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Preface

In 2003, the conclusion of the Human Genome Project identified approxi-
mately 25,000 genes. How all these genes and the hundreds of thousands
of proteins that they encode interact to form physiological phenotypes and
how molecular alterations potentially lead to abnormal patterns, includ-
ing cancer, is still largely unknown. Genes, cells, and tissues function
through many intricate processes that span multiple scales in space and
time. Therefore, focusing on a particular level of observation alone may not
provide sufficient insight as to the mechanistic relationships across scales.
However, the complexity involved is daunting and from an experimen-
tal perspective, it is often difficult technically if not prohibitively expen-
sive to alter all parameters involved, reproducibly, in an effort to explore
the data space methodically. It is here where in silico biology driven by
cutting-edge mathematical and computational methods and techniques
will have a profound impact. Its translational goals in cancer research
range from experimentally-testable hypothesis generation and cross-scale
data integration to patient-specific prediction of progression and treat-
ment planning (in silico oncology). However, the scientific and technical
expertise spectrum necessary to conduct such innovative multiscale mod-
eling research often exceeds the resources of a single research department,
institution, or even country. And so this is nothing less than the dawn of
a new era of interdisciplinary and multi-institutional collaboration, and a
unique opportunity for international exchange to accelerate progress. In
recognizing both the considerable challenges and the enormous potential,
on October 23-24, 2008, the European Commission and the U.S. National
Cancer Institute (NCI) jointly funded the First Transatlantic Workshop
on Multiscale Cancer Modeling in Brussels, Belgium. For the first time,

xiii
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this meeting brought together the majority of the top in silico modeling
groups in the United States and in Europe. This textbook presents the best
contributions of this groundbreaking event—the state of the art of multi-

scale cancer modeling.
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CHAPTER 1

Evolution, Regulation,
and Disruption of
Homeostasis and Its
Role in Carcinogenesis

Alexander R.A. Anderson, David Basanta,
Philip Gerlee, and Katarzyna A. Rejniak*
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SUMMARY

At its simplest tissue homeostasis is the balance between cell proliferation
and apoptosis that preserves the architecture and functionality of a tissue. It
is estimated that 50 to 70 billion cells are dying every day in an average adult
(1] and approximately the same number of cells need to be born to keep body
integrity. This balance is maintained by multiple subcellular, intracellular and
extracellular mechanisms including cell genetic management, cell-cell adhe-
sion, paracrine/autocrine signaling, and cell-ECM interactions. The process of
carcinogenesis entails the escape from these mechanisms, and the evolution
of the tumor cell population toward phenotypes that can exploit or become
independent of the normal tissue microenvironmental constraints. In this
chapter we consider the mechanisms that regulate normal tissue homeostasis
and subsequently homeostatic escape in the development of cancer by using
different modeling approaches that examine the role that physical constraints,
cell-microenvironment interactions and evolutionary dynamics play.

INTRODUCTION

Homeostasis is a critical property of living beings that involves the abil-
ity to self-regulate in response to changes in the environment in order
to maintain a certain dynamic balance affecting form and/or function.
Homeostasis is of particular importance in multicellular organisms, where

it is intertwined with development [2,3]. Organisms have evolved intricate
control mechanisms that ensure developmental processes achieve their
end points and stabilize (e.g., differentiate) as well as allow for a degree
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of adaptability to a range of conditions (e.g., stress or damage induced by
wounding). This allows for the emergence of a more robust system that can
tolerate both external and internal perturbations [4]. However, there are
limitations to this tolerance, and often it is the rare events that cause the
most disruption [5]; think of the extinction of dinosaurs for an example.
From an evolutionary point of view, this is a viable trade-off between the
energetic cost of homeostasis versus the fitness benefit it would provide.
In practical terms, homeostasis of living multicellular organisms is con-
strained in terms of the amount of disruption they can cope with and in
terms of the amount of time they will remain homeostatic.

In order to understand the transition from normal tissue to invasive
cancer, we should first understand how the normal form and function of
the tissues under consideration is maintained to achieve a homeostatic
balance (emerging from the integration of multiple subcellular, intracellu-
lar, extracellular, chemical, and physical signals/constraints). For example,
the role of normal epithelial tissue (from which most tumors arise) is to
separate the inner body compartments, such as prostate ducts produc-
ing prostatic fluid or breast glands secreting milk, from the surrounding
environment and to control the exchange of nutrients and waste products
between them. Biological homeostasis has to be achieved in a dynamic
cellular milieu with a constant cell turnover (a cell lifespan ranges from
3 days for skin cells, and 4 months for red blood cells, to several years for
bone cells) and perturbations from various extrinsic factors (e.g., breast
duct shrinkage after pregnancy or local tissue damage) and by counteract-
ing induced cellular changes such that homeostasis is restored. Therefore,
when a damaged or mutated cell is not functioning as it should, the tissue
will try to suppress the damaged cell and prevent further abnormalities.
However, if this damaged cell gains a proliferative or migratory advantage
over other cells and does propagate, it needs to do so at the expense of other
cells and will ultimately defy the constraints imposed by the homeostatic
mechanisms employed by the host tissue. In many cases, these constraints
are physical, imposing structural constraints on the cells, for example,
via cell adhesion, but they may also be chemical, for example, limited
metabolite availability. In order to escape homeostasis and overcome these
barriers, the mutant cells need to evolve to the point where they can sig-
nificantly modify their baseline phenotypes and potentially their environ-
ment. Therefore, the emergence of an invasive cancer can be viewed as an
escape from homeostasis in which the natural synchrony between mul-
tiple cellular and microenvironmental variables is perturbed.
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The classical approach to oncogenic development views cancer as
being a solely genetic disease, whereby genomic mutations are acquired
in a stepwise fashion, leading to uncontrolled cell growth, invasion into
surrounding tissues, and eventual metastasis (reviewed in Reference
[6]). This reductionist view of oncogenesis sees the tumor cells exist-
ing in isolation, steadily acquiring mutations, with little interaction with
their surrounding environment. In reality, tumor cells are embedded in
a matrix of structural extracellular proteins, surrounded by other cells,
such as endothelial cells, fibroblasts, and inflammatory and immune
cells [7,8]. These multiple cell types make up the tumor microenviron-
ment, and are in continuous dynamic interaction with other stromal
and tumor cells. Together, the cells generate a myriad of physical and
chemical signals that converge to determine the metabolic, migra-
tory, growth, and survival behavior of the tumor cell. The acquisition
of oncogenes alone cannot explain all aspects of tumor development,
and there is evidence that escape from normal tissue homeostasis is an
essential step in the carcinogenic process. In fact, the gene-centric and
microenvironment-centric views of carcinogenesis are to some extent
unified under the homeostatic hypothesis, since genetic mutations under
microenvironment selection must together define phenotypes that have
the potential to escape homeostatic control. By focusing on the cellular
phenotype, we can examine what subcellular (e.g., receptor-driven cell
processes, cell metabolism), cellular (e.g., cell-cell or cell-ECM adhe-
sion), and environmental perturbations (e.g., nutrient or growth factor
distribution, stromal structure) are required for this liberation.

