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Abstract

Knowledge-based or Artificial Intelligence techniques are used increasingly as alternatives to more classical techniques to model
environmental systems. We review some of them and their environmental applicability, with examples and a reference list. The
techniques covered are case-based reasoning, rule-based systems, artificial neural networks, fuzzy models, genetic algorithms,
cellular automata, multi-agent systems, swarm intelligence, reinforcement learning and hybrid systems.
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1. Introduction

Use of Artificial Intelligence (AI) in environmental modelling has increased with recognition of its potential.
AI mimics human perception, learning and reasoning to solve complex problems. This paper describes a range of AI
techniques: case-based reasoning, rule-based systems, artificial neural networks, genetic algorithms, cellular automata,
fuzzy models, multi-agent systems, swarm intelligence, reinforcement learning and hybrid systems. Other arguably
AI techniques such as Bayesian networks and data mining [21,148] are not discussed.

2. Case-based reasoning

2.1. Description

Case-based reasoning (CBR) solves a problem by recalling similar past problems [57] assumed to have similar
solutions. Numerous past cases are needed to adapt their solutions or methods to the new problem. CBR recognises
that problems are easier to solve by repeated attempts, accruing learning. It involves four steps [1] (Fig. 1):

(1) retrieve the most relevant past cases from the database;
(2) use the retrieved case to produce a solution of the new problem;
(3) revise the proposed solution by simulation or test execution; and
(4) retain the solution for future use after successful adaptation.
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Fig. 1. The CBR four-step process (adapted from [1]).

Retrieval recognises either syntactical (grammatical structure) or semantic (meaning) similarity to the new
case. Syntactic similarities tend to be superficial but readily applied. Semantic matching according to context is
used by advanced CBR [1]. The main retrieval methods are nearest-neighbour, inductive and knowledge-guided
[136].

Nearest-neighbour retrieval finds the cases sharing most features with the new one and weights them by importance.
Determining the weight is the biggest difficulty [166]. The method overlooks the fact that any feature’s importance,
influenced by other features, is case-specific [12]. Retrieval time increases linearly with database size, so the method
is time-consuming [166]. The inductive method decides which features discriminate cases best [166]. The cases are
organised in a decision tree according to these features, reducing retrieval time. However, the method demands a case
database of reasonable size and quality [136]. Knowledge-guided retrieval applies existing knowledge to identify the
important features in each case, assessing all cases independently. It is expensive for large databases and thus often
used with others [166].

After retrieval, CBR adapts past solutions to the new problem. Adaptation is structural or derivational [166].
Structural adaptation creates a solution to the new problem by modifying the solution of the past case; derivational
adaptation applies the algorithms, methods or rules used in the past case to the new case. The proposed solution is then
evaluated and revised if necessary. After it is confirmed, the solution is stored in the database. Redundant cases can be
removed and existing cases combined [57].

2.2. Discussion

By updating the database, a CBR system continually improves its reasoning capability and accuracy and thus
performance. CBR can handle large amounts of data and multiple variables. It organises experience efficiently. However,
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CBR cannot draw inferences about problems with no similar past cases. Also, CBR is a black-box approach offering
little insight into the system and processes involved. This is not a drawback for complex processes where understanding
is neither possible nor necessary.

CBR can be employed for diagnosis, prediction, control and planning [57]. Environmental applications include deci-
sion support [90,121], modelling estuarine behaviour [126], planning fire-fighting [9], managing wastewater treatment
plants [138,137,132,164], monitoring air quality [86], minimising environmental impact through chemical process
design [96] and weather prediction [139].

Box 1 An application of case-based reasoning.
“Constructed wetlands: performance prediction by case-based reasoning.” [101]
Lee et al. [100] tested the efficiency of constructed wetland filters by analysing the quality of
water fed through them. Half the filters received inflow contaminated with heavy metals. CBR
was applied [101] to improve water-quality monitoring and interpretation. Biochemical oxygen
demand (BOD) and suspended solids (SS) concentrations are water-quality indicators commonly
used for constructed wetlands. Measuring them is expensive, time-consuming and labour-
intensive. To reduce costs, Lee et al. [101] applied CBR to predict BOD and SS concentrations of
treated samples. It stored past cases with up to six variables, turbidity, conductivity, redox poten-
tial, outflow water temperature, dissolved oxygen and pH, selected for their predictive potential
for BOD and SS, cost-effectiveness and ease of measurement. Using statistical equations, local
similarities between each past case and the new problem were calculated with respect to one
variable and global similarity with respect to all variables. The three to five past cases ranked
highest by global similarity were selected. The target variables were predicted by combining
their values for those cases. The local similarity of variable i for past case c and problem case p
is

li = f

(∣∣∣∣Vip − Vic

MVi

∣∣∣∣
)

where Vip and Vic are the values of variable i for the problem case and past case, respectively,
MVi is the mean of variable i in the case base; |(Vip − Vic)/MVi| is the local difference; and f maps
local difference to local similarity. Global similarity is

g =
∑

i(li ∗ wi)∑
iwi

, i = 1, 2, . . . , n

where n variables represent a case and wi is the weight of variable i. The proportion Pj of the
prediction from past case j is

Pj = gj

gT
, j = 1, 2, 3, 4, 5

and gT is the sum of the global similarities of the 3–5 selected cases. Prediction P is

P =
∑

j

(Pj × TVj)

where TVj is target variable of past case j.
Outflow BOD and SS were successfully predicted by CBR, with 85% success rate in predicting
whether water samples complied with regulatory requirements. Constructed wetlands are con-
sidered hard to model because of their highly complex biochemical processes. However, this
study showed that CBR can be applied to such systems.
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3. Rule-based systems

3.1. Description

Rule-based systems (RBS) solve problems by rules derived from expert knowledge [74]. The rules have condition
and action parts, if and then and are fed to an inference engine, which has a working memory of information about the
problem, a pattern matcher and a rule applier. The pattern matcher refers to the working memory to decide which rules
are relevant, then the rule applier chooses what rule to apply. New information created by the action (then-) part of the
rule applied is added to the working memory and the match-select-act cycle between working memory and knowledge
base repeated until no more relevant rules are found [118].

