
What is Matlab?

• Matlab - short for MATrix LABoratory - is a tool

for numerical analysis, matrix computation, control

system design, linear system analysis, design and

visualization.

What is Matlab used for?

• Matlab is used in almost all fields of engineering as

a tool for quickly writing programs to solve

problems.

• Matlab is also widely used in the field of research to

build software for specialized applications.

The main window…
The main window is divided into 4 main parts:

• Command window : When you start Matlab the command prompt
“>>” appears in the command window. This is where you type in
commands to tell Matlab what to do.

• Command history: It displays all the commands you ran in the
current and previous Matlab sessions. You can recall your previous
commands by clicking on commands displayed in the command
history.

• Workspace window: It keeps track of the variables that you have
defined and it enables you to view, change, and plot MATLAB
workspace values.

• Current Folder: Is the folder that your files will be stored and can
be accessed.

Use the command window

as a calculator:

• Type in the command window at the

command prompt (“>>”) a scalar (number)

operation and press “enter” after each

equation.

>>3+5

ans=

 8

Store values in variables:

• Type in the command window at the

command prompt (“>>”) exactly as shown

and press “enter” after each equation.

x=3

y=x+4

z=2*y+2*x

z=z+1

Result:

The Semicolon (;)

• Sometimes it is useful to have MATLAB print

the results of the calculations but this is not

always the case.

• MATLAB will print the result of every

assignment operation unless the expression

on the right hand side is terminated with a

semicolon (;).

• So if you are not interested in the intermediate

calculations and only need the final answer

end every command with a semicolon (;).

• >>z=2*x+y ;

SEMICOLON

Using the “help” function

• Matlab has a very useful help function.

• To see a list of help topics type in “help” at the
prompt.

• To find help on a specific topic type in “help”
followed by the topic name.

• e.g. To find help on how to save your file, type
in “help save”.

The working directory
• The working directory (current folder) is where

you save files and variables.

• You can also have Matlab display the current
working directory by typing in the command
“pwd” at the prompt in the command window.
(pwd stands for print working directory)

9

Some Basic Commands

*Matlab commands are case sensitive!

10

Command: Description

quit Quits the MATLAB program.

exit Has the same function as the “quit” command.

dir Lists the files and folders in the MATLAB current folder. Results

appear in the order returned by the operating system.

path Displays the MATLAB search path, which is stored in pathdef.m

clc Clears the command window.

clear Clears all variables from the workspace.

delete Deletes an object from the model.

who Lists in alphabetical order all variables in the currently active

workspace.

whos Lists in alphabetical order all variables in the currently active

workspace, including their sizes and types.

11

 >>clear

The workspace is cleared

Some useful operations, functions and constants

12

Writing Code in Matlab

13

There are 3 main ways of writing commands

in Matlab:

1.enter commands in the command window.
This amounts to using Matlab as a kind of calculator, and it

is good for simple, low-level work.

2.script M-file.
Here, one makes a file with the same code one would

enter in a terminal window. When the file is “executed”, the

script is carried out.

3.function M-file.
This method actually creates a function, with inputs and

outputs.

Creating Script Files (m-files)

• If we wish to execute repeatedly some set of
commands, and possibly change input
parameters as well, then one should create a
script M-file.

• Such a file always has a “.m” extension, and
consists of the same commands one would
use as input to the command prompt.

• Create a script file by opening up the editor
from the “file-menu”. Alternatively, type edit in
the command prompt.

• Now, instead of writing your commands at the
prompt write them in the editor window.

Creating an m-file:

15

Your editor window should look

like this:

16

Save

Execute

Let‟s try the previous example again

 Type the same commands within the editor:

17

Define all variables

Perform calculations

Non-executable comments after “%” symbol

Execute (run) the m-file

• You can execute the commands listed in
the saved m-file by:

A) Press the play button in the editor
window

B) Type the name of the saved m-file in the
command prompt and press enter

Built-In MATLAB ®

Functions

Introduction

• One of the most useful features of

MATLAB ® is its extensive library of built-

in functions, which allows users to perform

complicated calculations that include

mathematical functions (e.g. trigonometric

functions, logarithms, etc.), and statistical

analysis functions (variance, standard

deviation, etc.).

Using built-in functions

• The syntax for built-in functions is normally

similar in different programming

languages.

• One of the major advantages of MATLAB

® is that both scalars and matrices are

accepted as function arguments.

Using built-in functions cont‟d

• The sqrt function, for example, is used to

take the square root of a variable.

• If our variable, x, is a scalar, a scalar

result is returned.

>> x = 16;

>> a = sqrt(x)

• Returns a scalar:

>> a=4

Using built-in functions cont‟d

• However, if the input argument is a matrix, the
square root of each element is calculated, so

>> x = [9, 36, 16];

>> a = sqrt(x)

• Returns:

>> a = 3 6 4

Syntax

• Usually all built-in functions have three

components: 1) name; 2) input (also called

argument); and 3) output

• In our previous example, the name of the

function is sqrt; the argument, x, which

goes inside the parentheses, and the

output is the calculated value(s), a.

