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What is optimization?

What is convex
optimization?
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Economic Dispatch and Optimal Power Flow:
Short Introduction on the Board

1 2

3
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Economic Dispatch

min
∑
i

ciPGi

subject to:
Pmin
Gi
≤ PGi

≤ Pmax
Gi

and ∑
i

PGi
= PD
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Economic Dispatch

min
∑
i

ciPGi

subject to:
Pmin
Gi
≤ PGi

≤ Pmax
Gi

and ∑
i

PGi
= PD

How do you interpret these constraints for a 2-generator system on the
cartesian plane?
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Let's visualise things!!!



Graphical representation of the 2-generator
Economic Dispatch

PG1

PG2

PG1 + PG2 = PD•

100

200 Assumptions

c1 < c2

PD = 150 MW

0 ≤ PG1 ≤ 100 MW

0 ≤ PG2 ≤ 200 MW
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DC-OPF

min
∑
i

ciPGi

subject to:
Pmin
Gi
≤ PGi

≤ Pmax
Gi

and
B · δ = PG −PD

and
1

xij
(δi − δj) ≤ Pij,max
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Power balance is replaced by power balance on each node!!!

Ups Lowlander
DC -> no reactive power, voltage magn. =1



Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• x = (x1, . . . , xn): optimization variables

• f0 : R
n → R: objective function

• fi : R
n → R, i = 1, . . . ,m: constraint functions

solution or optimal point x⋆ has smallest value of f0 among all vectors
that satisfy the constraints

Introduction 1–2

Ups Lowlander
source: Boyd Stanford
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EE364B: Convex Optimization II



Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error, plus regularization term

Introduction 1–3



Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems

Introduction 1–4



Least-squares

minimize ‖Ax− b‖2
2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)

Introduction 1–5

Ups Lowlander
You might have seen this as y=px and we are looking for the slope p. Here the slope is x so do not get confused!!!

Ups Lowlander
or p = (y^T x) / (x^T x)

Ups Lowlander
setting derivative equal to zero as we look for the minimum!



Linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)

Introduction 1–6
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . ,m

• objective and constraint functions are convex:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases

Introduction 1–7
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization

Introduction 1–8
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj
θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

m∑

j=1

akjpj, akj = r−2

kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

Introduction 1–9



how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1
(Ik − Ides)

2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1
(Ik − Ides)

2 +
∑m

j=1
wj(pj − pmax/2)

2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’

Introduction 1–10



5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}

0 1 2 3 4
0

1

2

3

4

5

u

h
(u
)

f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort

Introduction 1–11
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

• answer: with (1), still easy to solve; with (2), extremely difficult

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems

Introduction 1–12

Ups Lowlander
u need binaries for that!

Ups Lowlander
p_i <= 0.5 sum p_i



Stochastic programming

• stochastic programming

• ’certainty equivalent’ problem

• violation/shortfall constraints and penalties

• Monte Carlo sampling methods

• validation

sources: Nemirovsky & Shapiro

EE364A — Stochastic Programming 1
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Stochastic programming

• objective and constraint functions fi(x, ω) depend on optimization
variable x and a random variable ω

• ω models

– parameter variation and uncertainty
– random variation in implementation, manufacture, operation

• value of ω is not known, but its distribution is

• goal: choose x so that

– constraints are satisfied on average, or with high probability
– objective is small on average, or with high probability

EE364A — Stochastic Programming 2
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Stochastic programming

• basic stochastic programming problem:

minimize F0(x) = E f0(x, ω)
subject to Fi(x) = E fi(x, ω) ≤ 0, i = 1, . . . ,m

– variable is x
– problem data are fi, distribution of ω

• if fi(x, ω) are convex in x for each ω

– Fi are convex
– hence stochastic programming problem is convex

• Fi have analytical expressions in only a few cases;
in other cases we will solve the problem approximately

EE364A — Stochastic Programming 3

Ups Lowlander
It's not easy to go from the distributin of omega to the distribution of Fo, or Fi



Example with analytic form for Fi

• f(x) = ‖Ax− b‖22, with A, b random

• F (x) = E f(x) = xTPx− 2qTx+ r, where

P = E(ATA), q = E(AT b), r = E(‖b‖22)

• only need second moments of (A, b)

• stochastic constraint E f(x) ≤ 0 can be expressed as standard
quadratic inequality

EE364A — Stochastic Programming 4

Ups Lowlander
remember? because it is a square...