The facts and rules are imprecise. Uncertainty can be incorporated in RBS by approaches such as subjective probabil-
ity theory, Dempster-Shafer theory, possibility theory, certainty factors and Prospector’s subjective Bayesian method,
or qualitative approaches such as Cohen’s theory of endorsements [118]. They assign to the facts and rules uncertainty
values (probabilities, belief functions, membership values) given by human experts. There are two rule systems, forward
and backward chaining [167]. Forward chaining is data-driven: from the initial facts it draws conclusions using the rules.
Backward chaining is goal-driven: beginning with a hypothesis, it looks for rules allowing it to be sustained. That is,
forward chaining discovers what can be derived from the data, backward chaining seeks justification for decisions [56].

3.2. Discussion

RBS are easy to understand, implement and maintain, as knowledge is prescribed in a uniform way, as condi-
tional rules. However, the solutions are generated from established rules and RBS involve no learning. They cannot
automatically add or modify rules. So a rule-based system can only be implemented if comprehensive knowledge
is available [41], and its application is quite limited. RBS are well suited to problems where experts can articulate
decisions confidently and where variables interact little. They may be difficult to scale up, as interactions then emerge.

Ecological systems, with complex interactions and processes often not well understood, do not favour RBS. RBS
are often used in narrower areas such as plant and animal identification or disease and pest diagnosis [107,177,52].
RBS can also be employed as an assessment tool, e.g. in evaluating regional environments [91] or assessing the
impact of water-regime changes on wetland functions [84]. Other studies have applied elements of RBS with other
modelling techniques (Section 11) in landscape-change modelling based on sea-level-rise scenarios [23] and assessing
the environmental life cycle of alternative energy sources [158].

Box 2 An application of rule-based systems.
“A diagnostic expert system for honeybee pests.” [106]
Mahaman et al. developed a rule-based system to diagnose honeybee pests and recommend
treatments. Pests (diseases, insects, mites, birds and mammals) may reduce the quantity and
quality of honey production. Threats to bee health must be identified and managed.
The first step was to learn from the literature and experts about pest symptoms. The results
were converted to conditional rules by backward chaining, specifying a goal then seeking facts
to support it. The system asks the user questions from the rules until a diagnosis is reached, e.g.:

• If the affected stage of the bee is the larva
• and the colour of the infected larva is black or white
• and the infected larva appears mummified
• or the cell cappings appear scattered
• then chalkbrood disease confidence = 80%.

The user is shown images of the symptoms and given possible control measures. Mahaman et
al. [106] checked diagnosis by the expert system with human experts. The results showed that
the system was effective, with performance close to that of a human expert.
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4. Artificial neural networks

4.1. Description

Artificial neural networks (ANNs) employ a caricature of the way the human brain processes information. An ANN
has many processing units (neurons or nodes) working in unison. They are highly interconnected by links (synapses)
with weights [170,133,5]. The network has an input layer, an output layer and any number of hidden layers. A neuron
is linked to all neurons in the next layer [71], as shown in Fig. 2.

Neuron x has n inputs and one output

y(x) = g

(
n∑

i=0

wixi

)

where (w0, ..., wn) are the input weights and g is the non-linear activation function [119], usually a step (threshold)
function or sigmoid (Fig. 3). The step-function output is y = 1 if x ≥ θ, 0 if x ≤ θ. The sigmoid function, more commonly
used, is asymptotic to 0 and 1 [83] and antisymmetric about (0, 0.5):

g(x) = 1

1 + e−βx
, β > 0

ANNs may be feedforward (the commonest) or feedback. Information flow is unidirectional in feedforward ANNs, with
no cycles, but in both directions in feedback ANNs so they have cycles, by which their state evolves to equilibrium [151].

Fig. 2. An example of an artificial neural network [134].

Fig. 3. (a) Step function and (b) sigmoid function.
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Fig. 4. Seven categories of tasks ANN can perform [83].

ANNs require few prior assumptions, learning from examples [133] by adjusting the connection weights. Learning
may be supervised or unsupervised. Supervised learning gives the ANN the correct output for every input pattern. The
weights are varied to minimise error between ANN output and the given output. One form of supervised learning,
reinforcement learning, tells the ANN if its output is right rather than providing the correct value [170]. Reinforcement
learning is discussed in Section 10. Unsupervised learning gives the ANN several input patterns. The ANN then
explores the relations between the patterns and learns to categorise the input [83]. Some ANNs combine supervised
and unsupervised learning.

4.2. Discussion

ANNs are useful in solving data-intensive problems where the algorithm or rules to solve the problem are unknown
or difficult to express [178]. The data structure and non-linear computations of ANNs allow good fits to complex,
multivariable data. ANNs process information in parallel and are robust to data errors. They can generalise, finding
relations in imperfect data so long as they do not have enough neurons to overfit data imperfections. A disadvantage of
ANNs is that they are uninformative black-box models and thus unsuitable for problems requiring process explanation.
If an ANN fails to converge, there is no means to find out why.