Syntax cont‟d

• Some functions require multiple inputs.

• The rem function, for example, requires a

dividend and a divisor:

>> rem(5,3)

• calculates the remainder of 5 divided by 3:

>> ans = 2

Syntax cont‟d

• One the other hand, some functions return

multiple outputs.

• For example, the size function returns two

outputs stored in a single array, determining the

number of rows and columns in a matrix,

respectively:

>> a = [4, 2, 7; 1, 5, 6];

>> b = size(a)

>> b = 2 3

Syntax cont‟d

• Variable names can also be assigned to

each of the output values:

>> [rows,cols] = size(a)

• Returns:

>> rows = 2

>> cols = 3

Elementary functions

logarithms, exponentials, absolute value,

rounding functions, and functions used in

discrete mathematics

Common Math Functions
• The table below summarizes common math functions

used in MATLAB ®. Note that the input can be both

scalar or matrix.

Source: MATLAB ® for engineers. Holly Moore, third edition

Example

Common Math Functions cont‟d

• As a rule of thumb in all computer programming

languages, the function log returns the natural logarithm

of a value.

• The functions log10 and log2 return base 10 and base 2

logarithm of the input argument, respectively.

• There is no specialized function for logarithms to any

other bases in MATLAB ®, and therefore, they will have

to be calculated if needed.

Common Math Functions cont‟d

• The MATLAB ® syntax for raising e to a power is
different from its mathematical notation.

• MATLAB ® uses exp function for this purpose.

• Hence, it should not be confused with the syntax
for scientific notation with exponentials.

• For example, the number 5e3 should be
interpreted as 5×103.

Example

• Create a vector x from -4 to 4 with an

increment of 2, and use the functions in

previous slides to find the natural

logarithm (ln (x)), common logarithm

(log10(x)), and the exponential of each

element of x. Use the rem function to find

the remainder of each of the elements of x

divided by 3.

Solution

Rounding functions

• The table below summarizes various functions

for different rounding techniques included in

MATLAB ®

Source: MATLAB ® for engineers. Holly Moore, third edition

Example

The ceil function below converts the vector

 x=[-4.2, -3.51, 2.1, 5.6] to

>>ceil(x)= [-4, -3, 3, 6]

Trigonometric functions

• A complete set of trigonometric functions, both

standard and hyperbolic, is included in MATLAB

®.

• The arguments in most of these functions should

be expressed as radians. However, there are a

number of functions that accept the angle in

degrees. These include: sind, cosd, and tand.

• The complete list of trigonometric functions can

be accessed in the help of MATLAB ®.

Trigonometric functions cont‟d
• The table below summarizes the most common

trigonometric functions in MATLAB ®.

Source: MATLAB ® for engineers. Holly Moore, third edition

Example

• Find the sine of 30 degrees using the sin

function. Use the sind function to check if

you get the same answer. Use the asin

function for the result to trace back the

angle that you used. Is this angle in

radians or degrees?

Solution

• The argument in the sin function should be in radians.

Whereas, the argument in the sind function should be in

degrees.

DATA ANALYSIS

FUNCTIONS

Data Analysis Functions

• A large number of built-in functions for

data analysis is included in MATLAB ®.

• These functions, along with the fact that in

MATLAB ® the whole data set can be

represented by a single matrix, makes

MATLAB ® a very useful tool for the

statistical analysis of different types of

data.

Most common data analysis functions

Source: MATLAB ® for engineers. Holly Moore, third edition

Most common data analysis functions cont‟d

Source: MATLAB ® for engineers. Holly Moore, third edition

Source: MATLAB ® for engineers. Holly Moore, third edition

Most common data analysis functions cont‟d

Source: MATLAB ® for engineers. Holly Moore, third edition

Source: MATLAB ® for engineers. Holly Moore, third edition

Source: MATLAB ® for engineers. Holly Moore, third edition

MATLAB ® is column dominant

• Whenever there is choice between the columns and

rows, MATLAB ® will choose columns first.

• Therefore, If the evaluation of data in rows is required,

the matrix containing the data should be transposed.

• A single quote (') is used in order to transpose the

matrix.

• For example, the following lines of code return the

maximum value in each row of the matrix:

>> x=[1,4,2;5,2,3];

>> max(x‟)

Example

• Use the functions in this section to find the

mean, median, and the maximum value of

the matrix x (given below) in each column

and each row. Find out the minimum value

in the entire matrix and figure out in which

column does this minimum occurs.

• x=[23,34,17;5,8,12;30,14,23]

Solution

MATRIX OPERATIONS

CREATING MATRICES

MATRIX

A matrix is a collection/array of

numbers arranged in fixed

number rows and columns.