In this chapter, we will consider three different computational
models that examine the role of homeostasis in carcinogenesis.
Understanding normal tissue formation and maintenance will allow
us to better under-stand how cancer can be initiated, and how it devel-
ops and progresses. In the first model, we consider a novel approach
integrating genetic algorithms and cellular automata to investigate the
evolution of homeostatic tissue. In the second, we use an immersed
boundary framework to investigate how the disruption of intrinsic cel-
lular responses to extrinsic signals results in a homeostatic imbalance
within an epithelial duct. In the final part, we present a model of pros-
tate cancer and examine the importance of both growth factor and
stromal interactions in the maintenance of a homeostatic state, even in
the presence of cancer.
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EVOLVING HOMEOSTATIC TISSUE
USING GENETIC ALGORITHMS

During embryogenesis, multicellular organisms follow a developmental

program in which tissue architecture results from the interactions between
cells and as a result of the processes of mitosis, motility, differentiation, and
apoptosis. After reaching maturity, this architecture is maintained through
an intricate and finely tuned balance of cell proliferation and loss. Given the
consequences of homeostatic disruption (such as aging, psoriasis, or cancer),
the organism has to be able to cope with genetic and environmental insults
without significant disruption. Recently, a computational model has been pro-
posed by one of the authors to study the evolutionary origin of robust homeo-
stasis [10]. The difficulty of performing experiments to study evolutionary
dynamics makes in silico approaches particularly useful. In that paper, an
evolutionary algorithm (EA) was implemented to evolve the developmental
rules of digital organisms, using three-dimensional cellular automata (CA).
The developmental rules, shared by all the cells in an organism, match certain
external and internal conditions (such as the presence of neighboring cells
or the number of divisions the cell has gone through) with cellular actions
(motility, division, and apoptosis). At any given time, a cell scans all relevant
internal and external conditions and decides upon an action depending on
the subset of the 100 rules that constitutes its digital genome. This mechanism
has the advantage of making CA more evolvable, and thus their use in con-
junction with EAs more efficient than conventional CA [10].

The evolved organisms were selected to grow specific shapes for a num-
ber of time steps and to remain homeostatic for the rest of the simulation.
During the homeostatic period, a number of different mechanisms were
found such that the digital organisms maintained their form. Interestingly,
these organisms evolved the capability to recover from severe wounds
even though specific evolutionary pressure selecting for wound healing
was missing. A study of the digital organisms’ evolutionary trajectory
showed that organisms that evolved earlier were less capable of coping
with environmental insults than those that evolved later (even if they were
as fit from a homeostatic point of view). Furthermore, the organisms more
capable of wound healing were those that had evolved a tissue-like archi-
tecture with a direction flux of cells driving tissue turnover (Figure 1.4A).
This mechanism is similar to the stratified architecture that characterizes
the human skin or the gut. These results suggest that robustness may be a
by-product of the evolution of morphogenetic systems.
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Model

Motivated by this work, here we present a model of a tissue developing
from a single cell into a homeostatic structure capable of growth control
and self-repair. In particular, we focus on the simple case of a monolayer of
cells forming a two-dimensional structure, similar to the lining formed by
epithelial cells. This problem is studied in the context of an evolutionary
hybrid cellular automaton [11-13], an individual-based model in which
the behavior of each cell depends on its local environment consisting of a
chemical species such as oxygen, which are modeled on a continuous level.
Precisely how cells respond to their microenvironment is determined using
a feed-forward artificial neural network, which takes extracellular cues as
an input, and outputs the phenotype or behavior of the cell. Instead of dic-
tating a given mapping from environment to phenotype (as we have done
previously), we will make use of an EA to evolve a cell behavior that gives
rise to a homeostatic tissue. In the following, we will first briefly describe
the underlying cellular automaton model, and then move on to discuss the
implementation of the EA, and the results gathered from it.

Hybrid Cellular Automaton Model (HCA)

The tissue that we simulate is represented by an N x N x M cellular automaton,
in which each grid point X =AG, j» k) either contains a cell or is empty. Here, A
is the lattice constant, which determines the spacing between the grid points,
or equivalently, the size of the cells. The cellular automaton is coupled with
two concentration fields, one describing the concentration of oxygen c(%,t)
and the other the concentration of a generic growth factor (GF) g(x,t). The
cells on the lattice influence these fields through oxygen and GF consump-
tion, but are also affected by the concentrations, as they serve as inputs to the
response network that determines the behavior of the cells.

Response Network

The behavior of each cell is determined by a neural network that takes the
number of neighbors on the lattice, the local oxygen concentration and
GF concentration as input, and for each possible input calculates a pheno-
typic response. Phenotypes are limited to four: proliferation, movement,
apoptosis and, in the absence of a network response, cellular quiescence.
The response network consists of a number of nodes organized into three
layers: (1) input, which takes information from the environment; (2) hid-
den; and (3) output, which determines the action of the cell. The nodes in
the different layers are connected with varying weights, determined by
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FIGURE 1.1  The layout of the response network that determines the behavior of
the cells. The microenvironment of each cell is presented to the input layer of the
network. This information is then fed through the network under the influence
of the connection matrices V, W and the threshold vectors, and the node with the
strongest response in the output layer determines the behavior of the cell. If no
node reaches a value above 1/2, the cell becomes quiescent.

two matrices V and W, and the nodes in the hidden and output layer are
equipped with internal thresholds 6 and ¢ (see Figure 1.1). These parame-
ters fully determine the mapping from environment to phenotype and can
therefore be seen as the genotype of the cells. For a more detailed descrip-
tion of the network dynamics, we refer the reader to Reference [14].

Chemical Fields

For the sake of simplicity, we consider only oxygen and a generic GF in
our model. All cells are assumed to consume oxygen, although at differ-
ent rates depending on their phenotype, while only proliferating cells
consume GF. Oxygen and growth factor production take place on the
domain boundary via diffusion from surrounding tissue or blood vessels
(see Reference [14] for a system of diffusion equations that have a similar
form). As we are studying a thin slice of tissue (M<<N), we will assume
that these concentration fields vary insignificantly in the z-direction, and
we will thus only solve the equations in two dimensions.

Cellular Automaton

For each time step a cell is in a proliferative state, an internal counter
is increased, and when it has reached a certain value t, correspond-
ing to the time of the cell cycle, the cell divides and a daughter cell is
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placed at random in one of the neighboring empty grid points. If no
empty space exists, cell division is halted until empty space emerges.
If a cell takes on the motile phenotype, it moves at random into one of
the empty neighboring grid points. If no empty space exists, the cell
remains stationary. Motile cells move with a probability p,, to regulate
speed. If apoptosis is the network response, then the cell dies, and its
space becomes available in the following time step. A cell can also die
from starvation or necrosis due to a lack of oxygen (i.e., c < c,, where c,
is the oxygen level at which cells become necrotic). In order to account
for the stochastic nature of cell behavior, we also include a small spon-
taneous death rate p,.

The initial conditions of the system are uniform concentrations of oxy-
gen and GF and a single cell with a given genotype (set of network param-
eters) at the center of the grid. Each time step the chemical concentrations
are solved using the discretized equations. The position of each cell is cor-
rected with respect to neighboring cells that have moved or died; that is,
a suspended cell drops along the z-axis until it touches another cell or the
bottom of the domain. All the cells on the grid are then updated in ran-
dom order as follows:

1. The microenvironment is sampled, and the response of the network
is calculated.

2. The cell consumes oxygen and GF according to the phenotype chosen.

3. The phenotype choice is evaluated, and the grid is updated accordingly.

Evolutionary Algorithm (EA)

Evolutionary approaches have been used to solve various problems in
computer science, such as hardware development, image classification,
and robot control [15]. What these approaches all have in common is that
they try to harness the power of natural selection. Central to this is the
notion of a fitness function, which to each candidate solution assigns a
value used to rank all the solutions to the problem. Another necessary
feature is that the solutions can be randomly modified (mutated) and even
mixed with each other.