‘Certainty-equivalent’ problem

• ‘certainty-equivalent’ (a.k.a. ‘mean field’) problem:

minimize f0(x,Eω)
subject to fi(x,Eω) ≤ 0, i = 1, . . . ,m

• roughly speaking: ignore parameter variation

• if fi convex in ω for each x, then

– fi(x,Eω) ≤ E fi(x, ω)
– so optimal value of certainty-equivalent problem is lower bound on

optimal value of stochastic problem

EE364A — Stochastic Programming 5
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Solving stochastic programming problems

• analytical solution in special cases, e.g., when expectations can be
found analytically

– ω enters quadratically in fi
– ω takes on finitely many values

• general case: approximate solution via (Monte Carlo) sampling

EE364A — Stochastic Programming 9

Ups Lowlander
Run Monte Carlo -> Make scenarios -> run deterministic opt. for each scenario



Monte Carlo sampling method

• a general method for (approximately) solving stochastic programming
problem

• generate N samples (realizations) ω1, . . . , ωN , with associated
probabilities π1, . . . , πN (usually πj = 1/N)

• form sample average approximations

F̂i(x) =

N
∑

j=1

πjfi(x, ωj), i = 0, . . . ,m

• these are RVs (via ω1, . . . , ωN) with mean E fi(x, ω) = Fi(x)

EE364A — Stochastic Programming 11

Ups Lowlander
Here, is the case where we seek to minimize the average of all scenarios. This is not the only case! You can have robust, or chance-constrainded, etc!



• now solve finite event problem

minimize F̂0(x)

subject to F̂i(x) ≤ 0, i = 1, . . . ,m

• solution x⋆
mcs and optimal value F̂0(x

⋆
mcs) are random variables

(hopefully close to x⋆ and p⋆, optimal value of original problem)

• theory says

– (with some technical conditions) as N → ∞, x⋆
mcs → x⋆

– E F̂0(x
⋆
mcs) ≤ p⋆

EE364A — Stochastic Programming 12



Out-of-sample validation

• a practical method to check if N is ‘large enough’

• use a second set of samples (‘validation set’) ωval
1 , . . . , ωval

M , with
probabilities πval

1 , . . . , πval
M (usually M ≫ N)

(original set of samples called ‘training set’)

• evaluate

F̂ val
i (x⋆

mcs) =
M
∑

j=1

πval
j fi(x

⋆
mcs, ω

val
j ), i = 0, . . . ,m

• if F̂i(x
⋆
mcs) ≈ F̂ val

i (x⋆
mcs), our confidence that x⋆

mcs ≈ x⋆ is enhanced

• if not, increase N and re-compute x⋆
mcs

EE364A — Stochastic Programming 13
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Ups Lowlander
use your solution form before to see if it works with real data
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Example

• we consider problem

minimize F0(x) = Emaxi(Ax+ b)i
subject to F1(x) = Emaxi(Cx+ d)i ≤ 0

with optimization variable x ∈ Rn

A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk are random

• we consider instance with n = 10, m = 20, k = 5

• certainty-equivalent optimal value yields lower bound 19.1

• we use Monte Carlo sampling with N = 10, 100, 1000

• validation set uses M = 10000

EE364A — Stochastic Programming 14



N = 10 N = 100 N = 1000
F0 (training) 51.8 54.0 55.4
F0 (validation) 56.0 54.8 55.2
F1 (training) 0 0 0
F1 (validation) 1.3 0.7 −0.03

we conclude:

• N = 10 is too few samples

• N = 100 is better, but not enough

• N = 1000 is probably fine

EE364A — Stochastic Programming 15



Robust Optimization

• definitions of robust optimization

• robust linear programs

• robust cone programs

• chance constraints

EE364b, Stanford University

Ups Lowlander
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Robust optimization
convex objective f0 : R

n → R, uncertainty set U , and fi : R
n × U → R,

x 7→ fi(x, u) convex for all u ∈ U
general form

minimize f0(x)

subject to fi(x, u) ≤ 0 for all u ∈ U , i = 1, . . . ,m.

equivalent to

minimize f0(x)

subject to sup
u∈U

fi(x, u) ≤ 0, i = 1, . . . ,m.

• Bertsimas, Ben-Tal, El-Ghaoui, Nemirovski (1990s–now)

EE364b, Stanford University 1

Ups Lowlander
We want the max of the constraint realization to be within limits!



Setting up robust problem

• can always replace objective f0 with supu∈U f0(x, u), rewrite in
epigraph form to

minimize t

subject to sup
u

f0(x, u) ≤ t, sup
u

fi(x, u) ≤ 0, i = 1, . . . ,m

• equality constraints make no sense: a robust equality aT (x+ u) = b for
all u ∈ U?

three questions:

• is robust formulation useful?

• is robust formulation computable?

• how should we choose U?

EE364b, Stanford University 2

Ups Lowlander
if we want the same for the objective function we do:



Chance constrained optimization

• chance constraints and percentile optimization

• chance constraints for log-concave distributions

• convex approximation of chance constraints

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro

EE364A — Chance Constrained Optimization 1



Chance constraints and percentile optimization

• ‘chance constraints’ (η is ‘confidence level’):

Prob(fi(x, ω) ≤ 0) ≥ η

– convex in some cases (later)
– generally interested in η = 0.9, 0.95, 0.99
– η = 0.999 meaningless (unless you’re sure about the distribution tails)

• percentile optimization (γ is ‘η-percentile’):

minimize γ
subject to Prob(f0(x, ω) ≤ γ) ≥ η

– convex or quasi-convex in some cases (later)

EE364A — Chance Constrained Optimization 2
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Ups Lowlander
How to do the same for the objective function!



