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SCOPE 

In this exercise we focus on the problem of estimating the conformational stiffness of 
unperturbed polymer chains of given chemical constitution via atomistic Monte Carlo 
simulations of single chains, using a detailed united atom force field for the representation of 
interactions.  

 

THEORETICAL NOTE – CONFORMATIONS OF POLYMER CHAINS 

A polymer chain can adopt a very large number of conformations.  By conformation 
we mean an arrangement of the chain in space, which is determined by the relative positions 
of all its monomers and dictates the set of n bond vectors connecting neighboring atoms 
along its backbone.  The conformations adopted by a polymer chain depend on three 
characteristics: (a) its stiffness, (b) interactions among its monomers, (c) interactions between 
the chain and its environment (other polymer chains in the case of a melt and/or solvent 
molecules in the case of a solution).  In Figure 1 we see a schematic representation of 
conformations of a polymer chain (red curve) inside a polymer melt and inside a  Θ-solution.   

The dimensions of polymer chains, which are usually expressed through its mean 
squared end-to-end distance 2R   or its mean squared radius of gyration 2

gR , and their 

conformational stiffness, which is usually quantified via Flory’s characteristic ratio, C∞, are 
related with a multitude of macroscopic properties which play an important role in the design 
of new polymeric materials and in the development of new coarse-grained models for these 
materials.    

Both in the melt state and in a solvent under Θ conditions [see Figure 1(a), (b)] 
polymer chains behave as if they are free of nonlocal nonbonded interactions[1] between 
topologically distant segments along their backbones and subject only to local interactions. 
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(a) Polymer chain in a polymer melt       (b) Polymer chain in a Θ-solution  

Figure 1. Schematic representation of the conformation of a polymer chain in two different 
environments: (a) polymer melt; (b) Θ-solution. 
This can be explained if one considers the constraints imposed on a chain by the surrounding 
chains in a melt, or by the surrounding solvent molecules in a Θ-solution.  Under Θ-
conditions, the tendency of the chain to swell in order to avoid nonlocal excluded volume 
interactions between topologically distant segments along its backbone is exactly 
compensated by a tendency to shrink in order to avoid unfavorable interactions between its 
segments and the surrounding solvent.   Similarly, in a melt a chain has nothing to gain by 
swelling to avoid nonlocal excluded volume interactions, since, if it does so, it will encounter 
other chains which look like itself.  Such chains in a melt or Θ solution are called 
unperturbed.  In Figure 2 we see a representation of a single chain of polypropylene.  The 
end-to-end distance vector R, the number of skeletal bonds n, and the equilibrium length of 
skeletal bonds l are marked in the figure. 

 

 

 

Figure 2. Schematic representation of a single chain of polypropylene, showing the end-to-
end vector R, the number of skeletal (backbone) bonds n, and the skeletal bond length l.  
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The chains in an amorphous polymeric material (polymer melt, polymer glass) can be 
considered as unperturbed, to a very good approximation (Flory’s random coil hypothesis) [2]. 
In a sufficiently long unperturbed chain, the mean squared end-to-end distance 〈R2 〉 grows 
linearly with the number of skeletal bonds, n.  Flory’s characteristic ratio[1], C∞, is defined as 

                                                                  (1)                                                                                            
where l2 is the mean squared length of skeletal bonds.  Moreover, in a sufficiently long 
unperturbed chain the mean squared end to end distance 〈R2〉  and the mean squared radius of 
gyration 〈Rg

2〉  are related via the equation 

                                                                                                                  (2) 
 

The dimensions of polymer chains are related, inter alia, with viscoelastic properties 
such as the shear stress relaxation modulus G(t) and the molar mass between entanglements  
Me. Through theoretical semiempirical relations, the dimensions of polymer chains have been 
connected quantitatively to melt viscoelastic properties.  These relations have been validated 
in important research studies such as those of Fetters et al.[3-5]. 

Experimentally, the stiffness and the dimensions of polymer chains can be estimated 
by two methods.  The first is based on measurements of the intrinsic viscosity, [η][6-8] . The 
second employs small angle neutron scattering (SANS) measurements[9-11].  
 The stiffness of unperturbed polymer chains can be predicted via the Rotational 
Isomeric State theory (RIS)[12-15].  In that theory, the calculation of 2R  and 2

gR  is based 
on a discretization of the space of different conformations that can be taken on by an 
unperturbed chain.  Each skeletal bond is envisioned as capable of adopting a number of 
discrete torsional states, the torsion angle values attributed to these states and the relative free 
energies of pairs of states of successive bonds being determined by detailed atomistic 
conformational analysis of oligomeric analogues of the chain.   