ANNs can be applied to seven categories of problems [83] (Fig. 4): pattern classification, clustering, function
approximation, prediction, optimisation, retrieval by content and process control. Pattern classification assigns an
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input pattern to one of the pre-determined classes, e.g. land classification from satellite imagery [140] or sewage
odour classification [122]. Clustering is unsupervised pattern classification, e.g. of input patterns to predict ecological
status of streams [163]. Function approximation, also called regression, generates a function from a given set of training
patterns, e.g. modelling river sediment yield [33] or catchment water supply [79], predicting ozone concentration [147],
modelling leachate flow rate [88] or estimating the nitrate distribution in groundwater [8]. Prediction estimates output
from previous samples in a time series, e.g. of weather [95], air quality [7,145] or water quality [178]. Optimisation
maximises or minimises a cost function subject to constraints, e.g. calibrating infiltration equations [82]. Retrieval
by content recalls memory, even if the input is partial or distorted, e.g. producing water-quality proxies from satellite
imagery [129]. An example of process control is engine speed control, keeping speed near-constant under varying load
torque by changing throttle angle [83].

Box 3 An example of an application of artificial neural networks.
“Use of ANNs for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia.”
Maier et al. [108] used ANNs to model the occurrence of cyanobacteria Anabaena spp. in the River
Murray at Morgan, South Australia. This species group, the commonest in the lower Murray, is of
great concern as Adelaide gets its water from there. Other studies had shown failure of process-
based and traditional statistical approaches to predict the size and timing of incidence of algae
species. ANNs seemed well suited to modelling ecological data, not requiring the probability
distribution of the input data.
The concentrations of Anabaena from 1985/1986 to 1992/1993 were tested against eight weekly
variables: colour, turbidity, temperature, flow, total phosphorus, soluble phosphorus, oxidised
nitrogen and total iron. The model included time lags of up to 21 weeks. Various network geome-
tries were examined. The number of hidden layer nodes was limited to ensure the ANN could
approximate a wide range of continuous functions yet avoid overfitting the training data:

NH ≤ 2NI + 1; NH ≤ NTR

NI + 1

where NH is the number of hidden layer nodes, NI is the number of inputs and NTR is the number
of training samples (here 365).
Training data were from 1985/1986 to 1991/1992. Earlier trials had determined the optimum learn-
ing rate and number of training samples. After training, data for November 1992 to April 1993
tested the network’s ability to provide 4-week forecasts. Sensitivity analyses were conducted on
the best models to determine the relative strength of relations between the input and output
variables.
The ANN model indicated that flow, temperature and colour had most influence on the Anabaena
spp. population. Addition of nutrients, iron and turbidity did not significantly improve the fore-
casts. The ANN successfully forecast the major peak in Anabaena spp. concentration in the River
Murray, although it missed a minor peak early in the test period. It was suggested that the dataset
used for model calibration contained insufficient data on that type of event. Maier et al. [108]
concluded that ANNs were a useful tool for modelling cyanobacteria incidences in rivers.

5. Genetic algorithms

5.1. Description

A genetic algorithm (GA) is a search technique mimicking natural selection [24]. The algorithm evolves until
it satisfactorily solves the problem, through the fitter solutions in a population surviving and passing their traits to
offspring which replace the poorer solutions. Each potential solution is encoded, for example as a binary string, called
a chromosome. Successive populations are known as generations [23].
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The initial population G(0) is generated randomly. Thereafter G(t) produces G(t + 1) through selection and repro-
duction [24]. A proportion of the population is selected to breed and produce new chromosomes. Selection is according
to fitness of individual solutions, i.e. proximity to a perfect solution [26], most often by roulette selection and deter-
ministic sampling. Roulette selection randomly selects a parent with probability calculated from the fitness fi of each
individual by [24]:

Fi = fi∑
ifi

Deterministic sampling assigns a value Ci = RND(nFi) + 1 to organism i of the n organisms in the population, where
RND rounds its argument to the nearest integer. Each organism is selected as a parent Ci times [24].

Reproduction is by genetic crossover and mutation. Crossover produces offspring by exchanging chromosome
segments from two parents [26]. Mutation randomly changes part of one parent’s chromosome. This occurs infre-
quently and introduces new genetic material [24]. Although mutation plays a smaller part than crossover in advancing
the search, it is critical in maintaining genetic diversity. If diversity is lost, evolution is retarded or may stop [76].
In steady-state GAs, offspring generated by the genetic operators replace less fit members, resulting in higher
average fitness. Simple or generational algorithms replace each entire generation [24]. Selection and reproduction
are repeated until a stopping criterion is met [24], e.g. all organisms are identical or very similar, a given num-
ber of evaluations has been completed, or maximum fitness has been reached; evolution no longer yields better
results.

5.2. Discussion

GAs are computationally simple and robust, and balance load and efficacy well [67]. This partly results from only
examining fitness, ignoring other information such as derivatives [94]. GAs treat the model as a black box, an advantage
when detailed information is unavailable.

An important strength of GAs is implicit parallelism; a much larger number of code sequences are indirectly sampled
than are actually tested by the GA [76]. Unlike most stochastic search techniques, which adjust a single solution, GA
keeps a population of solutions. Maintaining several possible solutions reduces the probability of reaching a false
(local) optimum [67]. Therefore GAs can be very useful in searching noisy and multimodal relations. However, the
latter may take a large computation time.

In most cases, GAs use randomisation in selection. They avoid picking only the best individual and thus prevent
the population from converging to that individual. However, premature convergence on a local optimum can occur if
the GA magnifies a small sampling error [63]. If a very fit individual emerges early and reproduces abundantly, early
loss of diversity may lead to convergence on that local optimum.

