








Chapter 10
GIBBS FREE ENERGY COMPOSITION AND
PHASE DIAGRAMS OF BINARY SYSTEMS

10.1 INTRODUCTION

It has been seen that, at constant temperature and pressure, the stable state of existence of
a system is that which has the minimum possible value of Gibbs free energy. Thus, phase
stability  in  a  system,  as  normally  presented  on  an  isobaric  phase  diagram,  can  be
determined from knowledge of the variations of the Gibbs free energies of the various
possible phases with composition and temperature. When a liquid solution is cooled, a
liquidus temperature is eventually reached, at which point a solid phase begins to separate
from the liquid solution. This solid phase could be a virtually pure component, a solid
solution of the same or different composition from the liquid, or a chemical compound
formed by reaction between two or more of the components. In all possible cases the
composition of the solid phase which is in equilibrium with the liquid solution is that
which minimizes the Gibbs free energy. If liquid solutions are stable over the entire range
of composition, then the Gibbs free energies of the liquid states are lower than those of
any possible solid state, and conversely, if the temperature of the system is lower than the
lowest  solidus  temperature,  then  the  Gibbs  free  energies  of  the  solid  states  are
everywhere lower than those of liquid states. At intermediate temperatures, the variation
of Gibbs free energy with composition will identify ranges of composition over which
liquid states are stable, ranges over which solid states are stable, and intermediate ranges
in which solid and liquid phases coexist in equilibrium with one another. Thus, by virtue
of the facts that (1) the state of lowest Gibbs free energy is the stable state and (2) when

phases coexist in equilibrium  has the same value in all of the coexisting phases, there
must  exist  a  quantitative  correspondence  between  Gibbs  free  energy-composition
diagrams and “phase  diagrams.”  This  correspondence is  examined in  this  chapter,  in
which it  will  be seen that “normal” phase diagrams are generated by, and are simply
representations of, Gibbs free energy-composition diagrams.

10.2 GIBBS FREE ENERGY AND THERMODYNAMIC ACTIVITY

The Gibbs free energy of mixing of the components A and B to form a mole of solution is
given by

 

and GM is the difference between the Gibbs free energy of a mole of the homogeneous
solution  and  the  Gibbs  free  energy  of  the  corresponding  numbers  of  moles  of  the
unmixed components. As only changes in Gibbs free energy can be measured, the Gibbs
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free energies  of  the pure unmixed components  are  assigned the value of  zero.  If  the
solution is ideal, i.e., if a

i
=X

i
, then the molar Gibbs free energy of mixing, given by

 

has the characteristic  shape shown,  at  the temperature T,  as  curve I  in  Fig.  10.1.  As

 then  and hence curve I in Fig. 10 1 is obtained as

T (the curve drawn in Fig. 9.7). It is thus seen that the shape of the variation of GM,id

with composition depends only on temperature.
If the solution exhibits a slight positive deviation from ideal mixing, i.e., if i>1 and 

a
i
>X

i
, then, at the temperature T, the Gibbs free energy of mixing curve is typically as

shown by curve II in Fig. 10.1; and if the solution shows a slight negative deviation from
ideal mixing, i.e., if i<1 and a

i
<X

i
, the Gibbs free energy of mixing curve is typically as 

shown by curve III in Fig. 10.1. From Eqs. (9.33a and b) the tangent drawn to the GM

curve  at  any  composition  intersects  the  X
A
=1  and  X

B
=1  axes  at   and  ,

respectively,  and,  as   In  a
i
,  a  correspondence  is  provided  between  the

GM-composition and activity-composition curves. In Fig. 10.1, at the composition Y, 
tangents drawn to curves I, II, and III intersect the X

B
=1 axis at a, b, and c, respectively. 

Thus

 

from which it is seen that

 

The variation, with composition, of the tangential intercepts generates the variations of
activity with composition shown in Fig. 10.2.

As X
i
 → 0, a

i
 → 0, and hence the tangential intercept  which

indicates  that  all  Gibbs  free  energy  of  mixing  curves  have  vertical  tangents  at  their
extremities. Similarly, by virtue of being logarithmic, the entropy of the mixing curve 
shown in Fig. 9.7 has vertical tangents at its extremities.
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Figure  10.1  The  molar  Gibbs  free  energies  of  mixing  in  binary  systems 
exhibiting ideal behavior (I),  positive deviation from ideal behavior
(II), and negative deviation from ideal behavior (III).