Each number that makes up a

matrix is called an element of

the matrix. The elements in a

matrix have specific locations.

Example of a 3x3

matrix

















698

51020

674

3

2

1

321

Location Element

(1,1) 4

(1,2) 7

(1,3) 6

(2,1) 20

(2,2) 10

(2,3) 5

(3,1) 8

(3,2) 9

(3,3) 6

A

Vectors

A matrix with one row and multiple columns

is called a row vector

Ex 1x4 row vector

A matrix with one column and multiple rows

is called a column vector

Ex 3x1 column vector

7532310

31

22

12

CREATING ROW VECTOR IN

MATLAB
To create a row vector, separate the

elements by commas. Use square brackets

Ex >> rv=[1,4,5]

rv =

 1 4 5

CREATING COLUMN VECTOR

IN MATLAB
To create a column vector, separate the
elements by commas. Use square brackets
EX >> cv=[1;4;5]
cv =
 1
 4
 5
You can create a column
vector using transpose
Notation (´) too
Ex >> cv=rv´

MERGING ONE VECTOR TO

ANOTHER
You can merge one row vector into another to create a
longer vector

Ex >>rv1=[1,2,3] and >>rv2=[4,5,6]

>>rv3=[rv1,rv2] will give the same result as
>>rv3=[1,2,3,4,5,6]

Similarly you can merge one column vector into another
to create a longer column vector with values of original
column vectors

Ex >>cv1=[1;2;3] and >>cv2=[4;5;6]

>>cv3=[cv1;cv2] will give the same result as
>>cv3=[1;2;3;4;5;6]

CREATING LONG VECTORS WITH

REGULAR SPACED ELEMENTS
Creating vector which contains elements from 1 to 100 i.e. [1,2,3..100] in the
normal way requires writing 100 elements which is time consuming and not
efficient

Matlab provides a better way to create such long vectors given that the spacing
between the adjacent elements is equal

Syntax rv=e1:steps:e2

Creates a row vector rv of values between element 1 i.e. e1 and element 2 i.e.
e2 with increments given by steps

Ex

>> rv=1:2:5 will create a vector from 1 to 5 with increments of 2

i.e. rv=[1 3 5]

>> rv=-10:5:4 will create a vector from -10 to 4 with increments of 5

i.e. rv=[-10 5]

>> rv= 1:1:100 will create a row vector from 1 to 100 with increments of 1

CREATING LONG VECTORS WITH

REGULAR SPACED ELEMENTS

Another command called linspace also creates a regularly row vector.
However compared to colon operator used in previous slide we need to specify
the number of elements we want between element 1 and element 2 rather than
the increment.

Syntax: linspace(e1,e2,n) will create a long vector with n regulary spaced
elements between e1 and e2

Ex.

 >> linspace(0,20,5)

will create 5 regularly spaced element between 0 and 20

i.e. [0 5 10 15 20]

The increment here can be defined by (e1-e2)/(n-1)

Which is (20-0)/(5-1)=5

Hence it can also written as

 >> 0:5:20

DEFINING MATRIX IN MATLAB

For small matrix we can

type it row by row with

spaces or commas and

separating the rows with

semicolons

Ex: A=[1,2,3;4,5,6;7,8,9]

Creates



















987

654

321

A

CREATING MATRIX FROM VECTORS

You can create the matrix using existing vectors.

A=[1,2,3;4,5,6;7,8,9]

Can also be created using existing row or columns
vectors

Ex >>a=[1 2 3] >>b=[4 5 6] >>c=[7 8 9]

>> A=[a;b;c]

Remember [a,b,c] will result in long row vector [1 2 3 4 5
6 7 8 9] as discussed in merging vectors slide



















987

654

321

A

Matrix handling

ACCESSING AND MODIFYING

MATRIX/VECTOR ELEMENTS

Remember: Each matrix is formed of elements
at various locations.

Once you have a matrix individual elements of
the matrix can be accessed and modified

Ex

A(1,1) denotes the element in first row and
column which in our case is 4

A(2,4) denotes the element in second row and
fourth column

>>A(1,1)=25 will replace the first row and first
column with 25

Resultant matrix will look like

A=

 25 7 6

 20 10 5

 8 9 6

Example of a 3x3

matrix

















698

51020

674

3

2

1

321

Location Element

(1,1) 4

(1,2) 7

(1,3) 6

(2,1) 20

(2,2) 10

(2,3) 5

(3,1) 8

(3,2) 9

(3,3) 6

A

ACCESSING AND MODIFYING MATRIX/VECTOR

ELEMENTS

The colon operator can be used to access rows, columns, or submatrix of
a matrix

 rows columns

Ex. >> A(1:3,1:3) access rows 1:3 and columns 1:3 of matrix A and since
the matrix A is 3x3 it is same as typing

>> A(:,1) accesses all rows and first column i.e

ans=

 4

 20

 8

>> A(2:3,1:2) accesses second to third row and first to second column
i.e.

ans=

 20 10

 8 9

>> A(1:2,:) accesses first to second row and all columns i.e.