More recently, computations employing Monte Carlo sampling techniques and 
allowing for continuous variation of torsion angles have gained ground in relation to RIS 
model-based analytical calculations.  For example, by analyzing well-equilibrated 
configurations of polymer melts obtained from connectivity-altering Monte Carlo 
simulations[16-20] one can readily compute 2R , 2

gR  and C∞  in the melt state.  These 
simulations take into account all interactions, inter- and intramolecular, bonded and 
nonbonded, local and nonlocal.     

Obviously, atomistic simulations of single chains are much less computationally 
expensive than multichain simulations of the corresponding melts and would be preferable 
for the purpose of sampling uperturbed conformations and determining their spatial extent.  
Nevertheless, a problem arises in single chain simulations with the definition of local 
interactions.  In other words, it is not obvious how, given the chemical constitution of a chain, 
one should define a range along the chain backbone within which all interactions can be 
considered local, such that sampling of single chains subject to these interactions only would 
yield a distribution of conformations representative of the melt state.   
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METHODOLOGY – SINGLE UNPERTURBED CHAIN MONTE CARLO 
ALGORITHM 
 

The general methodology we will invoke in this computational exercise to estimate 
the dimensions and stiffness of unperturbed chains from their chemical constitution is based 
on conducting Monte Carlo simulations.  These simulations are designed to sample the 
equilibrium distribution of conformations of a chain of given length n and chemical 
constitution at given temperature T[21,22].  In Figure 3 we present the general flow diagram of 
the algorithm we will use.  Initially, we generate a starting conformation for the chain we 
wish to study.   

 
 
 

 
 

Figure 3. Flow diagram of the Monte Carlo algorithm to be used for sampling single chains.   

Following the initial conformation generation, we enter the main loop of iterations of 
the algorithm.  In each iteration we choose randomly one of the five Monte Carlo moves 
depicted in Figures 4 and 5.  We implement the move, attempting a change in the 
conformation of the single chain, and we calculate the energy difference ΔU between the trial 
conformation and the old conformation according to a force field describing bonded and 
nonbonded interactions in the system.  The trial conformation is accepted or rejected 
depending on the value of ΔU/(kBT), with kB being the Boltzmann constant, according to a 
typical Metropolis selection criterion, as shown in Figure 3.  By repeating this procedure 
many times, we ultimately generate a large set of single-chain conformations representative 
of thermodynamic equilibrium of the sampled chain at temperature T.  By taking averages of 
specific characteristics of the chain, such as the squared end-to-end distance, over all 
conformations in the set, we compute conformational properties, such as Flory’s 
characteristic ratio.   
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The most important contribution of the methodology, however, is the computational 
scheme that has been developed for distinguishing between local and nonlocal interactions.  
This distinction is graphically represented in Figure 6.    

  

 
 
Figure 4. The three Monte Carlo moves used for all polymer chains (linear or not).  (a) initial 
configuration of the chain; (b) displacement of a single atom (move atom), during which an 
atom in the chain is randomly chosen and moved to a new position, picked from a uniform 
distribution within a cube of edge length Δr centered at the atom’s initial position; (c) flip 
atom move, during which a randomly chosen atom in the chain is rotated by a randomly 
chosen angle Δω around the axis connecting the atoms preceding and following it along the 
chain; (d) rotate strand (pivot) move, where an entire section of the polymer chain is chosen 
randomly and rotated around the bond connecting it to the rest of the chain by a randomly 
picked dihedral angle Δφ.    