Figure 10.2 The activities of component B obtained from lines I, II, and III in
Fig. 10.1.
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10.3 THE GIBBS FREE ENERGY OF FORMATION OF REGULAR 
SOLUTIONS

If curves II and III in Fig. 10.1 are drawn for regular solutions, then deviation of GM

from GM,id is due only to the nonzero heat of mixing and the difference between the

two curves, GM GM.id

 

For  curve  II,   and  thus  HM  is  a  positive  quantity  (  and   are
positive quantities). It is of interest to consider the effect of increasingly positive values 
of  on the shape of the Gibbs free energy of mixing curve for a regular solution. In Fig.

10.3, curve I is drawn as—  This curve represents

GM,id/RT. Curves for  are drawn for =0, +0.5, +1.0, +1.5, +2.0, 

+2.5,  and +3.0,  and the  corresponding GM/RT curves  are  drawn as  the  sum of  the

particular HM/RT and SM,id/R curves. As the magnitude of  is increased it is seen

that the shape of the GM/RT curve continuously changes from a shape typified by =0 to a 

form typified by =3. Before discussing the consequences of this change of shape on the 
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Figure 10.3 The effect of the magnitude of a on the integral molar heats and 
integral molar Gibbs free energies of formation of a binary regular 
solution.

behavior of the solutions, it is pertinent to examine the significance of the shape of the 

curve. Curve I from Fig. 10.1 is reproduced in Fig. 10.4a. This curve is “convex 

downwards” at all compositions. Thus the homogeneous solution formed from any 

mixture of A and B is the stable state, as this state has the lowest possible Gibbs free en-

ergy. Consider, further, two separate solutions, say, a and b in Fig. 10.4a. Before mixing 

of these two solutions, the Gibbs free energy of the two-solution system, with respect to 

pure A and pure B, lies on the straight line joining a and b, with the exact position 

being determined, via the lever rule, by the relative proportions of the separate solutions. 

If the solutions a and b are present in equal amounts then the Gibbs free energy of the 

system is given by the point c. When mixed, the two solutions form a new homogeneous 

solution, as thereby the Gibbs free energy of the system is decreased from c and d, the 

minimum Gibbs free energy which it can have. Consider now Fig. 10.4b in which the 

GM/RT curve for =+3.0 is reproduced from Fig. 10.3. This curve is “convex
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downwards”  only  between  a  and  n  and  between  p  and  B  and  is  “convex  upwards” 
between n and p. The Gibbs free energy of a system of composition between m and q is
minimized when the system occurs as two solutions, one of composition m and the other of 

Figure 10.4 (a) The molar Gibbs free energies of mixing of binary 
components which form a complete range of solutions. (b) The 
molar Gibbs free energies of mixing of binary components in a 
system which exhibits a miscibility gap.

composition q; e.g., if the homogeneous solution of composition r separates into the
two coexisting solutions m and q, the Gibbs free energy of the system is decreased
from r to s. The equilibrium coexistence of two separate solutions at the temperature T
and pressure P requires that

(i)
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and

(ii)

Subtracting  from both sides of Eq. (i) gives

 

or

 

Similarly

(iv)

Equations (iii) and (iv) are the criteria for equilibrium coexistence of two solutions (or

phases) at constant T and P. As  (in m)=  (in q), and  (in m)=  (in
q), then it is seen that the tangent to the curve at the point m is also the tangent to the
curve at the point q. The positioning of this double tangent defines the positions of the
points m and q on the Gibbs free energy of mixing curve.

The A-B system, as represented in Fig. 10.4b, is one in which, at the temperature T, the 
value of  is sufficiently positive that the consequent tendency toward clustering of like
atoms is great enough to cause phase separation. A homogeneous solution (phase I) is 
formed when B  is initially added to A and saturation of phase I with B  occurs at the 
composition m. Further addition of B causes the appearance of a second solution (phase
II) of composition q (which is phase II saturated with A), and continued addition of B 
causes  an  increase  in  the  ratio  of  phase  II  to  phase  I  occurring,  until  the  overall
composition of the two-phase system reaches q,  at which point phase I disappears. A
homogeneous solution (phase II) occurs between the compositions q and B. The curve mn 
represents  the  Gibbs free  energy of  phase I  supersaturated with  B,  and the curve qp 
represents the Gibbs free energy of phase II supersaturated with B.  As the line AmqB 
represents  the  equilibrium  states  of  the  system,  then  this  line  alone  has  physical 
significance, and the line is the isobaric, isothermal section of the system as it occurs in 
G-T-P-composition space.