Here, we want to find a set of network parameters or genotype, which
when seeded into a single cell, and given time to grow, give rise to a tissue
that is homeostatic. More precisely, we want a single cell to multiply such
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that the population creates a monolayer of cells that are not stacked on top
of each other. This can be formalized as the following fitness function:

F = no. of cells in the bottom layer
+ no. of empty grid points in all other layers 1.1

The goal is then to find a genotype that maximizes this function. One com-
plication is that the fitness function is multiobjective, that is, it contains
two distinct parts, and in this case it has been shown that simply sum-
ming them is not the best approach [16]. Instead, we employ the sum of
weighted ratios, which assigns weights to the different objectives depend-
ing on the current minimum and maximum values of the two objectives
in the population. If we call the two objectives F, and F,, then the fitness
of genotype g is defined as

Fl(g)_Flmin N Fz(g)_Fzmin

F =
(g ) Flmax _ Flmin Fzma.x _ Fzmin

(1.2)

min,max
E >

where refers to the minimum and maximum value of each objec-
tive currently present in the population.

The EA consists of a population of candidate solutions, which are sub-
ject to a selection process. We have chosen a tournament-based selection
process, which also makes use of a low degree of elitism. This means that
a fraction p, = 5% of the best solutions are carried unaltered into the next
generation, while the rest of the population engage in tournaments. Four
solutions are picked at random and are compared in pairs, and this gener-
ates two winners and two losers. The winners are carried over to the next
generation, while the losers are replaced by the offspring of the winners. The
offspring are either generated by single point mutations to the parents’ geno-
types (occurs with probability 1/2) or by crossing-over their two genotypes
(with complementary probability 1/2). This process is repeated until all solu-
tions in the population have engaged in a tournament, and this constitutes
one generation in the EA. (See Figure 1.2 for a graphical representation of
the selection process.) Point mutations are implemented by changing one
of the network parameters (matrix entries or node thresholds) by adding a
random member from a normal distribution. The cross-over is implemented
by mapping the network parameters of both parents into two vectors, pick-
ing two random indices, and swapping the contents above and below these
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FIGURE 1.2 Schematic of the evolutionary algorithm. In each generation, the top
p. most fit solutions are carried unaltered into the next generation. The remain-
ing genotypes are paired off in tournaments where the winners give rise to off-
spring either by point mutations or cross-over.

points. In most cases these is disruptive, but in some cases it generates a
novel solution with a higher fitness than the parents’.

Each run was started with a population of size N, = 50, where all
genomes are randomly generated. The number of time steps used for each
fitness evaluation was t, ., = 200, which, since the size of the grid is 200 x
200, means that a genotype with proliferative capabilities will be able to
fill the entire domain, while it still needs to exhibit homeostatic behavior
to receive a high fitness. The total number of generations iterated with
the EA was set to T, ,, = 20, which means that we had to run N, + (1 - p.)

max

N,T,../2 = 500 realizations of the underlying HCA model.

Results and Discussion

Because the EA is seeded with a random starting population, and only ran-
dom variation and selection drives the search for a homeostatic genotype,
we do not impose any constraint on how the cell population solves the
problem of tissue homeostasis. Instead, our aim was to investigate (using
our model) which mechanisms emerge for maintaining homeostasis. We
achieved this aim by running a number of EAs with different random
initial populations of solutions, and analyzing the sequence of solutions
generated by them. The different genotypes were then compared to one
another by analyzing the phenotypes they give rise to and by investigating
their growth dynamics.
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The growth patterns generated by the most fit genotypes in one such
run are shown in Figure 1.4B. These plots show the distribution of cells
in the domain at the end of each fitness evaluation, from a top view,
which means that if several cells are stacked on each other only the
topmost cell is visible. From this sequence, we can see that the EA has
explored several different solutions before settling on a completely pro-
liferating phenotype T = 11 to 19. At T = 1, the fittest solution consists of
a slow-growing phenotype, which forms a tissue with a low cell density.
This is then replaced by a phenotype that forms a ring-like structure in
which no cells reside in the interior of the domain (T = 3). From T =5 to
9, the fittest genotype is one that fills the entire bottom of the domain,
and does so by adopting a motile phenotype. This type of solution is then
taken over by a fully proliferative phenotype, which remains the fittest
solution until the end of the run.

In order to get a better understanding of the tissue architecture gener-
ated by the final genotype, we also plotted the cell density in the domain
at t = 200. This can be seen in the lower part of Figure 1.4B, and shows that
most of the tissue consists of a monolayer of cells with isolated cells lying
on top (the mean cell density is 1.08 cells/grid point). This means that the
genotype meets the requirements of the fitness function fairly well, but
we need to understand in more detail how this homeostatic behavior is
achieved. A useful way of analyzing the behavior of a genotype in the
model is to calculate the behavior of the genotype in all possible microen-
vironmental conditions. As the input is three dimensional (number of
neighbors, oxygen, and GF concentration) and the output is one dimen-
sional and discrete (proliferation, movement, apoptosis, and quiescence),
the behavior of the genotype can be visualized as a function from three to
one dimensions, in which each point in the input space is associated with
a phenotype. This type of plot for the final genotype (T = 19) is shown in
Figure 1.3a, and from this we can conclude that the possible behavior of
the genotype is limited to proliferation and apoptosis. The absence of any
quiescence or movement in this apparently homeostatic genotype suggests
that apoptosis might play an important role in its behavior.

In order to investigate this further, we measured the number of cell
births and cell deaths during a simulation. These rates are shown in
Figure 1.3c as a function of time, together with the total number of cells
present on the grid. As expected, the birth and death rates are fairly bal-
anced, but they are very high even when the tissue is fully formed, with
approximately 83% of the cells in the tissue being replaced every cell cycle.
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FIGURE 1.3  (a), (b) The behavior of two final genotypes visualized by mapping
to each point in input space the associated phenotype determined by the response
network. (c), (d) The equivalent time evolution of the total number of cells and
the birth and death rates for these two genotypes. Time is scaled according to
cell cycles.

This suggests that the final genotype maintains tissue homeostasis by bal-
ancing its high proliferation rate with an equally high rate of apoptosis.
This type solution is commonly arrived at by the EA, and is in contrast
to those solutions that maintain tissue homeostasis by halting cell divi-
sion when the tissue forms. An example of such a phenotype is shown in
Figure 1.3b, which consists mostly of proliferation and apoptosis, but note
that there is a small (but obviously significant) subset of the input space
that gives rise to motility. Looking at the birth and death rates of this ge-
notype (Figure 1.3d), we see that they are considerably smaller than for the
previously analyzed genotype. This genotype has evolved a mechanism to
deal with both decreases and increases in local cell density by essentially
exploiting the migratory phenotype as a means to become quiescent; that
is, if a cell is surrounded by other cells and becomes a motile phenotype, it
essentially acts as if it were quiescent.
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We have shown that by coupling an HCA model of tissue growth with
an EA, we can evolve cell (geno)types that form a homeostatic tissue.
The two evolved genotypes analyzed present contrasting mechanisms by
which tissue homeostasis can be maintained. One does so by continually
shedding cells via apoptosis, and the other by lowering the total prolifera-
tion rate of the tissue so that it just balances the spontaneous rate of apop-
tosis. An important feature that the model does not currently include are
somatic mutations, which occur in the tissues of all multicellular organ-
isms. These mutations can transform cell behavior and are the underlying
cause of cancer in somatic tissue. In our model, in which no mutations
occur (except in the EA), two mechanisms for maintaining a homeostatic
tissue emerge from the evolutionary process, but one may be selected over
the other by imposing a certain environment. Our conjecture is that a
proliferative genotype is more likely to evolve in an environment in which
the rate of spontaneous mutations is high, while a conservative genotype
is likely to evolve when the mutation rate during cell division is elevated.
Clearly, each of the genotypes could produce cancer if sufficiently mutated,
but the one that induces massive cellular turnover is more likely to spread
damaging mutations than the more conservative one and is therefore more
prone to cancer, at least in the short term.