GAs often optimise model parameters or resource management. Some application examples include modelling
species distribution [153], air quality forecasting [87], estimating soil bulk density [38], calibrating water-quality
models [127], finding the best solution in an integrated management system [157] and water management
[80].

6. Cellular automata

6.1. Description

Cellular automata are dynamic models, discrete in space, time and state. They consist of a regular lattice of cells
which interact with their neighbours. The cell states are synchronously updated in time according to local rules, which
calculate the new state of a cell at time t + 1 using its state and those of neighbouring cells at time t [34]. The neighbours
are all those in given proximity, as illustrated in Fig. 5.

The simplest ‘elementary’ cellular automaton (CA) is a linear chain of n cells. The cell states in a one-dimensional
CA are

ai(t + 1) = f (a{i}(t))
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Box 4 An example of an application of genetic algorithms.
“Using genetic algorithms to optimise model parameters.” [165]
Wang [165] used a GA to calibrate a conceptual rainfall-runoff model of the Bird Creek catchment,
Oklahoma. The model had nine parameters, dealing with water balance and routing. The GA
optimised the parameters by minimising the sum of squares of differences between computed
and observed daily discharges.
The GA had a population size of n = 100 potential parameter solutions. The chromosomes had 7
bits, allowing 128 values. Selection assigned probability pj to point j:

pj = p1 + (j − 1)(pn − p1)

n − 1

The average probability was 1/n, the best point’s was 1.5 times the average and the probabilities
summed to 1 over all points. After ranking, the best point is j = n, with the largest probability
value pn. The worst is j = 1, with smallest probability value, p1.
Two points A and B are selected at random according to the probability distribution. Two bit
positions, k1 and k2, randomly selected in the chromosome coding, determine where crossover
occurs. A new point is produced by taking the values of bits k1 to k2 − 1 of A’s coding and values
of bits from k2 to the end and from 1 to k1 − 1 of B’s coding. Mutation of new points occurs with
probability 0.01.
The GA generated 10 runs with randomly selected initial populations. Each run was stopped
after 10,000 fitness evaluations. For all runs, the best objective function values were very close
to the global minimum. When the search converged on a local optimum, the local optimum
had a similar objective value to that of the global optimum. Wang [165] concluded that GAs are
capable and robust.

where ai is the state of cell i at time t and f(a{i}(t)) is a function of the states of its neighbouring cells [150]. If the
neighbourhood is the immediately adjacent cells, then

f (a{i}(t)) ≡ f (a{i−1}(t), a{i}(t), a{i+1}(t)).

For a 5-neighbour square two-dimensional CA with cells (i, j + 1) (i + 1, j) (i, j − 1) (i − 1, j) as the neighbours of cell
(i, j) [150],

ai,j(t + 1) = f (a{i,j}(t), a{i,j+1}(t), a{i+,j}(t), a{i,j−1}(t), a{i−1,j}(t))

As the cells are updated, the disordered initial state of the CA usually evolves [150] into one of four patterns I–IV
illustrated in Fig. 6: homogeneous, simple separated periodic structures, chaotic aperiodic patterns or a complex pattern
of local structures.

These patterns correspond to four classes of CA described by Wolfram [168]. Classes I, II and III are analogous to
the limit points, limit cycles and chaotic attractors observed in continuous dynamical systems. Class IV CAs have no
direct analogue, exhibiting complex behaviour neither completely repetitive nor completely random.

6.2. Discussion

One of the main problems with cellular automata concerns boundary conditions. In the periodic condition, the cells
on one edge are made neighbours with those on the opposite edge, producing a torus. Other possibilities are reflecting
and absorbing boundary conditions, which assume no off-lattice neighbours and assign the border states unique values
or rules. Unfortunately these boundary conditions are unlikely to reflect real life. The problem could be avoided by
making the lattice significantly larger than the area under study, at a higher cost in resources and computation [62].

Cellular automata are simple mathematical models that can simulate complex physical systems. They can incorporate
interactions and spatial variations, and also spatial expansion with time [54]. For some parameter values, they are very
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Fig. 5. Common neighbourhood configurations: (a) neighbourhood {−1, 0, 1}, (b) 5-neighbour square, also referred to as ‘von Neumann neigh-
bourhood’, and (c) 9-neighbour square, also referred to as ‘Moore neighbourhood’ (adapted from [68]).

sensitive to the initial state and transition functions. Therefore, they have limited capacity to make precise predictions
[81], but are often used to understand real environments.

Examples of CA applications include modelling population dynamics [51,152], animal migration [143], unsat-
urated flow [61], landscape changes [55], debris flow [39], earthquake activity [65], lava flow [37] and fire
spread [75,89]. In these examples it is clear how the state of a cell is influenced by the previous state of its
neighbours.

Fig. 6. The four classes of evolved patterns in CA: (I) homogeneous, (II) periodic, (III) chaotic, and (IV) complex pattern of localised structures
[114].
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Box 5 An example of an application of a cellular automaton.
“Simulation of vegetable population dynamics based on Cellular Automata.” [10]
Bandini and Pavesi [10] developed a CA-based model that simulated the population dynamics
of robiniae, oak and pine trees on the foothills of the Italian Alps. A two-dimensional CA was
created, with individual cells representing portions of a given area. The state of each cell was
defined by:

(i) the presence or absence of a tree,
(ii) the amount of resources (water, light, N and K) present, and
(iii) if a tree was present, its features (species, size and resource needs)

A cell can host a tree if the resources are suitable. The sprouting of a tree also requires that the
cell contains a seed and no other tree. Seeds can be introduced into the cell from fruiting trees
in neighbouring cells. As the tree grows, it has a greater resource requirement, obtainable from
neighbouring cells.
The development of this model involved defining rules describing tree sustenance and repro-
duction, resource production and flow, and the influence of a tree on neighbouring cells. Two
neighbourhood configurations, ‘von Neumann’ (5-neighbour) and ‘Moore’ (9-neighbour) were
considered.
The initial parameters of each cell are defined by the user. As the model runs, the system evolves
step by step. Bandini and Pavesi [10] found that the simulations were qualitatively similar to real
cases.