10.4 CRITERIA FOR PHASE STABILITY IN REGULAR SOLUTIONS

For a given temperature it  is obvious that a critical value of a occurs below which a
homogeneous solution is stable over the entire range of composition and above which
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phase separation occurs. The criteria used to determine this critical value are illustrated in

Fig. 10.5. Fig. 10.5a, b, and c show the variations of , ,

and  with composition for <
critical

, =
critical

, and >
critical

 respectively.

The critical value of  is seen to be that which makes  and 
simultaneously  equal  to  zero  at  that  composition  at  which  immiscibility  becomes
imminent. For a regular solution,

 

and

 

The  third  derivative,   and  thus  the  second
derivative,  when =2, which is thus the critical
value  of   above  which  phase  separation  occurs.  As  a  is  an  inverse  function  of
temperature, given by

 

a critical temperature occurs in any regular system with a positive value of ,  above
which <2 and below which >2. The critical temperature, T

cr
, is

(10.1)

Fig. 10.6a  shows the variation, with temperature, of the Gibbs free energy of mixing
curve for a regular solution which has a positive molar heat of mixing ( =16,630 joules)
and a critical temperature of T

cr
=16,630/2R=1000 K. The Gibbs free energy expression

contains  a  negative  logarithmic  term,  the  magnitude  of  which  is  proportional  to 
temperature, and a positive parabolic term which is independent of temperature. At high 
enough temperature, the logarithmic contribution predominates and the Gibbs free energy
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of  mixing  is  convex  downwards  at  all  compositions.  However,  with  decreasing 
temperature,  the  contribution  of  the  logarithmic  term  decreases,  and  eventually  the
positive parabolic term predominates and produces a range of composition centered on 
X

B
=0.5 over which the Gibbs free energy curve is convex upwards. The logarithmic term

still requires that the tangents to the curve at X
A
=1 and X

B
=1 be vertical. Fig. 10.6b shows

the phase diagram for the system, in which the miscibility curve bounding the two-phase 
region is simply the locus of the double tangent compositions in Fig. 10.6a. The influence
of  temperature  on the variations  of  the  activity  of  component  B  with  composition is
shown in Fig. 10.6c. The activities are obtained from the intercepts, with the X

B
=1 axis,

Figure 10.5 The effect of the magnitude of a on the first, second, and third 
derivatives of the integral Gibbs free energy of mixing with respect to 
composition.
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Figure 10.6 (a)  The effect of temperature on the molar Gibbs free energy of
mixing a binary regular solution for which =16,630 joules, (b) The loci of the 
double tangent points in (a), which generate the phase diagram for the system, (c)
The activities of component B derived from (a).
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of tangents drawn to the free energy curves as 

 Thus

(10.2)

 ln a
B
.  At T

cr
 the activity exhibits  a

horizontal inflexion at X
B
=0.5, as is seen from the following. From Eq. (9.33b),

and

(10.3)

At T
cr

 and X
B
=0.5 both the second and third derivatives of GM with respect to X

B
 are

zero, and thus, from Eqs. (10.2) and (10.3), the first and second derivatives of a
B

 with

respect to X
B

 are zero, which produces a horizontal inflexion point on the activity curve

at X
B
=0.5 and T

cr
. At T<T

cr
 the activity curve has a maximum and a minimum, which 

occur at the spinodal compositions (where  and hence a
B
/ X

B
, are zero), 

e.g., the points n and p in Fig. 10.4b and the points b and c on the activity curve at 800 K
shown in Fig. 10.7. The portion of the curve given by ab  in Fig. 10.7 represents the
activity of B in phase I which is supersaturated with B and the portion of the activity
curve given by cd represents the activity of B in phase II which is supersaturated with A. 
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Figure 10.7 The activity of B at 800 K derived from Fig. 10.6a.

The value of a
B
/ X

B
 is negative between b and c, and this violates an intrinsic criterion 

for stability which requires that a
i
/ X

i
 always be positive [cf. ( P/ V)

T
>0 over the

portion JHF in Fig. 8.7]. Thus the derived activity curve between b and c, and,

consequently, the Gibbs free energy of mixing curve between 
the spinodal compositions, have no physical significance. The horizontal line drawn between a
and d in Fig. 10.7 represents the actual constant activity of B in the two-phase region, and the 
compositions a and d are those of the double tangents to the Gibbs free energy of mixing curve.