By growing homeostatic tissue structures, evolution highlighted that
there are different genetic routes to achieve the same phenotypic outcome.
One simplification, however, was to create an idealized single tissue mono-
layer when in reality most of the epithelial tissues are made up of multiple
layers and form ductal-like structures. Next, we consider the development
of just such a structure and examine how homeostasis is achieved and
what happens when it is perturbed.

HOMEOSTATIC IMBALANCE IN EPITHELIAL DUCTS

DRIVEN BY ERRONEOUS CELL RESPONSES

Normal tissue microarchitecture enables individual cells to interact with
one another and with the stromal microenvironment either directly via
cell membrane receptors or indirectly through a diverse array of soluble
factors. Normal cells can respond to changes in their external environ-
ment (i.e., chemical or physical stimuli from other cells or from the ECM)
by modifying their internal machinery (chemical, physical, genetic) to

maintain a stable equilibrium. However, when this homeostatic regula-
tion is disturbed, the intrinsic cell environment may become unstable,
resulting in uncontrolled cell behavior, leading to disruption of tissue
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FIGURE 1.4 (Opposite) generations in the run, where the process converges on a
genotype that predominately proliferates. Arrow: cell density of the final genotype
(T =19). (C) Homeostatic imbalance in epithelial ducts driven by erroneous cell
responses modeled by the IBCell. 1. A cluster of epithelial cells with color-coded
receptor and nuclear staining. 2. A sequence of snapshots showing a central cross-
section through a normally developing epithelial duct, composed on one layer of
tightly packed cells enclosing the hollow lumen. 3. A sequence of snapshots show-
ing that the disruption of cellular responses to the death signals results in lumen
repopulation. 4. A sequence of snapshots showing that the disruption of cellular
responses to the mitotic signals results in dysfunctional acini manifesting a high
degree of abnormally folded epithelial tissue. 5. A sequence of snapshots show-
ing the necessity of switching from symmetrical to asymmetrical cell divisions in
order to grow a normal regular epithelial duct. 6. A sequence of snapshots showing
that the disruption of cellular responses to the ECM signals results in tumor cell
invasion. (D) Schematic of model domain with its key cell types. The basal cells
produce TGF-f and help maintain homeostasis. Luminal cells consume TGF-$
and can become tumorigenic. The stromal cells occupy locations outside the acini
and produce TGF-p in response to TGF-[ once it reaches a certain concentration
(left). The initial simulation domain configuration is made of three glands, equally
spaced and surrounded by stromal cells (right). 1. Simulation in which the tumors
break out from the glands and start growing in the mesenchyme. The domain con-
tained 40% of motile and 40% of nonmotile stroma. After about 3 months, each of
the glands is entirely occupied by a tumor. After 43 years, two of the tumors have
managed to break out from the gland. At the end of the simulation (after about 54
years), the three tumors have merged into a single mass, although its pattern of
growth seems to be channeled by the stroma. 2. Simulation in which the tumor
takes over the entire prostate. In this simulation, the production of TGF- is rela-
tively low compared to other simulations, and the proportion of motile stroma is
the same as that of nonmotile stroma: 10%. After about 3 months, each one of the
glands is occupied by a tumor, and MDE production is already visible. After about
22 years, the tumor in the upper gland breaks out and expands in the mesenchyme.
After about 43 years, the tumor has taken over the entire prostate, degraded almost
entirely all the membrane, and TGF- and MDEs can be found everywhere in high
quantities. 3. Simulation in which the three tumors are initiated, grow, and die
out before they manage to break out from the glands. In this simulation, the pro-
portion of stroma is the same as nonmotilestroma: 10%. The tumor cells produce
MDE:s at a significantly higher rate than in most of the other simulations. After 60
days, the central gland has almost been taken over by the tumor. After 1 month,
the central tumor has produced enough MDEs to degrade the basal membrane,
leading to both tumor cells and TGF-{ spilling out of the membrane and into the
surrounding stroma. After 900 time steps, the simulation shows a situation similar
to that at initiation.
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microarchitecture and subsequently to malignant changes in the whole
organism.

The epithelial glands and cysts are especially interesting examples of tis-
sues maintaining a homeostatic balance due to their finely defined archi-
tecture and abundance in many different organs, including the bronchi
and alveoli of the lungs, breast ducts and lobules, gastrointestinal crypts,
reproductive urinary tracts, and the endocrine glands. In their mature
form, these epithelial structures are composed of one layer of tightly
packed polarized cells. Critical decisions regulating epithelial tissue integ-
rity, such as cell growth, orientation of cell division, or the induction of cell
death, are directed by actions of neighboring cells and interactions with
a dynamically evolving ECM milieu. Normal epithelial cells can adapt to
certain perturbations in biochemical, genetic, and physical cues sensed
from their immediate microenvironment. However, when cell responses
are compromised, they may induce a malignant character, filling the hol-
low lumen of the ducts and breaking through the basement membrane,
resulting in loss of tissue homeostasis.

Model

The IBCell was introduced in Reference [17] to model early tumor devel-
opment, and subsequently applied to investigate the sufficient and neces-
sary conditions for the formation and stability of hollow epithelial acini,
three-dimensional cellular culture systems that recapitulate the structure
and function of epithelial cysts [18,19]. In this model, the eukaryotic cell
is represented as a two-dimensional fully deformable body (Figure 1.4C1),
and its structure includes an elastic plasma membrane modeled as a net-
work of linear springs that define cell shape and encloses the viscous
incompressible fluid representing the cytoplasm and providing cell mass.
These individual cells can interact with other cells and with the environ-
ment via a set of discrete membrane receptors located on the cell bound-
ary, and can undergo several life processes, such as cell growth, division,
apoptotic death, or epithelial polarization. In particular, each boundary
point can be engaged in adhesion either with one of the neighboring cells
or with the extracellular matrix, and cell membrane receptors can be used
to sense the presence of other cells or extracellular matrix in the local cell
vicinity. The host cell can initiate certain cell life processes, such as pro-
liferation, division, apoptotic death, or epithelial polarization, based on
its membrane receptors signature (a distribution of growth, death, apical,
cell-cell, and cell-ECM adhesion receptors; Figure 1.4C). More precisely,
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cell growth is modeled by placing point sources and sinks around the cell
boundary to model transport of fluid through the cell membrane and,
once the cell area is doubled, the contractile ring is formed by introducing
springs between opposite points on the cell boundary that upon contrac-
tion split the cell into two daughters. Cell epithelial polarity is acquired
by developing three distinct cell membrane domains: basal, defined by
cell membrane receptors contacting the external media; lateral, defined
by cell receptors being in contact with other cells; and apical, facing the
hollow lumen. Cell apoptotic death is modeled by placing point sinks
and sources along the membrane of the whole cell to release fluid from
the cell interior to the extracellular space. The IBCell model is based on
the immersed boundary framework and governed by the following set of
equations:

p(au(a);’t)+(u(x,t)o V)u(x,t)) =-Vp(x,t)+ uAu(x,t)+;)Vs(x,t)+f(x,t)
(1.3)
p Veu(x,t)=s(x,t), (1.4)
flx,t)= J.F(l,t) 8(x—X)(L,t) (L5)
T

s(x,t):g:&(Yk,t) S(x—Y,) +m2 S.(Z,0 8x=2,), o
aXa(i’t) =u(X(L,t),t)= J.u(x,t) 8(x— X(L,1))dx, (1.7)