 
Figure 5. The two Monte Carlo moves designed especially for nonlinear (branched) chains:  
(a) initial configuration of the chain; (b) flip branch move, during which a branch of the chain 
is chosen randomly and rotated by a randomly chosen angle Δω around an axis passing 
through the skeletal atom to which the branch is connected and drawn parallel to the line 
joining the skeletal atoms flanking the latter atom. (c) rotate branch move, during which a 
randomly chosen section of the branch is rotated around the bond connecting it to the rest of 
the chain by a randomly chosen angle Δφ.   
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By definition, an unperturbed chain is subject only to local interactions, such as those 
of Figure 6(a).  If nonlocal nonbonded interactions are included in the Hamiltonian of a long 
isolated chain, then the chain will shrink, as most of these inreractions will be attractive.  
Thus, a single chain subject to all nonbonded interactions among its segments will no longer 
display the linear scaling between 2R  and n that is characteristic of unperturbed chains.  
Below a certain temperature the chain will collapse, taking the form of a globule, or it will 
crystallize[23].  As has been shown in many computational works, the Flory characteristic 
ratio, C∞, depends in the range adopted for the calculation of local interactions.  The question 
arises, how should this range be defined in simulations of a single polymer chain, such that 
the sampled conformations are representative of real unperturbed chains encountered in melts 
and Θ-solutions?  

 

 
 

(a) local interactions                      (b) nonlocal interactions  
 

Figure 6. Schematic representation of (a) local and (b) nonlocal interactions along a single 
chain.   

In order to quantify the range of nonlocal interactions that should be included in the 
atomistic model of a single chain in order to sample unperturbed conformations 
representative of the melt state, we introduce a parameter, Δnpair

[21]. This parameter 
corresponds to the maximum topological distance along the chain backbone between 
electroneutral groups (usually structural units) within which nonbonded interactions (van der 
Waals and Coulomb) are active.  The functional expressions used to represent these 
interactions are taken from the force field chosen to represent the polymer under study.  Each 
atom in a given group i interacts with all atoms belonging to groups with indices  

pair pair,j i n i n ∈ − ∆ + ∆   along the chain.  The bigger Δnpair is, the larger the range of nonlocal 
interactions that are taken into account.  In order to determine an optimal value for the 
parameter Δnpair for a chain of given chemical constitution, we compute the stiffness of the 
chain as a function of Δnpair, as shown schematically in Figure 7 for polydimethylsiloxane 
(PDMS).  The red broken ellipses in Figure 7 surround the electroneutral structural units with 
which the central structural unit i is allowed to interact for Δnpair = 2.   As already mentioned, 
the larger Δnpair is, the larger the range of nonbonded interactions taken into account in 
sampling the chain.  We observe that the chain stiffness is maximized for a specific value of 
the parameter Δnpair.  In the case of PDMS the maximum occurs for Δnpair,= 2.  We assert that 
the optimal value for this parameter is the one for which the stiffness is maximized.  The 
latter assertion constitutes an empirical criterion.  Nevertheless, the values of characteristic 
ratios computed based on this criterion are in very good agreement with values extracted 
from well-equilibrated melt simulations employing the same force field parameters, as well 
as with measured experimental values.   
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Figure 7. Schematic representation of a single unperturbed chain of polydimethylsiloxane.  
The red broken ellipses surround the neighboring electroneutral structural units with which 
the atoms of structural unit i are allowed to interact for Δnpair = 2. The plot presents the value 
of the estimated Flory characteristic ratio at equilibrium, C∞, for various values of Δnpair at a 
temperature of 298 Κ. Also presented are typical conformations of an atomistically 
represented PDMS chain for each of these values of Δnpair.  Clearly, for Δnpair = 1 the chains 
are not stiff enough because not enough local interactions are included in the model.  On the 
other hand, for Δnpair = 3 and Δnpair = 4 the chains begin to collapse under the influence of 
attractive nonbonded interactions between topologically distant atoms.  There is a clear 
maximum in stiffness for Δnpair = 2 and this is taken as the optimal value of Δnpair for 
sampling unperturbed conformations of PDMS.  

 

 

COMPUTATIONAL PART 

In this computational exercise we will study the conformations adopted by single 
unperturbed chains of various molar masses for four polymers: Polyethylene (PE), isotactic 
polypropylene (i-PP), syndiotactic polypropylene (s-PP), and polydimethylsiloxane (PDMS).  
In Table 1 are presented the values of Δnpair that are appropriate for sampling each of these 
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chains in its unperturbed state and the mean values of bond lengths at equilibrium. Parameter 
ICoul is 1 if partial charges and electrostatic interactions are included in the force field used 
to describe a polymer and 0 if electrostatic interactions are absent from the model.  Clearly, 
electrostatic interactions are important only in the case of PDMS.   

Table 1. Recommended values of the parameters Δnpair , of the mean skeletal bond 
lengths l,  and of the parameter ICoul (parameter for the calculation of electrostatic 
interactions) for the polymers to be studied in this exercise at the temperatures 
indicated. 