10.5 LIQUID AND SOLID STANDARD STATES

Thus far the standard state of a component of a condensed system has been chosen as
being the pure component in its stable state at the particular temperature and pressure of
interest.  At  1  atm  pressure  (the  pressure  normally  considered),  the  stable  state  is
determined by whether or not the temperature of interest is above or below the normal
melting temperature of the component. In the discussion of condensed binary solutions, it 
has been tacitly assumed that the temperature of interest is above or below the melting
temperatures of both components, i.e., Fig. 10.7 could be drawn for liquid immiscibility,
in which case the standard states are the two pure liquids, or it could be drawn for solid
immiscibility, in which case the standard states are the two pure solids. As the standard
state of a component is simply a reference state to which the component in any other state
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To find the answer, we recall qbl = 111/(111 +Nr12), and so

grazml-l—Nnfl—mIL
3’11 (111 + Nn2)2 (”I + NH2)

2 91 = (12¢.
N112 n1 (7.4.133)

similarly,

a a 1 — a — 2 —-
fl=———#((’51): —i= 952: QM" (7.4.13b)
8111 6711 8111 N712 I11 '

Proceeding with the differentiation of AG“, we have

11171
{

m am 122
(—15%) }———= — 1nd) +— +-—— —— + —

RT
1

Cb] ”1 $2 a
($2 ¢1¢2)X

1:— In 1—1;!) +¢ (144)+ (1)2}{ ( 2) 2 N X 2 (7.4.14)
where we choose to write everything in terms of the polymer concentration. The expansion of
ln(1 — (152) = —q§2 — chi/2 ~— - - - is used to get rid of the logarithm (we keep the dig/2 term here
because of the virial expansion to second order), and we take 17] over to the other side:

H 1 (162 1 1 2_ z :— __ _ __ _ _ + . . .RT v1 N v1 (X 2) $2 (7'4“)
Finally, we convert from (152 to c:

_ ig _ CNVl
2 —

M
—

M
(7.4.16)

and Obtain

H C
+

1 V N2 2 +_ 2 _ _ _ _..__C . . .

RT M 2 X 1W
(7.4.17)

and thus for the Flory—Huggins model,

1 _ N2 1 "172 1
(2 M2 2 v1 M2 ( )

This equation has two important features. First, when X: 1/2, then B =0 and we have a theta
solvent. Thus x: 1/2 represents a second operational definition of the theta point. For X > 1/2,
B < 0, and the solvent is poor, whereas for X < 1/2, the solvent is good. Figure 7.8 shows data for
3(7) for several polystyrenes in cyclohexane and the theta temperature is determined to be 345°C.
Second, 8 is predicted to be independent of molecular weight (note that N mM in Equation 7.4.17
and thus the M dependence cancels out). It turns out experimentally that this is not quite true; for
example B varies approximately as M ‘0'2 in good solvents. This incorrect prediction is a direct
consequence of the mean—field assumption that we discussed in the previous section.

7.5 Phase Behavior of Polymer Solutions
In this section we examine the phase behavior of a polymer solution, or, more precisely, we
consider the temperature-composition plane at fixed pressure and locate the regions where a
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Figure 7.8 Second virial coefficient for three polystyrenes in cyclohexane as a function of temperature.
The theta temperature based on these data alone lies between 34°C and 35°C. (From Yamakawa, H., Abe, F.,
and Einaga, Y., Macromolecules, 27, 5704, 1994.)

one—phase solution is stable, and where the mixture will undergo liquid-liquid phase separation
into two phases. We will do this first for regular solution theory, as a means to illustrate the
various concepts and steps in the procedure. Then we will return to Flory—Huggins theory and
see the consequences of having one component substantially larger in molecular weight than
the other.

7.5.1 Overview of the Phase Diagram

The phase diagram for a regular solution is shown schematically in Figure 7.9. It has the following
important features, which we will see how to calculate:

1. A critical point (Tc, x.) such that for T > Tc 3 one-phase solution is formed for all compositions.
2. A coexistence curve, or binodal, which describes the compositions of the two phases xi’ and xi"

that coexist at equilibrium, after liquid—liquid separation at some fixed T< TC. Any solution
prepared such that (T,x1) lies under the binodal will be out of equilibrium until it has
undergone phase separation.