Q

In this system, Equation 1.3 is the Navier-Stokes equation of a viscous
incompressible fluid defined on the Cartesian grid x = (x,x,), where p
is the fluid pressure, p is the fluid viscosity, p is the fluid density, s is the
local fluid expansion, and f is the external force density. Equation 1.4 is
the law of mass balance. Interactions between the fluid and the mate-
rial points X(1,#), on cell boundaries I" and at point sources Y, and sinks
Z,, placed in the cell local microenvironment are defined in Equations
1.5-1.7. Here, the force density F(],t) defined on cell boundaries, and the
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sources S,(Y},t) and sinks S_(Z,,.t) defined in the cell microenvironment,
are applied to the fluid using the two dimensional Dirac delta function §,
while all material boundary points X(1,t) are carried along with the fluid.
The boundary forces F(I,t) arise from elastic properties of cell boundar-
ies, from cell-to-cell adhesion, and from contractile forces splitting a cell
during its division. The sources S,(Y},t) and sinks S_(Z,,t) are chosen
such that they balance around each cell separately. More details on the
mathematical formulation of IBCell and the implementation of cell life
processes can be found in [17,19].

Results

We will illustrate here how changes in cellular responses to microenvironmental
cues sensed by host cells via their membrane receptors may result in the disrup-
tion of epithelial tissue morphology. Specifically, we will use the biomechani-
cal model, the IBCell, discussed earlier, to develop normal epithelial cysts and
examine how these structures change as a result of disrupting cellular responses
to three different signals: (1) death, (2) mitotic, and (3) ECM.

Normal Development of Epithelial Cysts

Our model can recapitulate all stages of the development of mammary
acini that are the in vitro experimental systems derived from nontu-
morigenic mammary breast cell line MCF10A and resemble the struc-
ture and behavior of breast epithelial cysts [20]. The acinar structure is
formed from a single cell that upon consecutive divisions gives rise to
an aggregate of randomly oriented cells consisting of two cell popula-
tions: outer cells having contact with the extracellular matrix and inner
cells surrounded entirely by other cells. Subsequently, cells in the outer
layer develop an apico-basal polarity and form a monolayer of epithelial
cells. This is followed by apoptotic death of inner cells, resulting in the
formation of the hollow lumen and stabilization of the acinar structure
(Figure 1.4C2).

Disruption of Cellular Responses to the Death
Signals Results in Lumen Repopulation

Normal development of epithelial cysts requires clearance of lumi-
nal space via removal of all inner cells. Different processes could be
responsible for this inner cell removal; however, it has been shown
experimentally that cell apoptotic death is the necessary contributor
to the formation and maintenance of the luminal space [22]. This form

© 2011 by Taylor and Francis Group, LLC



Evolution, Regulation, and Disruption = 19

of cell death is induced on purpose, and often called programmed cell
death. However, it is not known how this process is triggered. We used
the IBCell model to test the hypothesis that cell-cell adhesion regu-
lates cell apoptotic death [18]. We showed that during normal acinar
development (Figure 1.4C2), cell apoptotic death is triggered by accu-
mulation of death receptors due to the disassembly of adhesive links
with either the emerging polarized cells (along their newly formed
apical membrane domains), or with the neighboring inner cells that
have started dying. However, when the cell response to death signals
sensed from their microenvironment is disrupted, the cells are able to
sense free space in their vicinity and reinitiate growth, resulting in the
repopulation of the acinar lumen. This escape from tissue homeostatic
balance leads to the formation of acinar mutants resembling ductal
carcinoma in situ, a noninvasive form of ductal tumors characterized
by filled ductal space (Figure 1.4C3).

Disruption of Cellular Responses to the Mitotic
Signals Results in Dysfunctional Acini

Structural integrity of epithelial tissues requires both spatial and temporal
control of proliferative events to maintain tissue homeostasis and prevent
tissue hyperplastic growth. In particular, it also requires a coordination
of cell mitotic and cytokinetic events, such as the orientation of mitotic
spindle poles that determine the axis of cell division and location of the
contractile ring that determines whether or not both daughter cells have
equal volumes. It has been observed when examining human breast tis-
sues using electron microscopy [21] that normal epithelial cells acquire
two different orientations of cell division: either orthogonal or parallel to
the lumen. The orthogonal division results in two luminally positioned
daughter cells (symmetric cell division), whereas the parallel division
gives rise to one luminally and one basally positioned daughter cell (asym-
metric cell division), and culminates in basal cell differentiation or its
apoptosis. We used the IBCell to investigate the hypothesis that structural
integrity of an expanding epithelial duct requires a switch between sym-
metric and asymmetric cell divisions [18]. The symmetric cell divisions are
necessary to increase the number of epithelial cells in the layer; however,
when only symmetric divisions are executed, the created tension will force
the duct to bend (Figure 1.4C4) because an excess of epithelial cells is not
accompanied by an expansion of duct lumen. The expansion of the inner
lumen can be achieved by executing asymmetric divisions, with the basal
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cells forming the outer epithelium and the inner cells dying by apoptosis
(Figure 1.4C5). We have used a simple geometrical rule to switch between
symmetric and asymmetric cell divisions, and compared the length of the
cell’s longest axis with its radius, but other rules, such as the tension from
neighboring epithelial cells or the ratio of the lengths of lateral to basal
membrane domains, can be also considered.

Disruption of Cellular Responses to the ECM
Signals Results in Tumor Cell Invasion

Development of an epithelial acinus from a single cell to a shell of tightly
packed cells enclosing the hollow lumen is accompanied by the secretion
of various proteins, such as collagens and laminins, that accumulate in the
form of a stiff supportive basement membrane surrounding the epithe-
lial structure [22]. Epithelial cells are capable of attaching to the basement
membrane through the special cell-ECM transmembrane receptors, such
as integrins. We have hypothesized [19,23] that these cell-ECM adhesions,
together with cell-cell adhesions, contribute to the growth arrest of a host
cell, and showed that the disruption of responses to the ECM adhesion
signals may result in the loss of tissue homeostatic balance and initiation
of cell hyperplastic growth, leading to luminal filling and invasion of the
surrounding tissue (Figure 1.4C6).

Discussion

Maintaining the structural homeostatic balance in tissues is a prerequisite
for their proper function. The word balance should be stressed here, as
certain changes in the tissue architecture do take place even in an adult
healthy organism. For instance, it has been determined based on morpho-
logical identification of both mitotic and apoptotic events [24], that cell
turnover in lobules of the “resting” human breast undergoes significant
cyclical changes during the menstrual cycle, with the peak for apoptosis
occurring 3 days after the peak for mitosis, at days 25 and 28, respectively.
An even more pronounced example of an immense but controlled change
in tissue structure is the process of involution: a programmed destruction
and removal of the secretory epithelium that developed during pregnancy
to enable milk production. This postlactational breast gland regression
involves a massive death of epithelial cells, and their replacement by adi-
pocytes and epithelial ducts remodeling to their prepregnant state and
function [25].
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Loss of such homeostatic balance may lead to nonreversible changes in
tissue microarchitecture and subsequently to its malignancy. Using the
biomechanical model of epithelial ducts, we showed that the disruption
in cell intrinsic responses to extrinsic signals may result in the loss of tis-
sue integrity if such microenvironmental perturbations are exerted in a
persistent and prolonged way. In each case of the abnormal acini develop-
ment considered in this section (Figures 1.4C3, 1.4C4, 1.4C6), the devia-
tions in epithelial duct morphology can be reversed at the early stages.
For instance, if the disruption in responses to death signals (Figure 1.4C3)
has not been passed from a mother cell to the subsequent generations, the
lumen would be cleared eventually as the apoptotic events are continuously
executed (red nuclei); however, they are overwhelmed by the proliferative
events (green nuclei). The structural integrity of an expanding epithelial
duct could be preserved even in the absence of asymmetric division, if
proliferative events were limited (round regular duct; Figure 1.4C4, sec-
ond image); however, increased proliferation accompanied by persistent
symmetric cell division results in abnormal tissue geometry. The expan-
sion of an invasive clone in Figure 1.4C6 can be prevented if the disruption
in cell responses to ECM signals was not passed to daughter cells, because
normal epithelial cells will die when not attached to the basement mem-
brane (inner cells) and will remain in growth arrest when in contact with
the basement membrane (outer cells). In each case, however, the disrup-
tion of cellular responses either to the death, growth, or ECM signals that
are inherited by all daughter cells result in the interruption of the epithe-
lial structure of the duct and in tumor-like tissue outgrowth.