Polymer T (K) l (Å) ICoul Δnpair 

polyethylene (PE) 450 1.54 0 2 

isotactic polypropylene (i-PP) 450 1.54 0 2 

syndiotactic polypropylene (s-PP) 450 1.54 0 3 

polydimethylsiloxane (PDMS) 298 1.64 1 2 

  

In Table 2 are presented the recommended percentages of the five different types of 
attempted Monte Carlo moves for the different polymers. 

Table 2.  Recommended values of the relative frequencies of attempt (%) for the five 
different types of attempted Monte Carlo moves for each polymer 

Polymer Move Atom Flip Atom Rotate Strand Rotate Branch Flip Branch 
PE 10.00 10.00 80.00 0.00 0.00 
i-PP 10.00 10.00 70.00 0.00 10.00 
s-PP 10.00 10.00 70.00 0.00 10.00 
PDMS 10.00 10.00 70.00 0.00 10.00 

 

In Table 3 are presented the equilibrium bond angles along the backbones of the four 
different polymers to be studied. 

Table 3. Equilibrium bond angles along the backbones of the four different polymers to 
be studied 

Angle θ  
CH2 – CH2 – CH2 114.000 

CH – CH2 – CH 114.000 

CH2 – CH – CH2 112.000 
Si – O – Si 146.460 
O – Si – O 107.820 

 

For each of the four different polymers you are given eight (8) different initial conformations, 
which you must equilibrate by running the executable file exercise.exe, implementing the 
Monte Carlo algorithm that was outlined in the theoretical section.  In order to run, the 
program needs two input files.  The first is named input.txt and contains all the information 
necessary for the simulation, such as the total number of attempted Monte Carlo steps, the 
percentages of different attempted Monte Caro moves, the name of the file containing the 
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initial conformation, etc.  For each simulation run you conduct you will have to modify the 
contents of input.txt on the basis of the information provided in Table 1.  The second input 
file contains the initial conformation of the polymer chain that will have to be equilibrated 
each time.  For each polymer to be studied you are given 8 such files, which correspond to 
different chain lengths.  The names of these files are of the form polymer_n_number.txt, 
where the number is indicative of the chain length, in skeletal bonds.  (Attention: the exact 
number of skeletal bonds, n, will be printed out in the output file!).  When the simulation is 
successfully completed, an output file will be produced, whose name is output.txt. This file 
contains the mean squared end-to-end distance, the mean squared radius of gyration, etc., as 
obtained from the simulation.  Please note that the output file is generated in the same 
directory in which the executable finds itself.  In case you wish to run a new simulation, after 
the first one is completed, you will have to move file output.txt to another location, so that the 
next simulation can start successfully.  Further information concerning the execution of the 
algorithm can be found within the presentation Instructions.pdf. All files needed for solving 
the computational exercise are available at the following link:  

http://comse.chemeng.ntua.gr/files/polymer_science/exercise_mar2021.zip 

 

After completing your simulations and making sure all systems have equilibrated for all 
chemical constitutions and chain lengths, please answer the following questions: 

1. Plot in a common diagram for all four polymers the dependence of the Flory characteristic 
ratio, Cn, as a function of the number of skeletal bonds n. Comment on the appearance of the 
resulting curves.  

2. Estimate the Flory characteristic ratio of the four polymers in the limit of infinite chain 
length, C∞, using a linear extrapolation method.  Make a table showing the values of C∞ for 
the different polymers you studied.   

3. Which of the four different polymers exhibits the highest conformational stiffness and 
why?  

4. Which of the four polymers is the most flexible and why?   

5. Is there a difference in stiffness between isotactic and syndiotactic polypropylene?  
Interpret the effect of tacticity on the Flory characteristic ratio of these two polymers and 
comment on the consequences of chirality on the properties of polymers in general.   

6. Calculate the Kuhn length, bΚ, and the number of Kuhn segments per skeletal bond, NK/n. 
for the four polymers.  You may need Table 3 for this calculation.  What is the physical 
meaning of these two quantities and how are they related to the stiffness of polymer chains?   

7. Calculate the ratio of the mean squared end-to-end distance to the mean squared radius of 
gyration for the four polymers and plot it as a function of n in a common diagram.  To what 
value does it converge and why?   

 

 

 

 

http://comse.chemeng.ntua.gr/files/polymer_science/exercise_mar2021.zip
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