3. A stability limit, or spinodal, which divides the two-phase region into a metastable window,
between the binodal and the spinodal, and an unstable region, below the spinodal. The
significance of the terms metastable and unstable will be explained subsequently. Note that
the binodal and spinodal curves meet at the critical point.

Qualitatively, of course, we should expect one-phase behavior at high T because AS,1n > 0, and
therefore -—TASm contributes an increasingly negative term to A6,“. However, although AGm < 0
is the criterion for spontaneous mixing, it by no means guarantees a single mixed phase, as we shall
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Figure 7.9 Phase diagram (temperature versus mole fraction of component 1) for regular solution theory.
The binodal (coexistence curve) separates the one-phase region at high temperature from the two-phase region
at low temperature. The spinodal curve (stability limit) separates the unstable and metastable windows within
the two-phase region. The binodal and spinodal curves meet at a critical point.

see. To begin the analysis, we resolve the two contributions to AGm/RT from regular solution
theory (Equation 7.2.1 1):

AS
_Tm = xllnx1+ x2 11l

(7.5.1)

RT

and recall from its definition (Equation 7.2.9) that )(N l/T. These two functions are plotted in
Figure 7.10a and Figure 7.10b, respectively. Note that both are symmetric about x1 = 1/2, and that
in this format the entropy term is independent of T, whereas the enthalpy term is not (due to x).
Furthermore, we take X > 0, as expected by the theory. In Figure 7.10c we combine the two terms,
at two generic temperatures, one “high” and one “low.” At the higher T, X is so small that AG“.1
looks much like the AS", term; it is always concave up. However, at the lower T, the larger X in the
enthalpy term produces a “bump,” or local maximum in the free energy. This will turn out to have
profound consequences. Note that even at the lower T, AG,n < 0 for all compositions considered in
this example.

Phase separation will occur whenever the system can lower its total free energy by dividing into
two phases. If we prepare a solution with overall composition (x1), and then ask will it prefer to
separate into phases with compositions x; and xi" , we can find the answer simply by drawing a line
connecting the corresponding points on the AG,n curve (i.e., AGm(xf) to AGm(xf’)), as shown in
Figure 7.11a. Because AG“, is an extensive property, this line represents the hypothetical free
energy of a combination of two phases, xf and xi", for any overall composition On) that lies in
between. (Note that the relative proportions of the two phases with compositions x{ and x{’ are
determined once (x1) is selected, by the so-called lever rule.)

What we now realize is that, so long as AG,“ is concave up, this straight line will lie above AG,1n
at (x1) for any choice of xf and x1” , and therefore phase separation would increase the free energy.
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Figure 7.10 Predictions of regular solution theory for (a) entropy of mixing, plotted as —ASm/R; (b)
enthalpy of mixing, plotted as AHm/RT, for two temperatures; (c) free energy of mixing obtained by
combining panels (a) and (b), plotted as AGm/RT.

Thus “concave up” gives us the criterion for stability of the one—phase solution; the mathematical
expression of concave up is

2A
(a Gm) >0 (7.5.2)

TIP3x?

where the second derivative can be taken with respect to the mole fraction of any component. The
meaning of stability is this: In any mixture at a finite temperature, there will be spontaneous, small
local fluctuations in concentration 8x, such that there are small regions that have x1 bigger than the
average, and some regions where it is smaller. Now, by the argument given above, any such
fluctuation will actually increase the free energy; the straight line connecting (x1) — 8x1 and
(x1) + 8.151 will fall above AGm(x1). Consequently all these fluctuations will relax back to (11).
The importance of these spontaneous fluctuations will be taken up again in Chapter 8, where we
will show how they are the origin of light scattering.
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Figure 7.11 Generic free energy of mixing versus composition curves. (a) If a solution with overall
composition between xf and x1” were to separate into two phases with compositions x{ and xi”, the resulting
free energy (the dashed line) would lie above the one-phase case (smooth curve). (b) Tangent construction
showing how the chemical potentials of the two components may be obtained for a given composition x{.
(c) Tangent construction finds the compositions of the two phases xf and xi" that would coexist at equilibrium,
for a system with overall composition between xl’ and x1” . Points a and [9 denote the inflection points of AGm,
which separate the metastable (x{ < x1 < (1,!) < x1 < xi") and unstable regions (a < x1 < 3)).