The epithelial ducts are not only exposed to environmental signals (such
as those discussed earlier), but can also actively recruit various stromal cells,
and be influenced by the secretion of numerous paracrine factors. These
microenvironmental and tissue-wide devices, can potentially, counter the
actions of initiated tumor cells reestablishing a homeostatic state. Next, we
consider a model of the prostate glandular architecture surrounded by a
basal membrane as well as paracrine signals such as TGF-P and investigate
the role they could play in constraining tumor progression after initiation.

THE ROLES OF TGF-B AND STROMA IN
HOMEOSTATIC ESCAPE IN PROSTATE CANCER

The prostate is a glandular sexual organ composed of ducts lined with
luminal secretory epithelium surrounded by a layer of basal epithelial
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cells. These epithelial acini are encompassed by a stromal compartment.
During embryonic development, urogenital epithelial and mesenchymal
tissues interact to coordinate the spatial arrangement and eventual dif-
ferentiation of these tissues into the glandular structure required for pro-
static function [26]. In the developed organ, communication between the
epithelia and the surrounding stroma maintains homeostasis via para-
crine signaling [27,28]. The stroma is separated from the glandular acini
by a basement membrane that provides positional information contribut-
ing to the maintenance of tissue [29].

The loss of homeostatic interactions between organ tissues in disease
has partially been attributed to the loss of the basement membrane [30,31]
and an alteration of the type of extracellular matrix [32]. Furthermore,
the transformation of prostate epithelial cells by carcinoma-associated
fibroblasts was correlated with increased MMP-9 expression [33]. While
these results strongly implicate the roles of the basement membrane and
the stromal microenvironment in tumor progression, the conflicting data
and the vast number of factors involved limit our understanding of the
multiple steps by which prostate tumors grow and invade surrounding
tissues. TGF-B normally inhibits the proliferation of epithelia through
induction of the cell cycle inhibitors p15 and p21 [34]. The determination
of whether TGF-f will induce cytostasis or apoptosis in normal epithelia
depends on the intensity of their proliferative activity in addition to poorly
understood microenvironmental determinants [35,36]. There is therefore
a need for further analysis of TGF-f’s multiple roles. The TGF-f family of
cytokines has many functions, some of which have been accurately mod-
eled computationally, including TGF-f’s role in vascular remodeling and
hyperplasia and wound repair [37]. Models considering cell-stroma inter-
actions via TGF-P as well as other factors in wound healing and tumor
growth were shown to have good qualitative agreement with experimental
results [38,39].

Recently [39], we proposed a model of prostate tumorigenesis using a
HCA model that integrates five different cellular species (discrete) with
three different microenvironmental chemical species (continuous), all of
which are thought to play key roles in prostate cancer. Using this HCA
model, we will investigate the importance of TGF-f in prostate homeostatic
disruption and, in particular, how it regulates tumor-stroma interactions
by considering tumors with different degrees of malignancy (in terms of
TGF-p and MDE production).
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Model

In the HCA model, cells are the discrete entities represented as points
in a 2D grid (200 x 200 points representing a 2 x 2 mm slice of pros-
tate; see Figure 1.4D, top right, for the initial conditions). This grid
also hosts three microenvironmental variables, which are treated as
continuous concentrations: TGF-f, matrix-degrading enzyme (MDE)
expression, and Membrane/ECM. Cells can belong to one of five dif-
ferent types: basal epithelial, luminal epithelial, motile stroma, static
stroma, and tumor cells. The simulated section of prostate contains
three glands arranged along the off-diagonal axis. Each gland has an
outside diameter of 19 grid points formed by an inner layer of luminal
epithelial cells and an outer one made with basal epithelial cells. The
space outside the glands can be occupied by static (muscle or fibro-
blastic lineages) and motile (monocytes or macrophages) stromal cells
(Figure 1.4D, top left).

TGEF- plays a very important role in the model as it is produced, con-
sumed, or utilized in one way or the other by all cell types. Basal cells
produce TGF-f and membrane/ECM and also divide to replace basal and
luminal epithelial cells that die due to normal attrition [40]. Luminal epi-
thelial cells consume TGF-p and die when surrounded by tumor cells.
Static stroma cells consume TGF-p but, over a set threshold, are pro-
grammed to produce more, effectively amplifying the TGE- signal [41].
Motile stroma moves in the direction of the TGF-f gradient and produces
extracellular matrix in direct proportion to its concentration. The abil-
ity of TGF-P to stimulate myofibroblasts to produce extracellular matrix
is well established [42]. Finally, tumor cells appear as mutants of lumi-
nal epithelial cells after 10 days in six different positions of the simulated
prostate. They require TGF-P to survive, and they proliferate as long as
there is sufficient space. They also produce TGF- and matrix degrading
enzymes (MDEs). TGF-p is a well-known promoter of tumor cell prolif-
eration [43] and is elevated in prostate cancer [44]. Alterations in response
to TGF-P favor a protumorigenic response, and elevated MDEs have also
been observed [45].

The three microenvironmental variables of the model are TGF-f (7p),
MDE (E), and Membrane/ECM (M) concentrations. It is worth noting
that the membrane/ECM variable represents both the ECM (a mix-
ture of elements such as collagen, fibronectin, laminin, and vitronec-
tin), which is assumed to be present everywhere outside the glands, and
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the basement membrane subadjacent to the basal epithelial cells. The
dynamics of TGF-p (Tf):

Diffusion Mediated by Productionby  Productionby  Production by Nonmotile
Basement Membrane Basal Cells Cancer Cells  Stromal Cells Scaled by TGF-3
—— ——t—

dTy(x,y,2)
piX-Ys2)
ST VDm - MVT)+ o,B; + 0y 4 as,T,
Binding by ECM/BM Consumption by Motile Consumption by
Scaled by TGF-8 Stromal Cells Scaled by TGF-3 Luminal Cells Natural Decay
—t ——t— —— —
- YsMIz - YeE Tp - Y.L, - oI

(1.8)

which shows that TGF- diffuses at a rate D modulated by the maximum
tissue density, m,. Production by basal and cancer cells as well as by motile
stromal cells is assumed to be in proportion to the local TGF-P concentra-
tion at the rates a, o, and g, respectively. It also shows that TGF-f is con-
sumed by luminal and motile stroma cells at the rates y; and y.. TGF- also
binds to the ECM at a rate y;, which depends on the local concentration of
TGF-B; also, there is some natural decay of the ligand with rate o.