Ans=

 4 7 6

 20 10 5

Similary you can access any part of the matrix specifying the rows and
columns you need

Example of a 3x3 matrix

















698

51020

674

3

2

1

321

A

Location Element

(1,1) 4

(1,2) 7

(1,3) 6

(2,1) 20

(2,2) 10

(2,3) 5

(3,1) 8

(3,2) 9

(3,3) 6

Matrix Addition and Subtraction

Matrix addition and subtraction are element by element

operations which means that individual elements of the one

matrix at a specific location are added and subtracted from

the individual elements of other matrix at the same location.

Ex

























































































29

02

2454

3342

25

34

44

32

61

66

2454

3342

25

34

44

32

Matrix Addition and Subtraction

Ex

In matlab they are performed as follows:

>>A=[2 3; - 4 4] >>B=[4 3;5 2]

>>A+B

>>A-B

























































































29

02

2454

3342

25

34

44

32

61

66

2454

3342

25

34

44

32

Multiplication of scalar to a

matrix
A scalar when multiplied to a matrix results

in each of the element of the matrix to be

multiplied by that scalar number.

Ex




































1212

96

3434

3332

44

32
3

MULTIPLICATION OF MATRIX

TO A MATRIX

1] Element by Element multiplication

In matlab element by element multiplication if performed using “.*”
operator

Ex.

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A.*B

2] Matrix Multiplication

In maltab matrix multiplication is performed using “*” operator

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A.*B










































 820

98

2454

3342

25

34

44

32










































 44

1223

)24()34()54()44(

)23()32()53()42(

25

34

44

32

ELEMENT BY ELEMENT

DIVISION OF MATRIX

1] Element by element right division

In matlab element by element right if performed using “./” operator

Ex.

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A./B

2] Element by element left division

is performed using “.\” operator

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A.\B











































 28.0

15.0

2454

3342

25

34

44

32










































































5.025.1

12

2454

3342

5.025.1

12

4245

3324

25

34

44

32

11

11

OR

NORMAL DIVISION OF

MATRIX

1] Right division

In matlab element by element right if performed using “/” operator

Ex.

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A/B or A*inv(B)

2] Left division

In maltab matrix left is performed using “\”

operator

 >> A=[2 3; -4 4] >>B=[4 3; 5 2]

 >>A\B or inv(A)*B

1

25

34

44

32

25

34

44

32


















































































25

34

44

32

25

34

44

32
1

\

Symbol

+

-

+

-

.*

./

.\

.^

Examples

[3,2]+2=[5,4]

[3,4]-5=[-2,-1]

[4,3]+[4,8]=[8,11]

[2,5]-[3,7]=[-1,-2]

[1,2].*[3,4]=[3,8]

[1,3]./[2,8]=[1/3,2/8]

[1,3].\[2,8]=[1\3,2\8]

[2,3].^2=[2^2,3^2]

2.^[2,4]=[2^2,2^4]

[7,2].^[2,4]=[7^2,2^4]

Operation

Scalar-array addition

Scalar-array subtraction

Array addition

Array subtraction

Array multiplication

Array right division

Array left division

Array exponentiation

Form

A + b

A – b

A + B

A – B

A.*B

A./B

A.\B

A.^B

Element by element matrix

operations

Basic Matrix handling

functions

Inbuilt matrix handling functions

1] Syntax: size(A)

 Explanation: Returns a row vector [a b] containing the number of

rows and columns of matrix A

 >> size(A) >>size(B)

 >> ans= >> ans=

 3 3 2 3

2] Syntax: sum(A)

 Explanation: Returns a row vector containing the sum of elements in

each column of matrix A

 >> sum(A) >>sum(B)

 >> ans= >> ans=

 12 15 18 5 7 9



















987

654

321

A 









654

321
B

Inbuilt matrix handling functions

3] Syntax: max(A)

 Explanation: Returns a row vector containing the maximum of

elements in each column of matrix A

 >> max(A) >>max(B)

 >> ans= >> ans=

 7 8 9 4 5 6

4] Syntax: min(A)

 Explanation: Returns a row vector containing the minimum of

elements in each column of matrix A

 >> min(A) >>min(B)

 >> ans= >> ans=

 1 2 3 1 2 3



















987

654

321

A 









654

321
B

Inbuilt matrix handling functions

5] Syntax: [row,column]=find(A)

 Explanation: Returns a two row vector containing the index of all

non-zero elements in each column of matrix A

 >> [a,b]=find(A) >>[a,b]=find(B)