Value-at-risk and conditional value-at-risk

• value-at-risk of random variable z, at level η:

VaR(z; η) = inf{γ | Prob(z ≤ γ) ≥ η}

– chance constraint Prob(fi(x, ω) ≤ 0) ≥ η same as
VaR(fi(x, ω); η) ≤ 0

• conditional value-at-risk:

CVaR(z; η) = inf
β

(β + 1/(1− η)E(z − β)+)

– CVaR(z; η) ≥ VaR(z; η) (more on this later)

EE364A — Chance Constrained Optimization 3

Ups Lowlander
or Expected Shortfall -> what happens to f_i beyond gamma (at the tails!) -> it is sort of the weighted average of what happens there!

Ups Lowlander
In other words, VaR is the worst case within the 95% percentile

Ups Lowlander


Ups Lowlander
Gamma: i timi tis sunartiseis f_i gia tin opoia to h% twn allwn timwn einai mikroteres tis 

Ups Lowlander
Sto stoch. optimization mas noiazei giati mporoume na fixaroume to gamma kai na paiksoume me to x!



Model Predictive Control

• linear convex optimal control

• finite horizon approximation

• model predictive control

• fast MPC implementations

• supply chain management

Prof. S. Boyd, EE364b, Stanford University
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Model predictive control (MPC)

• at each time t solve the (planning) problem

minimize
∑t+T

τ=t ℓ(x(τ), u(τ))
subject to u(τ) ∈ U , x(τ) ∈ X , τ = t, . . . , t + T

x(τ + 1) = Ax(τ) + Bu(τ), τ = t, . . . , t + T − 1
x(t + T ) = 0

with variables x(t + 1), . . . , x(t + T ), u(t), . . . , u(t + T − 1)
and data x(t), A, B, ℓ, X , U

• call solution x̃(t + 1), . . . , x̃(t + T ), ũ(t), . . . , ũ(t + T − 1)

• we interpret these as plan of action for next T steps

• we take u(t) = ũ(t)

• this gives a complicated state feedback control u(t) = φmpc(x(t))

Prof. S. Boyd, EE364b, Stanford University 10

Ups Lowlander
x: state variable
u: decision variable

Ups Lowlander
Provlima elegxou pou exei mesa ena provlima veltistopoiisis

Ups Lowlander
T: horizon



MPC

• goes by many other names, e.g., dynamic matrix control, receding
horizon control, dynamic linear programming, rolling horizon planning

• widely used in (some) industries, typically for systems with slow
dynamics (chemical process plants, supply chain)

• MPC typically works very well in practice, even with short T

• under some conditions, can give performance guarantees for MPC

Prof. S. Boyd, EE364b, Stanford University 13



Variations on MPC

• add final state cost V̂ (x(t + T )) instead of insisting on x(t + T ) = 0

– if V̂ = V , MPC gives optimal input

• convert hard constraints to violation penalties

– avoids problem of planning problem infeasibility

• solve MPC problem every K steps, K > 1

– use current plan for K steps; then re-plan

Prof. S. Boyd, EE364b, Stanford University 14
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Stochastic Model Predictive Control

• stochastic finite horizon control

• stochastic dynamic programming

• certainty equivalent model predictive control

Prof. S. Boyd, EE364b, Stanford University
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Certainty equivalent model predictive control

• at every time t we solve the certainty equivalent problem

minimize
∑

T−1
τ=t

ℓt(xτ , uτ) + ℓT (xT )
subject to uτ ∈ Uτ , τ = t, . . . , T − 1

xτ+1 = Axτ +Buτ + ŵτ |t, τ = t, . . . , T − 1

with variables xt+1, . . . , xT , ut, . . . , uT−1 and data xt, ŵt|t, . . . , ŵT−1|t

• ŵt|t, . . . , ŵT−1|t are predicted values of wt, . . . , wT−1 based on Xt

(e.g., conditional expectations)

• call solution x̃t+1, . . . , x̃T , ũt, . . . , ũT−1

• we take φmpc(Xt) = ũt

– φmpc is a function of Xt since ŵt|t, . . . , ŵT−1|t are functions of Xt

Prof. S. Boyd, EE364b, Stanford University 9
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Certainty equivalent model predictive control

• widely used, e.g., in ‘revenue management’

• based on (bad) approximations:

– future values of disturbance are exactly as predicted; there is no
future uncertainty

– in future, no recourse is available

• yet, often works very well

Prof. S. Boyd, EE364b, Stanford University 10