7. Fuzzy systems

7.1. Description

Fuzzy systems (FS) use fuzzy sets to deal with imprecise and incomplete data. In conventional set theory an object
is a member of a set or not, but fuzzy set membership takes any value between 0 and 1. Thus fuzzy models can describe
vague statements as in natural language [117]. Roberts [131] gives an example of a FS, a vegetation model assigning
plant communities to community types, with fuzzy membership indicating the degree to which the vegetation meets
each type definition. The membership values for each plant community sum, over all community types, to 1. For
example, plant community χ had fuzzy memberships {μi}: μ(PIPO/PIPO) = 0.2, μ(PIPO/PSME) = 0.3, μ(PIPO/PIPU) = 0.1
and μ(PIPO/ABCO) = 0.4 [131].

Fuzzification transforms exact (crisp) input values into fuzzy memberships [93]. Fuzzy models are built on prior
rules, combined with fuzzified data by the fuzzy inference machine. The resulting fuzzy output is transformed to a
crisp number (defuzzification [142]). Techniques include maximum, mean-of-maxima and centroid defuzzification.
Fig. 7 shows the components of a fuzzy system.

7.2. Discussion

Human reasoning handles vague or imprecise information. The ability of fuzzy systems to handle such informa-
tion is one of its main strengths over other AI techniques, although they are mostly easier to understand and apply.
One of the main difficulties in developing a fuzzy system is determining good membership functions. Fuzzy sys-
tems have no learning capability or memory [64]. To overcome such limitations, fuzzy modelling is often combined
with other techniques to form hybrid systems, e.g. with neural networks to form neuro-fuzzy systems (see Section
11).

Fuzzy systems handle incomplete or imprecise data in applications including function approximation, classifica-
tion/clustering, control and prediction. Instances include modelling vegetation dynamics [131], estimating soil hydraulic
properties [58], modelling macroinvertebrate habitat suitability [162], evaluating habitat suitability for riverine forests
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Fig. 7. The main components of a fuzzy system (adapted from [142]).

[141], modelling fishery landings [98], identifying ecological conditions in a lagoon [111], identifying oil spills from
satellite images [93], modelling solute transport [48], controlling wastewater treatment [173], combining rainfall-runoff
forecasts [169], predicting soil erosion [113], assessing environmental risk of drilling waste discharge [135], estimating
fire risk [78], predicting disease risk [59] and predicting regional drought [128].

Box 6 An example of an application of fuzzy systems.
“One-, two- and three-dimensional modelling of water movement in the unsaturated soil matrix
using a fuzzy approach.” [11]
Bardossy et al. [11] aimed at a simplified model of one-, two- and three-dimensional unsaturated
water flow in an unsaturated soil matrix, using fuzzy rules based on the Richards equation. The
Richards equation combines the unsaturated Darcy law and conservation of mass. However,
calculating two- and three-dimensional flow by this equation is made impracticable in many
cases by high computational demand.
The flow between two adjacent cells, j and j + 1, was determined by:

qj,j+1 = f

[(
θ

θs

)
j

,

(
θ

θs

)
j+1

, θs,j, θs,j+1, ks,j, ks,j+1

]

where θ/θs is the relative soil moisture of the cells, θs is the moisture at saturation, and ks is the
saturated hydraulic conductivity. Different rules were used for vertical and horizontal flow. An
example of a fuzzy rule for vertical flow (qv) is:

If (θ/θs)u is ‘high’ AND (θ/θs)l is ‘low’

THEN qv is ‘high’

The fuzzy model with only two parameters, θs and ks, performed well, running faster than its clas-
sical counterpart. However, Bardossy et al. [11] stressed that the fuzzy model is not a replacement
for the other model but a simplification of it. The Richards equation can provide information on
the cause of the water movement but the fuzzy model cannot, as it essentially only mimics water
movement. The fuzzy model only suits applications that require a solution that only describes
water movement.
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8. Multi-agent systems

8.1. Description

A multi-agent system (MAS) comprises a network of agents interacting to achieve goals [102]. An agent is a
software component containing code and data [125]. It is incapable of solving the problem assigned to the MAS on its
own [60]. The agents communicate by a high-level Agent Communication Language (ACL) through which they share
information, request services and negotiate with each other [125].

The most commonly used ACL is KQML (Knowledge Query and Manipulation Language). It has a communication
layer covering low-level parameters such as sender, recipient and communication identifiers. A message layer specifies
the performative and interpretation protocol, and a content layer contains further information on the performative [60].

Agent coordination is important, as messages are relayed and responses processed asynchronously between agents.
Coordination depends on the system’s infrastructure, which governs the pathways of information flow, degree of
concurrency, resource use and nature of interactions between agents [125]. The simplest infrastructure is a peer-to-
peer network, where all agents communicate directly. It suits problems needing fast, concurrent processing to arrive
at a solution without conflict resolution. Two other infrastructures, federated agent and multi-agent blackboard, are
commoner in MASs. A federated agent network contains facilitator agents as mediators between agents. Multi-agent
blackboard networks contain a central controller to coordinate agent activity and a public blackboard space where all
data are shared [125].