 >> a= >> a =

 1 2 3 1 2 1 3 2 2 1 2

 b= b =

 1 1 1 2 2 3 3 1 2 3 3



















907

054

321

A 









654

300
B

Inbuilt matrix handling functions

6] Syntax: zeros(a,b)

 Explanation: Creates a matrix of zeros containting “a” rows and

b”columns

 >> A=zeros(4,2)

 >>A=

7] Syntax: ones(a,b)

 Explanation: Creates a matrix of ones containting “a” rows and

b”columns

 >> A=ones(4,2)

 >>A=

00

00

00

00

11

11

11

11

Inbuilt matrix handling functions

8] Syntax: eye(a,b)

 Explanation: Returns axb matrix with ones on the main diagonal and

zeros elsewhere

 >> A=zeros(4,3)

 >>A=

000

100

010

001

Other Functions to Create and

Manipulate matrices

MATLAB for engineers. Holly Moore, third edition

PLOTING

NOMENCLATURE

A PLOT MAY

CONTAIN

1] X and Y Axis

LABELS

2] TITLE OF THE

PLOT

3] TICK MARKS

4] LEGENDS

5] DATA SYMBOL

BASIC 2D PLOT COMMAND

MATLAB BASIC PLOT COMMAND

>> plot (x,y)

Simplest Case: Both x and y are one dimensional
vectors

IMPORANT NOTE:
 Both vectors must have the same number of
elements (They should be of same length)

The curve is made from segments of lines that
connect the points that are defined by the x and y
coordinates of the elements in the two vectors.

PLOT OF A DATA SET

X 1 4 6 10 20

Y 10 15 25 8 16

IN COMMAND WINDOW OR AS

SCRIPT IN AN M-FILE

>> X=[1, 4, 6, 10, 20]

>> Y=[10, 15, 25, 8, 16]

>>plot(X,Y)

PLOT FROM THE DATA SET

X – coordinate will be 1,4,6,10,20

Y-coordinates are 10,15,25,8,16

Points are (X-coordinates ,Y-

cooridnates)

Points - (1,10) (4,15) (6,25) (10,8)(20,16)

EXAMPLES
>>A=1:3 >> A=1:3

>>B=4:6 >> B=[4,5]

>>plot (A,B)

>>plot(A,B)

1] 2]

Plot command

will not work

as vectors A

and B are not

of same length

PLOTTING OF SIMPLE FUNCTIONS

EXAMPLE: PLOTTING A LINE y=3x+2

First you have to choose a range of x values for which

you want to plot the functions . Then a step size to

create an adequate number of equally spaced points

Here we pick range of x to be -10 to 10, and a step size

of 1. This will create 21 points.

>> x=-10:1:10;

>>y=3*x+2;

>> plot (x,y)

COMMON ERROR FOR NONLINEAR

FUNCTIONS

EXAMPLE: Plotting 3x^2+2

>> x=-10:1:10;

>>y=3*x^2+2;

>> plot (x,y)

This will give a error as x is
a vector and x^2 does not
exist.

So as discussed in earlier
modules we have to use

x.^2 to raise every element
of vector x to the 2nd power

EXAMPLE: Plotting
3x^2+2

>> x=-10:1:10;

>>y=3*x.^2+2;

>> plot (x,y)

LINE SPECIFIERS

>> plot (x,y,‟Linespec‟)

1] Line style (solid line, dashed line, dotted line)

2] Marker symbol (diamond, star, etc.)

3] and color (blue, red, green ,etc.) are the three line-
specifiers.

They are specified as a string

The elements of the string can appear in any order, and you
can omit one or more options from the string specifier.

EXAMPLES
>> plot(x,y,‟g:*‟)

This will plot the curve with the data
in x and y

The specifier: „g:*‟ will plot a green
dotted line with * data points marker

More Examples

„or--„ will plot a red dashed line with o
marker

„-x‟ will plot a solid line with x marker
and blue color (default)

NOTE: Use of two same category
specifiers such as „rg‟ which both
define color will give a error

Only one element of each of the line
style , color and marker should be
used

ALLOWED SPECIFIERS
Specifier Line Style Specifie

r

Marker Specifie

r

Color

- Solid line

(default)

o Circle b Blue (Default)

-- Dashed line + Plus sign m Magenta

: Dotted line * Asterisk c Cyan

-. Dash-dot

line

. Point r Red

x Cross g Green

s Square w White

d Diamond k Black

^ Upward pointing

triangle

y Yellow

v Downward pointing

triangle

> Right pointing triangle

< Left pointing triangle

p Pentagram

h Hexagram

LOGARITHMIC PLOTS

LOGARITHMIC PLOTS CAN BE CREATED BY
REPLACING THE PLOT COMMAND WITH:

• Table 5.4 Rectangular and Logarithmic Plots

plot(x,y) Generates a linear plot of the vectors x and y

semilogx(x,y) Generates a plot of the values of x and y ,
using a logarithmic scale for x and a linear scale for y

semilogy(x,y) Generates a plot of the values of x and y ,
using a linear scale for x and a logarithmic scale for y

loglog(x,y) Generates a plot of the vectors x and y ,
using a logarithmic scalefor both x and y

EXAMPLE

Plot the function 3x3 for x between 1 and 10 using a linear

scale for x and a logarithmic scale for y:

x=1:0.5:10; % Range of x values

y=3*x.^3; % Calculating the function 3x3

Semilogy (x,y,‟r-o‟)

PLOTTING MULTIPLE

GRAPHS IN THE SAME PLOT
Plot two (or more) functions in one plot using one of the two

methods:

1. Using the plot command.

2. Using the hold on, hold off commands.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-3000

-2000

-1000

0

1000

2000

3000

3x3

9x2

18x

1. USING THE plot() COMMAND

 Plots three graphs in the same plot:

 y versus x, y1 versus x1, and y2 versus

x2.

 By default, MATLAB makes the curves in different

colors.

 Additional curves can be added.

 The curves can have a specific style by adding

specifiers after each pair, for example:

>> plot(x,y,x1,y1,x2,y2)

>>plot(x,y,‟-b‟,x1,y1,‟—r‟,x2,y2,‟g:‟)

EXAMPLE

Plot the function 3x3 and its first and second derivate for a

range of x from -10 to 10.

>> x=-10:1:10; % Range of x values

>>y=3*x.^3; % Calculating the function 3x3

>>dy=9*x.^2; % Calculating the first derivate 9x2 for each x

value

>>dy2=18*x; % Calculating the second derivate

>> plot (x,y,‟r-‟,x,y,‟b:‟,x,dy2,‟g--‟)

hold on Holds the current plot and all axis properties

so that subsequent plot commands add to

the existing plot.

hold off Returns to the default mode whereby plot

commands erase the previous plots and

reset all axis properties before drawing new

plots.

2. hold on and hold off COMMANDS

TO PLOT MULTIPLE GRAPHS IN

THE SAME PLOT

NOTE: This method is useful when all the information (vectors)

used for the plotting is not available at the same time.

EXAMPLE
Plot the function 3x3 and its first and second derivate for a range of x from -
10 to 10.

>> x=-10:1:10; % Range of x values

>>y=3*x.^3; % Calculating the function 3x3

>> plot (x,y,‟r-‟)

>>hold on

>>dy=9*x.^2; % Calculating the first derivate

>> plot (x,y,‟b:‟)

>>dy2=18*x; % Calculating the second derivate

>>plot (x,dy2,‟g--‟)

>>hold off

FORMATTING PLOTS

A plot can be formatted to have a required appearance.

With formatting you can:

 Add title to the plot.

 Add labels to axes.

 Add legend.

 Change range of the axes.

FORMATTING COMMANDS

1] title(„string‟)

Adds the string as a title at the top of the plot.

>>x=-10:1:10;

>>y=3*x.^3;

>> plot (x,y);

>> title („Title of the Plot‟)

2] xlabel(„string‟)

Adds the string as a label to the x-axis.

>> xlabel („x range‟)

FORMATTING COMMANDS

3] ylabel(„string‟)

Adds the string as a label to the y-

axis.

 >> ylabel („ y values‟)

4] axis([xmin xmax ymin ymax])

Sets the minimum an maximum

limits of the x- and y-axes.

 >> axis ([-5 5 -1000 1000])

FORMATTING COMMANDS

5] legend(„string1‟,‟string2‟,‟string 3‟…) For each line plotted,

the legend shows a sample of the line type, marker

symbol, and color beside the text label you specify.

>> hold on

>> dy=9*x.^2

>> plot (x,dy,‟g--‟)

>>dy2=18*x;

>>plot(x,dy2,‟r:‟)

>>legend(„y‟, ‟First derivative‟, ‟Second derivative‟)

FORMATTING A PLOT IN THE

FIGURE WINDOW
Figures can be formatted interactively from the figure window

Use the edit

menu to edit

1] Axes

properties

2] Figure

properties

3] Current

object

properties

Use the insert

menu to

interactively

insert the

1]x label

2]y label

3] legend

4] textbox

5] colorbar

PLOTTING MULTIPLE

FIGURES IN ONE PAGE

subplot(m,n,p) divides the figure page into

an m-by-n grid. Combined with the plot

command it creates a plot in the grid

position specified by p.

[MATLAB® numbers its grids by row, such

that the first grid is the first column of the

first row, the second grid is the second

column of the first row, and so on.]