MDEs (E) are produced by tumor cells (at rate ), diffuse (at rate DE), and
are depleted as they degrade the ECM and the basement membrane (p):

Productionby  Used by Degradation of

Diffusion of Enzyme  Cancer Cells Basement Membrane
0E(x,y,t) —— — —
2LV D,VE 4+ AC, -  WME (1.9)

ot

Basement membrane/ECM (M) is produced by basal cells (depending
on the current local concentration of ECM ensuring the density never
exceeds the maximum m,) and motile stroma (depending on rate a, scaled
by the local concentration of TGF-p). Finally, the ECM gets degraded by
the MDEs at a rate L

Production by Basal Cells
Provided Membraneis Not ~ Degradation by Production by Motile
Complete, i.e., M=my Enzyme Stromal Cells Scaled by TGF-8

IM(x,y,t) ————— —— 1.10
(axty): PB (m—M) — UME +  0.FT, (1.10)

i,j

The model is defined such that the initial state of the system is a homeo-
static one with birth/death and TGF-p production/consumption being
balanced such that no abnormal growth occurs.
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Results and Discussion

In order to study the role of stroma in maintaining homeostasis after
tumor initiation, we performed a number of simulations with the model,
each lasting about 55 years in simulation time (1 time step = 24 h). After 10
time steps, 6 basal epithelial cells, 4 in the central acinus and 1 on each of
the two remaining acini, become abnormal epithelial cells initiating tum-
origenesis. The simulations tested different configurations in which the
proportion of stroma could range from 20% to 40% of the total available
space as well as different tumor cell phenotypes (characterized by differ-
ent rates of TGF-p and MDE production). The configurations considered
were a high proportion of motile and nonmotile stroma (40% motile, 40%
nonmotile), a high proportion of motile stroma (40% motile, 10% nonmo-
tile), a high proportion of nonmotile stroma (10% motile, 40% nonmotile),
and a low proportion of motile and nonmotile stroma (10% motile, 10%
nonmotile). The tumor cell phenotypes that were tested produced values
of TGF-{ and MDE that were lower, equal, or higher to a given nondimen-
sional value by an order of magnitude.

Figure 1.4D1-3 shows an example of simulations that illustrate the
three main model outcomes of (1) control, (2) breakout, and (3) dies
out. Figure 1.4D1 shows a simulation in which the tumor breaks out
from the acini and grows in the surrounding media after a long period
of control. Initially, the tumor cells fill the inner space inside the gland
(t = 0.3). Eventually, the concentration of TGF-p and MDEs is suf-
ficiently high that the basal membrane starts to degrade and TGF-p
begins to leak from the gland and attract motile stroma (¢t = 43.8). At
the end of the simulation (t = 54.8), the tumor has taken a significant
portion of the domain, but its growth is constrained by the motile
stroma responding to the TGF-p field. Figure 1.4D2 shows a simulation
in which tumor cells quickly break from the gland and grow invad-
ing, unopposed by the stroma. Finally, Figure 1.4D3 shows tumor cells
producing excessive quantities of MDE, which leads to early breakout
of the basal membrane and leakage of the TGF-p, without which tumor
cells die.

Contrary to our expectations given its centrality in the model, cancer
cell TGF-P production does not seem to modify the outcome significantly,
whereas stromal configuration has a much clearer effect. These results show
that a prostate with a high proportion of stromal cells is more capable of
restoring disrupted homeostasis. The role of stroma comes into effect only
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after the tumor has escaped from the gland, and it is at this point that
the role of TGF-f, which mediates the interactions between stroma and
tumor, is likely to become dominant.

It is important to remark, once again, that what makes the results par-
ticularly relevant is that tumor initiation and progression are performed
on a domain that reproduces a prostatic tissue in homeostasis and that
the tumors that manage to break from the prostatic gland and progress
from PIN are those that manage to decisively disrupt this homeostasis by
producing the right amounts of TGF-p and MDEs.

CONCLUSIONS

The models described in this chapter illustrate various aspects of the
biological mechanisms that maintain the architecture and function of
a homeostatic tissue as well as the consequences of homeostatic disrup-
tion. Homeostasis is a crucial feature of living organisms and needs to
be underpinned by robust mechanisms capable of coping with genetic
and environmental perturbations. Our work shows that homeostasis can
evolve using different strategies (e.g., very dynamic characterized by high
proliferation balanced by high apoptosis or more static via proliferation
induced only by dying cells) and that many of these strategies become
increasingly robust as the homeostatic individuals evolve over time. This
diversity of homeostatic strategies relates well to different homeostatic tis-
sue types found in multicellular organisms. For example, the epithelial
cells lining the colon in humans are shed at a considerable rate. These
cells are exposed to a hostile environment where the rate of spontaneous
mutation probably is elevated, and in order to avoid harmful mutations
accumulating in these cells they are continually removed. A similar tissue

architecture is found in the outer layers of the skin, where cells also have
a short lifespan. In other tissue types, which are not as exposed, the oppo-
site type of homeostatic mechanism is normally found, that is, only when
cells die spontaneously are they replaced.

These homeostatic mechanisms are built using the cells’ existing molecu-
lar and signaling machinery as well as the architecture of the tissue and
other physical constraints. Despite their general robustness against the most
common perturbations, some genetic mutations and certain changes in tis-
sue architecture could disrupt homeostasis. There is increasing experimen-
tal evidence showing that the restoration of tissue organization is able to
repress the malignant phenotype of genetically aberrant cells. For example,
when mouse embryonal carcinoma cells (which form malignant tumors

© 2011 by Taylor and Francis Group, LLC



Evolution, Regulation, and Disruption = 27

upon subcutaneous injection) were fused with normal blastocysts, they
were able to give rise to phenotypically normal cancer-free mice [46]. Also,
malignant T4-2 cells forming disorganized continuously proliferating colo-
nies can be reverted to near-normal phenotype when grown in the pres-
ence of integrin-blocking antibodies [47]. These reverted T4-2 cells formed
regular growth-arrested acinar structures with restored apico-basal polar-
ity, reorganized actin cytoskeleton, and were able to remain quiescent for
up to 1 month in culture. Chen and co-workers showed that disruption of
cytostructure activates the angiogenic switch even in the absence of prolif-
eration and hypoxia, and that restored organization of malignant clusters
reduces expression of vascular endothelia growth factor (VEGF) and activa-
tion of endothelial cells to levels found in quiescent nonmalignant epithe-
lium [48]. Our own results show that once carcinogenesis has taken place
and homeostasis has been disrupted, there is a window of opportunity in
which this disruption can be reversed (e.g., in the TGF-p HCA model, an
increase in stromal cells could compensate and block tumor progression;
in the IBCell model, early disruptive cell outgrowth can be compensated by
apoptosis if the erroneous cell response is not passed on to daughter cells) or
at least transformed into a different type of homeostasis (e.g., one in which
the tumor is not destroyed but permanently contained [49]).

The research we have presented in this chapter, as well as others focused
on tissue homeostasis, should lead to a greater knowledge of the mech-
anisms that underpin it and highlight its limitations. Ultimately, this
information will improve our understanding of the types of homeostatic
disruptions that could lead to cancer initiation, the likely sequence of phe-
notypical transformations that would be acquired by tumor cells in those
tumors that irreversibly alter the homeostatic balance, and the possible
steps that could be taken to reverse them.
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INTRODUCTION

The cancer phenotype may be viewed as a pathological dysregulation
of cellular signals that control growth, survival, motility, cell-cell con-
nectivity, and DNA synthesis and repair (Hanahan and Weinberg 2000).
Generally speaking, the sources of dysregulation are an accumulated set
of mutations that produce altered gene products. The interaction of these
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mutant oncoproteins with normal host signaling mechanisms perturbs
proper signaling and confers the oncogenic behavior. For example, muta-
tions affecting the catalytic activity, binding specificity, translation efhi-
ciency, or rate of degradation of an enzyme involved in DNA repair can
predispose a cell to genomic instability by allowing replication of dam-
aged genomic sequence (Zhivotovsky and Kroemer 2004). The specific
identities and combinations of these cancer-causing mutations are known
to vary considerably according to tissue and cell type and are strongly
interdependent on the cellular/tumor microenvironment (Sjoblom, Jones,
et al. 2006). In light of these complexities, mathematical models of cel-
lular signaling networks have become indispensable tools for explaining
oncogenic behaviors, predicting resistance mechanisms, and designing
molecular therapies to attenuate defective signaling.