8.2. Discussion

MASs can model complex systems with multiple interactions among dynamic and autonomous entities. Their
effectiveness largely depends on the agent organisation. With the peer-to-peer infrastructure, network maintenance can
be problematic, as all agents are updated every time a new network component is added. In infrastructures with central
coordination, only the facilitator’s directory must be updated with new additions. However, processing bottlenecks may
occur [125]. Other difficulties in constructing MASs arise from their dynamic nature and the sophisticated interactions
between agents, where goals or allocation of tasks and resources may conflict [156].

Most early MAS applications included manufacturing, process control and information management [156]. Recently
MASs have been widely applied in natural-resource management [22,16,20,72]. Examples include rangelands [70],
the fishing [14], dairy [125] and forestry industries [130], forest ecosystems undergoing land-use change [115], urban
catchments [123] and irrigated farming systems [13] (Box 7). MASs are well suited to this field because of their ability
to represent complex systems with several stakeholders and allow exploration of alternative management approaches.
They do, however, seem more suited to social learning among interest groups than prediction of system behaviour.

9. Swarm intelligence

9.1. Description

Swarm intelligence (SI) is a form of agent-based modelling inspired by colonies of social animals such as ants
and bees [40] or schools of fish. While individual agents are simple, as a swarm they exhibit higher intelligence.
Self-organisation is a key feature, whereby global patterns emerge from local interactions, without centralised control
or a global model. These interactions can occur through direct (agent-to-agent) or indirect (via the environment)
communication. Another feature of SI is this indirect communication by modification of the environment, also referred
to as stigmergy [18]. An example of stigmergy is when ants deposit a pheromone while walking towards food sources
or their nest so that other ants can follow their trail.

The behaviour of ants is the basis of Ant Colony Optimisation (ACO), one of two main types of SI algorithms.
Isolated ants move randomly until they encounter a pheromone trail, which they are likely to follow and subsequently
reinforce with their own pheromone. Ants tend to choose trails with stronger pheromone concentrations, resulting
in autocatalytic behaviour, where the more traffic a trail receives, the more appealing it becomes [47]. Shorter paths
between destinations require less transit time and become dominant as they are reinforced with more pheromone
[47,176]. Through autocatalytic behaviour, all ants eventually choose the shortest trail [47]. Decay of pheromone with



392 S.H. Chen et al. / Mathematics and Computers in Simulation 78 (2008) 379–400

Box 7 An example of an application of multi-agent systems.
“Suitability of Multi-Agent Simulations to study irrigated system viability: application to case
studies in the Senegal River Valley.” [13]
Barreteau et al. [13] assessed the suitability of MASs to study viability of an irrigated system in the
Senegal River Valley. An MAS called SHADOC was used to test scenarios in the virtual irrigated
system. The Senegal River Valley provides water for pumping, and has ideal soil and climate
for rice cultivation and adequate labour resources. Development over the last few decades has
been less than expected, prompting exploration of new tools to improve prospects. The irrigated
system is complex, with multiple schemes, stakeholders and interactions, favouring an MAS.
Water is pumped from the river and run through the scheme. A modification, for instance of
the amount of water available, is perceived by each agent (farmer or group). The agents may
then get messages from others, such as an agreement to share water, to which they respond by
acting on the environment and sending messages. Each farmer belongs to groups but is uniquely
represented in the system, which includes the state of his plot, water availability and friendship
group, i.e. other farmers with whom he is willing to cooperate. Each farmer has a goal defining
investment priorities and other activities, and rules describing his behaviour.
A scenario was defined by the state of the environment, a set of individual rules and a set
of collective rules. One hundred random scenarios were run and assessed for viability. These
simulations allowed the irrigated system behaviour to be explored, providing a new means of
understanding and learning and minimising impacts on real systems.

time leads to random or less travelled (longer) paths decaying to zero concentration, analogously to gradual memory
loss [176].

ACO addresses discrete combinatorial optimisation, as in the travelling salesman and quadratic assignment problems
[144]. Populations of potential solutions are generated, each represented by a single path. Each path can have multiple
decision nodes. An ‘ant’ constructs a path from source to destination, selecting an edge at each node by a probabilistic
decision policy which takes account of pheromone intensity and the desirability of the edge, measured by its objective
function. For example, if the aim is to find the minimum distance between two points, shorter edges are more desirable
and the desirability of an edge is inversely proportional to its length. The probabilistic decision policy is commonly
[47,110]

pi,j(t) = [τi,j(t)]α[ηi,j]β∑
l ∈ θi

[τi,l(t)]α[ηi,l]β

where pi,j(t) is the probability of edge (i, j) being chosen at iteration t, τi,j is the pheromone intensity associated with
edge (i, j), ηi,j is the desirability of edge (i, j), α and β are parameters controlling the respective importance of the
pheromone intensity and desirability, and θi is the set of edges l available at decision node i.

When the ants reach the destination, the process is iterated over a specified number of cycles or until all ants use
the same path.