EXAMPLE SUBPLOT
subplot (1,2,2), plot(x,y)

divides the current figure in

1(rows)x2(columns) grid and creates a plot

in position 2 (on the right)

ROW

1

COL 1 COL 2

EXAMPLE SUBPLOT
EXAMPLE : subplot(2,4,5), plot(x,y) divides the current figure

in 2(rows)x4(columns) grid and creates a plot in position 5

1 2 3 4

5 6 7 8

ROW

1

ROW

2

COL 1 COL 2 COL 3 COL 4

SUBPLOT

Example:[combine subplot(), plot() in one or two
lines]

>> subplot (3,1,1)

>> plot(x,y)

>>subplot(3,1,2)

>>plot(x,dy)

>>subplot(3,1,3), plot(x,dy2)

Selection Statements &

Loops

Selection Statements

Selection Statements Loops

• if statement - for

• else if - while

Control flow in a program

Selection Loop n times

?

The if Statement

Syntax: Example:

 if g>50

 c=c+3-g

 disp(g)

 end

• Logical expression can be True (1) or False (0)

• If expression true then statements are executed

• Logical expressions are constructed using relational

and operators (next slide)

106

if (expression)

 statements

end

Logical Expressions:

true =1 false =0

Example:

>>a=3;
>>b=5;
>>c=7;

>>a>b %returns 0 (False)
>>b<c %returns 1 (True)
>>a>b | a<c %returns 1 (True) (only 1 has to be true)
>>a<b & b>c %returns 0 (False) (both have to be true)

107

< less than >greater than

<=less than or equal >=greater than

or equal

== equal ~=not equal

~ not

& and

| or

The else-if statement

Syntax:

• Only the statements following the first true expression are

executed (i.e. x=2 at the end).

• If no expression is True then statements after the else are

executed.

108

if (expression)

 statements

elseif (expression)

 statements

elseif (expression)

 statements

…

else

 statements

end

Example:

g=11;
if g<10

 x=1;

elseif g<15

 x=2;

elseif g<25;

 x=3;

else

 x=4;

end

x

for Loop

109

Example:

x=1;

for k=1:1:3

 x=3*k+x;

end

Syntax:

for k = start: increment: stop

 statements

end

• Statements within the Loop will be executed till

index/counter k reaches value stop

• The index k increases every time and can be used in

calculations

• If increment is omitted then increment of 1 is assumed

3 loops with k= 1, 2, 3

x=3*1+1
x=3*2+4

x=3*3+10

while Loop

while (expression)

 statements

end

example:

a=0;

while a<100

 a=a+3;

end

a

110

3 is added to a every time that the loop is repeated.

loop stops when a exceeds 100.

Example 1: Calculate the factorial of a number.

112

n= 10; % user can provide any number other than 10

factor=1; % variable that store the factorial. Initial is 1

for k=1:n

factor=factor*k;

end

factor %displays the final answer

Example 2: Write a script to count how many elements of a vector x =

[-4 0 5 -3 0 3 7 -1 6] are negative, zero or positive.

113

x=[-4 0 5 -3 0 3 7 -1 6];

negcounter=0;

zerocounter=0;

poscounter=0;

for i=1:length(x)

if x(i)<0

 negcounter=negcounter+1;

else if x(i)==0

 zerocounter=zerocounter+1;

else

 poscounter=poscounter+1;

end

Length of vector x is 9

x(1) during the first time through the loop,

accessing the first element of vector x.

Then x(2), x(3) etc.

Example 3: Generate 100 random numbers between 0 – 50. Make

them integers using the round function. Find if they can be divided

by 3 using the rem function and replace the ones that are not

divisible with zero.

y= 50*rand(1,100)+0;

y=round(y);

for i=1:length(y)

 yremainder=rem(y, 3);

 if yremainder~=0

 y(i)=0;

 end

end

114

User-Defined Functions

Introduction

• Functions, both built-in and user-defined, are

important tools in programming with MATLAB®.

• A function is a piece of code that accepts an

input argument from the user and returns an

output that can be used in the program.

• Functions are crucial for efficient coding since

they allow us to avoid rewriting the code for

frequently performed calculations.

1. Creating inline functions

• Function_name= @(independent var) function

• Example

 f= @(t,x) x+exp(t)

• Defined in the command window

• Call

 output=Function_name(independent var)

2. Creating function M-files

• Many of MATLAB® ‟s built-in functions have

already been explored in previous sections, but

here we focus on defining our own functions,

which we will commonly use in writing our own

programs.

• Very important note:

– Same as Scripts, User-defined functions will be

stored as M-files. However, they can only be

accessed by MATLAB® if they are stored in the

current folder.

Syntax

• The structure of built-in and user-defined MATLAB®
functions is similar. They both consist of a name, user-
provided input, and the calculated output.

• Each user-defined function should be created in a
separate M-file.

• The first line of a user-defined function should contain:
 The word function

 A variable (or an array of variables) that defines the
function output

 A function name

 A variable (or multiple variables) used for the input
argument

Syntax Cont‟d

• The following line is the first line of a user-

defined function called my_function:

function output = my_function(x)

• This function requires the user to provide

one input, i.e. x, and will calculate one

output argument, i.e. output .