7.5.2 Finding the Binodal

Now consider the lower T curve in Figure 7.100, where AGm shows the bump. Here we can see that
if we prepared a solution with (x1) somewhere near the local maximum of A0,“, we could find an
x{ and am” such that the straight line between them would fall below the AG", curve for our (x1),
and phase separation should occur. In fact, there are many such pairs x1’ and x1" that would lower
AGm, so which pair is chosen? We recall the criteria for phase equilibria: T and p must be identical
in the two phases, and

mm) = mm”), #2060 = “20“”) (7.5.3)
The chemical potential of component 1 is the same in both phases and the chemical potential of
component 2 is equal in both phases. (Be careful with this; both relations must be satisfied
simultaneously, but it is not an equality between #1 and #2.) It turns out that there will be only
one solution (xl’,x1”) for both of these relations at a particular T, which we can identify by the
common tangent construction. We can write the free energy as the mole—weighted sum of the
chemical potentials (which are the partial molar free energies, Equation 7.1.5):

AGm = mApLI + ngAptz
or (7.5.4)

AG.“ = xlAP‘q + (1 —x1)A#2 = Aflz "I‘xlmiui — Ape)
where we have divided by the total number of moles to get to mole fractions, and where
Air,- 2 it, -— pf. Now imagine we draw a straight line that is tangent to AG", at some composition,
x’], as shown in Figure 7.11b. This line can be written generically as
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y : M + b (7.55)
Where it is the slope and b is the x1 = 0 intercept. But we chose )1 = AGm for x1 2 xi, so inserting
Equation 7.5.4 into Equation 7.5.5 we find

kx’, + b = Ange) + x’l[A,u.1(x'1) — Att2(x’1)] (7.5.6)

But this relation holds whatever x"1 we choose, so we can match the intercepts and slopes to obtain

5’ : Aflzlxl)
k = Au1(x’1) _. Ayala)

In other words, if we follow the tangent to the x1: 0 intercept, we obtain b = Au2(x’1), and if we
follow it to the x1 = 1 intercept, k + b = Anibal).

The argument so far applies for any AGm curve. Now if we have a AGm curve with a bump as
in Figure 7.11c, we can draw one straight line that is tangent to AGm at two particular points,
call them x1’ and x1”. From the argument above, the x1:0 intercept gives us both Att2(xf)
and Auz(x{’), so these two chemical potentials must be equal. By the same reasoning the other
intercept gives Aufixf) = Auloq"), and therefore we have shown that x1’ and x1” defined by the
common tangent are indeed the compositions of the two coexisting phases. (Warning: for regular
solution theory, where the AGm curve is symmetric, xf and x1” coincide with the local minima in the
AG,” curve, but this is not generally true.) So, in summary, one can locate the coexistence
concentrations by geometrical construction on a plot of AGm versus composition, or one could
do it from the analytical expressions for the two chemical potentials. However, the latter is
algebraically a little tricky, particularly because of the natural logarithm terms (see, for example,
Equation 7.4.14).

(7.5.7)

7.5.3 Finding the Spinodal

The next issue to address is the location of the spinodal, or stability limit. We have already
indicated the condition for stability, namely Equation 7.5.2. The stability limit, then, is found
where the second derivative of AGm changes sign, which defines an inflection point:

(62—13(33) = 0 on the spinodal (7.5.8)
8x,- Ta)

Returning to Figure 7.11c, we see that there are two inflection points, marked a and b, on each side
of the bump. Between these two compositions, the free energy is concave down, and we say the
solution for that (x1,7)-is unstable. What does this mean? For any small local fluctuation in
concentration 8x1, the straight line connecting x1 — 8x1 and x1 + 8x1 will fall below AGm(x1). These
fluctuations will therefore grow in amplitude and spatial extent; the mixture will spontaneously
phase separate into two phases with compositions x’l and x’l’ . Thus in a region where the AGm curve
is concave down, the solution is unstable with respect to any fluctuation in concentration. The
mechanism by which this phase separation occurs is called Spinoa’al decomposition, and it is quite
interesting in its own right. However, in this chapter we are concerned with thermodynamics, not
kinetics, so we will not pursue this here.