The other commonly applied SI algorithm is Particle Swarm Optimisation (PSO), inspired by the synchrony of flocks
of birds and schools of fish. The system is initialised with a random population of potential solutions or particles, which
are ‘flown’ through the N-dimensional problem-parameter space [92], in which each solution is a point. At each iteration,
the particles evaluate their fitness (positions relative to the goal) and share memories of their best positions with the
swarm. Subsequently each particle updates its velocity and position according to its best previous position and that of
the best particle in the swarm [53]. The algorithm also contains random functions in the range [0,1] to help prevent
convergence on local optima. The PSO algorithm adjusts the velocity V(t) vector of each particle by [159]:

V (t + 1) = aV (t) + bR1[pbest − X(t)] + cR2[gbest − X(t)]

where X(t) is the current position vector, ‘pbest’ and ‘gbest’ are the best solutions achieved to date by the particle
and population, respectively, R1 and R2 are the random numbers in [0,1], a is the momentum parameter, b is the
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self-influence parameter, and c is the swarm influence parameter. This is followed by adjustment of the position [159]
by

X(t + 1) = X(t) + V (t + 1)

The process ends when a specified number of iterations or CPU time is reached or ‘gbest’ cannot be further improved.

9.2. Discussion

These two SI techniques use algorithms versatile yet simple enough to be readily accessible for practical applications
and easy to implement. They distribute control through local rules between multiple agents, enabling the group to
perform its tasks even when one or more individuals fail [46]. This self-organisation allows adaptation to changes in
the environment. These features make SI systems robust against failures and perturbations [18], and give them the
ability to solve dynamic problems.

An important feature of ACO is autocatalytic behaviour, positive feedback to allow quick convergence to the
optimum. However, feedback may lead to stagnation and sub-optimal convergence. For small problems, this is less
of an issue as the optimum is more likely to be located before stagnation [6]. Exploitation and exploration must be
traded to balance optimality against computational efficiency, by adjusting the parameters of the decision policy and
pheromone decay. Refinements of the original ACO algorithm improve exploitation of good solutions [25,45,36],
e.g. the Max-Min Ant System algorithm which only adds pheromone to the best solutions and limits the strength of
pheromone added, to help avoid premature convergence [154].

As for GAs, PSO algorithms perform non-linear optimisation with a population of potential solutions, so are resistant
to trapping in local optima. However, rather than evolving ‘offspring’, PSO particles evolve their behaviour (velocities
and positions) [53]. For success, PSO must balance self-influence and swarm influence. If swarm influence is neglected,
poor exchange of information can lead to slow convergence. Overemphasis on self-influence can lead to premature
convergence through inadequate exploration [172]. The influence parameters are often set equal.

ACO was originally developed for the travelling-salesman problem, and has become popular in engineering for
optimal routing in telecommunication networks [42], of vehicles [44], water distribution systems [109,175], and
stormwater networks [6]. The technique has also been applied in management for time scheduling [146] and resource
allocation [171]. Environmental application of ACO has so far been limited, but the previous examples demonstrate its
potential. Examples of environmental applications include optimising sampling locations for long-term groundwater
monitoring [103] (Box 8), estimating unsaturated soil hydraulic parameters [2] and clustering ecological data for river
health assessment [110].

PSO was developed for global minimisation, but as for ACO has a wide range of applications, including pattern
recognition [174], project scheduling [179], resource allocation [172] and predictive temperature control [35]. Envi-
ronmental examples include optimising pump-and-treat systems for groundwater remediation [112] and optimising
parameters in a rainfall-runoff model and a soil moisture prediction model [66]. PSO has been successfully used to
train ANNs, for instance ANNs to predict river water levels [30], water quality [29] and air pollutant levels [105].

10. Reinforcement learning

10.1. Description

Reinforcement learning (RL) is learning through interaction between a learning agent and its environment [155].
The agent learns to achieve a goal by trial and error. An RL problem has three parts: environment, reinforcement
function and value function [73]. The environment is dynamic and has a set of possible states. For each state st at time
t there is a set A(st) of possible actions [155].

At time step tk the agent perceives the state st of the environment and chooses an action a which then alters st+1. The
environment responds with a scalar reinforcement (reward) signal r. The agent aims to select actions that maximise
its total reward on the way from the initial to the goal state [85]. Three classes of reinforcement function [73] are
pure delayed reward, minimum time to goal and games. Pure delayed reward gives no reward until the terminal state
is reached. The reinforcement at the terminal state can be positive or negative, indicating whether it is a goal state
(r = 1) or unfavourable (r = −1). Minimum-time-to-goal reinforcement return r = −1 if the goal state is not reached on
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Box 8 An example of an application of a swarm intelligence technique.
“Optimal groundwater monitoring design using an ant colony optimisation paradigm.” [103]
An aquifer in Pierce County, Washington, USA was contaminated by trichloroethylene up to
the 1970s. Long-term monitoring (LTM) of the groundwater had been conducted to assess the
performance of remediation and the risk to human health. LTM is by a network of 30 wells, this
number of locations making the program quite costly. The aim is to identify redundant monitoring
locations to reduce costs while still getting sufficient information about the contaminant plume.
ACO was considered appropriate for this non-linear combinatorial problem. The objective was

minZ =
√∑m

i=1((Cest,i − Ci)/min(Cest,i, Ci))

m

where m is the number of removed wells, Ci is the measured, Cest,i is the estimated concentration
in removed well i (the latter based on the remaining wells) and m = Sgoal is the desired number
of removed wells.
ACO was applied. Ants select wells to remove. An ant chooses well j from its current position at
well i with probability

pij = (τij)α(nj)β∑
l ∈ L(τil)α(nl)β

where α and β equal 1 and −1, respectively, and candidate well l is in set L. After an ant has visited
Sgoal wells, the overall data loss of the reduced LTM network is calculated as the root mean square
error (RMSE) of the estimated concentrations of the removed wells. Each ant colony consists of
30 ants and the search terminates after 50 runs. Optimal solutions were found for reduced LTM
networks of 21–27 wells. The RMSE was found to increase nonlinearly with number of removed
wells. A 30% reduction in the number of wells produced minor differences in the concentration
contours compared to contours from the existing 30-well network. The authors considered ACO
efficient and effective in solving the LTM optimisation problem.

performing an action, and zero if it is. This reinforcement function causes the agent to find the shortest path to the
goal. While systems using either of these two classes aim to maximise their score, the ‘games’ class involves finding
the maximum, minimum or saddle points of the reinforcement function. ‘Games’ is used when two or more competing
agents have opposing goals and actions are chosen independently but executed simultaneously [73].