Syntax Cont‟d

• The name of the function as well as the names of input

and output arguments can be chosen arbitrarily. These

names, however, should all satisfy MATLAB® naming

conventions for naming variables.

 The function name must start with a letter.

 It can consist of letters, numbers, and the underscore.

 Reserved names cannot be used.

 Any length is allowed, although long names are not good

programming practice.

• You can use isvarname command to check if a chosen

name is legitimate or not. (use help of MATLAB® for

more information).

Example

• The following line is an example of an
appropriate first line for a function called
calculation :

function result = calculation(a)

• Here, the function name is calculation,
the input argument will be called a, and
the output will be called result.

Example

• The following example shows a very simple MATLAB®
function that calculates the value of a 4th-order polynomial:

function y = polynomial(x)

%This function calculates the value of a 4th-order

%polynomial

y = 5*x.^4 + 3*x.^3 - 6*x.^2 +1;

• Before this function can be used, it must be saved into the
current folder. Additionally, the M-file name must be the same
as the function name in order for MATLAB® to find it (in this
case this function should be saved as an M-file with the name
polynomial).

Example Cont‟d

• Once the M-file is saved in the current folder, the
function is available for use from the command
window, from a script M-file, or from another function.

• A function M-file cannot be directly executed from the
M-file itself. This is because the input parameters have
not been defined until you call the function from the
command window or a script M-file.

• Consider the polynomial function that we have just
created. If, in the command window, we type:

 >> polynomial(4)

• MATLAB® returns:

 >> ans = 1377

Example Cont‟d

• We can also set a variable, for example b, equal to 4
and use it as the input argument:
>> b = 4;

>> polynomial(b)

>> ans = 1377

• Since array operators (.^ and .*) have been used in
the code, we can also use a vector as an input:
>> c= 2:6;

>> polynomial(c)

• MATLAB® returns:
>> ans =

 81 433 1377 3351 6913

Example Cont‟d

• If you try to execute the function by selecting the save-

and run icon from the editor menu, the following error

message will be displayed in command window:

>> polynomial

Error using polynomial (line 4)

Not enough input arguments.

• This is because MATLAB® cannot identify the value of x,

since it should be given to the function by the user, either

in the command window or within a script M-file program.

Comments

• In any computer program, it is useful to comment your code so that

it is easy to follow both for yourself or anyone who wants to use your

code.

• In a MATLAB® function, the comments on the lines immediately

following the very first line will exactly be returned when the help of

the function is typed in the command window.

• In our previous example, if we type help polynomial in command

window, MATLAB® will return:

Functions with multiple inputs

and outputs

• Similar to the case of built-in MATLAB®

functions, which may require multiple

inputs or return multiple outputs (e.g.

rem(5,3) or the size function), user-

defined functions can also be written in a

way to require multiple input arguments or

return multiple outputs.

Example

• The following user-defined MATLAB® function will accept two
inputs, a and b, and calculates the following:

function c = g(a,b)

% This function multiplies (a.^2) and b together

% a and b must be the same size matrices

c= (a.^2) .*b;

• When a and b are defined in the command window, or in a separate
M-file, and the function g is called, a vector of output values is
returned:
>> a = 3:7;

>> b = 5:9;

>> g(a,b)

>> ans =

 45 96 175 288 441

Functions with multiple inputs and

outputs Cont‟d

• User-defined functions can also be created to return
more than one output variable. To do so, the output
should be defined as a matrix of answers instead of a
single variable:

function [d, v, a] = motion(t)

% This function calculates the distance, velocity, and the

% acceleration of a particular car for a given value of t.

% The initial condition for all 3 parameters is considered
0.

a = t.^2;

v = t.^3/3;

d = t.^4/12;

Functions with multiple inputs and

outputs Cont‟d

• When the function is saved as motion in the current folder, it can be

called to find values of distance, velocity, and acceleration at a

specific time or a vector of time values:

[distance, velocity, acceleration] = motion(10)

distance =

833.3333

velocity =

333.3333

acceleration =

100

• Note that If you call the motion function without specifying all

outputs, only the first output will be returned:

motion(10)

ans =

833.3333

Local Variables

• It is of great importance to know that the variables used

in function M-files are local variables, unless otherwise

defined as Global variables (Global variables will not be

discussed here).

• This means that any variables defined within the function

exist only for the function to use. For example, consider

the g function previously described:
function c = g(a,b)

% This function multiplies (a.^2) and b together

% a and b must be the same size matrices

c= (a.^2) .*b;

Local Variables Cont‟d

• The variables c, a , and b are local variables. They can only be used

for calculations inside the g function, but they are not stored in the

workspace.

• To confirm:

– Notice that the only variable

 saved in the workspace is ans.

– If you type c in the command

 window, MATLAB® will return

 an error, because it cannot

 identify variable c.