You may have noticed that there are two regions on the curve in Figure 7.11c, between x"1 and a,
and between b and x’l’ , where the curve is locally concave up, indicating stability, yet we already
know that the equilibrium state in these intervals should be liquid—liquid coexistence with
concentrations x’l and x’l’. What does this mean? These regions fall between the binodal and
spinodal, and are termed metastable. They are stable against small, spontaneous fluctuations, but
not globally stable against phase separation. Consequently, a system in the metastable region may
remain there indefinitely; it requires nucleation of a region of the new phase before separation



270 Thermodynamics of Polymer Solutions

Stable

O

O

Unstable

O
Metastable

Figure 7.12 Schematic illustration of the difference between stable, unstable, and metastable states.

proceeds. Nucleation, and the ensuing process of domain growth, is another interesting kinetic
process that we will not discuss here. However, metastability can be a wonderful thing; diamond is
metastable with respect to graphite, the equilibrium phase of carbon at room T and p, but no one
worries about diamonds transforming to graphite in their lifetime. A mechanical analogy is helpful
in distinguishing among stable, metastable, and unstable systems, as shown in Figure 7.12. The ball
in panel (a) may rattle around near the bottom of the bowl, but it will never come out; the system is
stable. The ball in panel (b) is precariously perched on top of the inverted bowl, and the slightest
breeze or vibration will knock it off; the system is unstable. The ball in panel (c) can rattle around
in the small depression, and may appear to be stable for long periods of time, but with a sufficiently
large impulse it will roll over the banier and downhill to a lower energy state; the system is
metastable. Only state (a) is an equilibrium state, but state (c) might not change in our lifetime.

7.5.4 Finding the Critical Point

The final feature to locate in the phase diagram is the critical point. We know it lies on the
spinodal, so it must satisfy Equation 7.5.8. But, we need another condition to make it a single,
special point. The easiest way to visualize this is to return to Figure 7.10c and the plots of AGm at
different temperatures. Phase separation occurs only when we have the bump in AGm, so the
critical point marks the temperature where the bump first appears. This also corresponds to the
temperature where the two inflection points merge into one and this is determined by

63%“,
3x?

) = O at the critical point (7-5.9)
’11P

We can understand this by realizing that as T approaches TC from below, one inflection point
moves to the right, and one to the left. The rate of change of the inflection point,
3/3xg(82AGm/3x,2), vanishes when the two meet.

Algebraic expressions for the spinodal and the critical point of regular solution theory can be
directly obtained as follows. The chemical potential for component 1 (and of course, by symmetry,
we could equally well use component 2) comes from differentiating AGm:
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so

i :lnx1+(1—x1)—(1*X1)+X(1*xl)2
RT

=lnx1+ )((1-351)2 (7'5'12)

The stability limit can now be obtained by taking the derivative with respect to x1:

3 M1 1
3x1 (RT) x1 XS( 161) (7 5 13)

where the subscript s denotes the value of X on the spinodal. (You should convince yourself that if
we followed the prescription for the stability limit given by Equation 7.5.8, and took the second
derivative of AGm/kT from Equation 7.2.1 lb with respect to x1 instead of first obtaining [L1, we
would get the same relation.) This equation is a quadratic in x1:

1x? —x1+—=0 (7.5.l4a)
2X5

Note that this relation can be rewritten in the appealingly symmetric form

1 1
X1 IQ

The critical point requires that we differentiate Equation 7.5.13 once more:

1a (——2X(1 —x1)) = —§,+2Xc:0 (75.15)
6.17] 1C] 1

Equation 7.5.14a and Equation 7.5.15 constitute two simultaneous equations that can be solved to
obtain the critical point (see Problem 9): The result is x1 1,, : 1/2 (which we could have guessed from
the outset, due to symmetry) and Xe : 2. This means that unless it costs at least 2kT to exchange one
molecule of type 1 with one molecule of type 2, there will be no phase separation. To obtain the
critical temperature for a particular system, Tc, we need to know the value of X (i.e., zAw):

__ zAw _ zAw_ _ ___. 7.5.161% 2k ( )C

Generically, however, we can see that the larger Aw, the larger TC will be, and therefore the larger
the two-phase window. If, perhaps due to some specific interactions, Aw happens to be negative,
there will be no critical point according to regular solution theory; the system will be completely
miscible at all temperatures and in all proportions.

7.5.5 Phase Diagram from Flory—Huggins Theory

Now we can repeat this entire procedure for the Flory—Huggins theory. The main difference will be
that the value of N breaks the symmetry of the AS“, expression and will produce an asymmetric