While the reinforcement function specifies immediate desirability, a value function determines long-term desirability
[155]. The value function considers the states likely to follow an action and the reinforcements available in those states.
The value of a state is the sum of reinforcement expected over the future starting from that state. It is possible for
a state to attain a low (immediate) reinforcement but to have a high value if it is likely to be followed by states
yielding high reinforcements [155]. Commonly the value function is approximated through use of the Markov decision
process.

10.2. Discussion

Most applications of RL have been in robotics and game playing [85], where RL creates new behaviour rather
than modelling existing behaviour. Computer programs use RL progressively to improve efficiency and outcomes.
Limited studies have applied RL alone to solve environmental problems. However, its use with other AI techniques has
increased. As RL models are agent-based, they may have to model the behaviour of individual animals or humans. For
example, Tsoularis and Wallace [161] used RL to model feeding by a predator presented with similar-looking palatable
and unpalatable prey. In other examples, RL was used in combination with ANN to model the behaviour of fishermen
[50] and bees [120]. In all these examples RL was applied to simulations, so the environment and agents were created
to fit the given algorithm. It is difficult to formulate a policy that works successfully in real life [3].
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11. Hybrid systems

Hybrid systems combine two or more techniques (‘paradigms’) to gain strengths and overcome weaknesses. There
are three main types of hybrid systems according to how the techniques are combined: sequential, auxiliary and
embedded [69]. In a sequential hybrid, the first paradigm passes its output to the second to generate the output. In an
auxiliary hybrid, the first paradigm obtains some information from the second to generate the output. In an embedded
hybrid, the two paradigms are contained within one another [69].

The commonest hybrids are neuro-fuzzy systems, combining ANNs and fuzzy systems. They are effective: fast,
efficient and easily designed, implemented and understood [49]. By combining them, the need to prime fuzzy systems
is reduced by learning in ANNs. Fuzzy systems attenuate ‘noise’, from which some ANNs suffer.

Each AI technique has capabilities and limitations, making its suitability for environmental modelling problem-
specific. For example, CA has been successful in modelling spatial changes in landscape [55]. However, by combining
CA with MAS the model can incorporate human decisions driving the landscape changes [116], as in policy making and
land management. In another case, an ANN and GA were combined to optimise control of catchment-sourced nutrient
loads for water-quality management [99]. The ANN modelled total phosphorus concentrations in a reservoir and the
GA identified the best control scheme to reduce phosphorus loads [99]. These examples demonstrate the usefulness of
hybrid systems in complex problems.

On the other hand, a hybrid system may retain the weaknesses of both techniques and little of their strengths
[69]. Hybrid techniques also raise the problem of communication; different representations have to be translated into
a common language. Another problem of hybrid systems with learning is credit assignment [77]. If one component
cannot distinguish changes caused by its own actions from those due to others, penalties and rewards will be ineffective.

In principle, hybrids can be formed by any two or more techniques. Examples are:

• FS and ANN: water-level prediction [15] and predicting groundwater vulnerability [43].
• MAS and CA: simulating land-use and land-cover change [124,116], policy analysis [17], modelling urban sprawl

[104].
• Bayesian and ANN: predicting hydrological variables [97,31].
• FS and CA: modelling algal blooms [31] and insect infestation [19].
• GA and ANN: water-quality management [99], rainfall-runoff modelling [149].
• GA and Bayesian: modelling species distribution [160].
• FS and GA: modelling rainfall [28], calibrating a rainfall-runoff model [32].
• CBR and RBS: decision support for wastewater management [27].
• PSO and GA: developing pollution prevention and control strategies [159].
• ANN, FS and RL: optimising water allocation [4].

12. Overview of AI techniques

The suitability of AI techniques for environmental modelling is case-specific. Complex and poorly understood
processes may favour a black-box approach by e.g. CBR, ANN or GA. CBR requires similar past cases. ANNs learn
from training cases and capture relationships among data. They are versatile and have had a range of environmental
applications for classification, function approximation, optimisation and prediction. GAs evolve a set of potential
solutions towards a global optimum. ACO and PSO also do population-based optimisation. SI systems involve simple
agents, collectively solving a problem by local interaction. For problems with well-understood processes, RBS may
be applied. They are often used for diagnosis and identification of plants and animals. CAs and MASs are often used
to simulate complex systems. CAs model systems discrete in space, time and state and with local interactions. They
are used to understand and perhaps predict behaviour. MASs employ agents interacting to solve a common problem.
They are often suited to natural-resource management, exploring management strategies with stakeholders. In con-
trast, RL models the trial-and-error learning of individual agents. However, RL has mostly been limited to computer
programming, with few environmental applications so far. FSs, by contrast, have been applied to many environmental
problems because they can handle imprecise and incomplete data. FSs are often combined with other techniques to
form hybrid systems.
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Advances in AI techniques and increased use in environmental studies will continue. This paper presents only a
brief overview. The references provide further detail.
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