 0, i = 1, \dots, m.$

• Bertsimas, Ben-Tal, El-Ghaoui, Nemirovski (1990s-now)

Setting up robust problem

• can always replace objective f_0 with $\sup_{u\in\mathcal{U}}f_0(x,u)$, rewrite in epigraph form to

```
minimize t
```

subject to $\sup_{u} f_0(x, u) \leq t, \sup_{u} f_i(x, u) \leq 0, \ i = 1, \dots, m$

• equality constraints make no sense: a robust equality $a^T(x+u) = b$ for all $u \in \mathcal{U}$?

three questions:

- is robust formulation useful?
- is robust formulation computable?
- how should we choose \mathcal{U} ?

Chance constrained optimization

- chance constraints and percentile optimization
- chance constraints for log-concave distributions
- convex approximation of chance constraints

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro

Chance constraints and percentile optimization

• 'chance constraints' (η is 'confidence level'):

 $\operatorname{Prob}(f_i(x,\omega) \le 0) \ge \eta$

- convex in some cases (later)
- generally interested in $\eta=0.9,\ 0.95,\ 0.99$
- $\eta = 0.999$ meaningless (unless you're sure about the distribution tails)
- percentile optimization (γ is ' η -percentile'):

 $\begin{array}{ll} \mbox{minimize} & \gamma \\ \mbox{subject to} & \mbox{Prob}(f_0(x,\omega) \leq \gamma) \geq \eta \end{array}$

- convex or quasi-convex in some cases (later)

Value-at-risk and conditional value-at-risk

• value-at-risk of random variable z, at level η :

$$\operatorname{VaR}(z;\eta) = \inf\{\gamma \mid \operatorname{Prob}(z \leq \gamma) \geq \eta\}$$

- chance constraint $\operatorname{Prob}(f_i(x,\omega) \leq 0) \geq \eta$ same as $\operatorname{VaR}(f_i(x,\omega);\eta) \leq 0$
- conditional value-at-risk:

$$\mathbf{CVaR}(z;\eta) = \inf_{\beta} \left(\beta + 1/(1-\eta) \mathbf{E}(z-\beta)_+\right)$$

-
$$\mathbf{CVaR}(z;\eta) \ge \mathbf{VaR}(z;\eta)$$
 (more on this later)

Model Predictive Control

- linear convex optimal control
- finite horizon approximation
- model predictive control
- fast MPC implementations
- supply chain management

Prof. S. Boyd, EE364b, Stanford University

Model predictive control (MPC)

• at each time t solve the (planning) problem

$$\begin{array}{ll} \text{minimize} & \sum_{\tau=t}^{t+T} \ell(x(\tau), u(\tau)) \\ \text{subject to} & u(\tau) \in \mathcal{U}, \quad x(\tau) \in \mathcal{X}, \quad \tau = t, \dots, t+T \\ & x(\tau+1) = Ax(\tau) + Bu(\tau), \quad \tau = t, \dots, t+T-1 \\ & x(t+T) = 0 \end{array}$$

with variables $x(t+1), \ldots, x(t+T)$, $u(t), \ldots, u(t+T-1)$ and data x(t), A, B, ℓ , \mathcal{X} , \mathcal{U}

- call solution $\tilde{x}(t+1), \ldots, \tilde{x}(t+T)$, $\tilde{u}(t), \ldots, \tilde{u}(t+T-1)$
- we interpret these as *plan of action* for next T steps
- we take $u(t) = \tilde{u}(t)$
- this gives a complicated state feedback control $u(t) = \phi_{mpc}(x(t))$

MPC

- goes by many other names, *e.g.*, dynamic matrix control, receding horizon control, dynamic linear programming, rolling horizon planning
- widely used in (some) industries, typically for systems with slow dynamics (chemical process plants, supply chain)
- MPC typically works very well in practice, even with short ${\cal T}$
- under some conditions, can give performance guarantees for MPC

Variations on MPC

• add final state cost $\hat{V}(x(t+T))$ instead of insisting on x(t+T) = 0

– if $\hat{V} = V$, MPC gives optimal input

- convert hard constraints to violation penalties
 - avoids problem of planning problem infeasibility
- solve MPC problem every K steps, K > 1
 - use current plan for K steps; then re-plan

Stochastic Model Predictive Control

- stochastic finite horizon control
- stochastic dynamic programming
- certainty equivalent model predictive control

Prof. S. Boyd, EE364b, Stanford University

Certainty equivalent model predictive control

• at every time t we solve the certainty equivalent problem

minimize
$$\sum_{\tau=t}^{T-1} \ell_t(x_{\tau}, u_{\tau}) + \ell_T(x_T)$$

subject to
$$u_{\tau} \in \mathcal{U}_{\tau}, \quad \tau = t, \dots, T-1$$
$$x_{\tau+1} = Ax_{\tau} + Bu_{\tau} + \hat{w}_{\tau|t}, \quad \tau = t, \dots, T-1$$

with variables x_{t+1}, \ldots, x_T , u_t, \ldots, u_{T-1} and data x_t , $\hat{w}_{t|t}, \ldots, \hat{w}_{T-1|t}$

- $\hat{w}_{t|t}, \ldots, \hat{w}_{T-1|t}$ are predicted values of w_t, \ldots, w_{T-1} based on X_t (*e.g.*, conditional expectations)
- call solution $\tilde{x}_{t+1}, \ldots, \tilde{x}_T$, $\tilde{u}_t, \ldots, \tilde{u}_{T-1}$
- we take $\phi^{\mathrm{mpc}}(X_t) = \tilde{u}_t$

- ϕ^{mpc} is a function of X_t since $\hat{w}_{t|t}, \ldots, \hat{w}_{T-1|t}$ are functions of X_t

Certainty equivalent model predictive control

- widely used, *e.g.*, in 'revenue management'
- based on (bad) approximations:
 - future values of disturbance are exactly as predicted; there is no future uncertainty
 - in future, no recourse is available
- yet, often works very well