How can the altered activities of mutant oncoproteins be represented
in a mathematical model? In many cases, wild-type and oncogenic
signaling pathways share similar network structures but differ in the
kinetic behavior and interaction topologies of only a few oncoproteins
(Sharma and Settleman 2007). Unless these differences are resolved
quantitatively, one cannot distinguish between normal and cancerous
signaling networks in a mathematical model. Moreover, when attempt-
ing to resolve such crucial but subtle differences, it may be necessary to
switch from a systems perspective of protein interaction networks to a
molecular perspective of enzyme activation and protein-protein inter-
action. This chapter describes an approach for constructing models of
intracellular signaling networks in which the oncogenic behavior of the
network is encoded through calculations of altered kinetic and struc-
tural properties of mutant oncoproteins. Using molecular dynamics and
docking simulations, atomistic models are exploited to quantify altered
topologies of interactions as well as to provide the missing parameters
for network models of both wild-type and oncogenic signaling. The
global behavior of these networks may then be compared and functional
roles may be assigned to the mutant oncoproteins. An application of
this multiscale, multiresolution approach is presented in which struc-
tural alterations found in a mutant form of the epidermal growth factor
receptor are represented as kinetic perturbations in a model of growth
factor signaling. Based on network parameters estimated from molec-
ular-level simulations, simulations at the network level show how small
perturbations in molecular structure can lead to a profoundly altered
cellular phenotype.
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MODEL

A multiscale, multiresolution approach can be devised by encompassing
four distinct length/time scales:

« Molecular modeling using Newton’s equations: Based on a Hamilto-
nian H(r,,r,,...) = K+ U; r,= atomic coordinates, K = kinetic energy;,
and U = Potential energy, we solve the system of equations (where
F,= Force, m;= mass, t = time),

F,=-VU = m,d*r,/dt* 2.1)

« Electronic structure using mixed quantum mechanics molecular
mechanics simulations: We variationally minimize the energy func-
tion E,

E = (¢[H]|¢) and (¢p|¢) = 1 (2.2)

where, the bra-ket (Dirac) notation {¢|¢) represents vector dot product
and (p|H|¢) represents the expectation value (Szabo and Ostlund 1996).
In Equation 2.2, ¢ is the electronic wave function satisfying the Pauli’s
exclusion principle and H = H. ., nio- that is, the electronic Hamiltonian.
We then solve Newton’s equations given by Equation 2.1 for the nuclear

degrees of freedom with some forces derived from H

electronic*

+ Coarse-grained models: Using a coarse-grained Hamiltonian, H[A(r,,
)] = F[\(r,, 1,)], where F = free energy, A = generalized/collective
coordinate, we solve the generalized Langevin equation (Agrawal,
Weinstein, et al. 2008),

d\/dt = —-MOF/OME (2.3)

In Equation 2.3, M represents the mobility term, § represents random
thermal force satisfying (£) = 0, and (§(0)&(#)) = 2k, TM(t), where ()
represents an ensemble average in the equilibrium ensemble, k =
Boltzmann’s constant, and T = temperature.
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o Deterministic network models: As an average solution to the
Langevin dynamics using F(A = reaction coordinate) for transitions
between reactant and product states of chemical species, we solve
deterministic network models for signal transduction using rate laws
based on mass-action kinetics.

Based on the aforementioned formulations, the linking of oncogenic sig-
naling to molecular structure in a mathematical model can be achieved in
three separate but interconnected modeling steps:

o Deterministic ordinary differential equations (ODE) models are
used to represent both wild-type and oncogenic signaling networks
that differ in a defined set of molecular species. The pair of networks
must both contain the mutant or overexpressed oncoproteins as well
as one or more “output” components that can be monitored to evalu-
ate the oncogenic behavior of the system (e.g., a master transcrip-
tional regulator controlling cell survival).

» Molecular docking is used to predict ligand binding in the absence
of a ligand-bound crystal structure and functional affinity data.
These free energy-based simulations are used to calculate a new set
of mutant kinetic parameters based on altered molecular structure.

» Molecular dynamics simulations are used to characterize the struc-
tural properties of mutant gene products from an altered polypep-
tide sequence. These calculations rely on the availability of solved
crystal structures and may involve homology modeling.

By integrating these three modeling regimes, the phenotypic differences
that define mutant systems at the network level are encoded through fine-
scale calculations of the structural and kinetic properties of mutant onco-
proteins (Figure 2.1).

The multiscale strategy portrayed in Figure 2.1 is illustrated through
a model of dysregulated growth signaling caused by a single amino acid
substitution in the epidermal growth factor receptor (EGFR). EGFR is
a receptor tyrosine kinase (RTK) that is commonly mutated or overex-
pressed in human cancers (Mendelsohn and Baselga 2000). A mutant
form of the receptor, L834R, exhibits an altered pattern of autophospho-
rylation caused by differences in its physical structure, binding affinities,
and catalytic behavior. These perturbed phosphorylation patterns lead to
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Modeling Level/scale Wild-type Model Oncogenic Model
Network Model O+—0 O\H 0
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FIGURE 2.1 Overview of multiscale modeling method for linking molecular
structure to oncogenic signaling. The aberrant signaling behavior of oncogenic
networks is captured by monitoring the behavior of altered network models, typ-
ically ODE reaction networks. Alternate parameterization for the models is pro-
vided by docking simulations of mutant oncoproteins, which relies on structural
models of the mutant proteins. Structural information is ultimately connected
to mutations in genomic sequence. An example of oncogenic signaling behavior
caused by altered structural and kinetic properties in a mutant of the epidermal
growth factor receptor is presented in the text.

constitutive activation of certain survival pathways that predispose L834R
mutants to uncontrolled growth (Choi, Mendrola, et al. 2007). Thus, the
goal of this multiscale model will be to track changes in the cellular
growth pathways as a result of structural alterations in the mutant recep-
tor. Accomplishing this goal will require a consideration of the receptor’s
biophysical properties on an atomic scale as well as its interaction with
various binding partners and adaptor proteins.

Constructing Mechanistic Models of Oncogenic Signaling

Kinetic models of cellular signaling pathways represent the highest level
of modeling in this approach and are used to monitor the global behavior
of both wild-type and mutant systems (Figure 2.1). Ordinary differential
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equations (ODEs) are used to represent coupled kinetic reactions that
describe the rates of production and consumption of species in the model
(Aldridge, Burke, et al. 2006). For large networks that contain species with
posttranslational modifications or multiple binding partners, rules-based
modeling (Hlavacek, Faeder, et al. 2006) provides the best method of gen-
erating ODEs that encode these kinetic differences.

In the signaling network presented here (Figure 2.2), EGF-induced
activation of EGFR occurs through two parallel phosphorylation path-
ways corresponding to tyrosine 1068 (Y1068) and tyrosine 1173 (Y1173).
Phosphorylated Y1068 (pY1068) binds only to the adaptor proteins Gab-1
and Grb2, while phosphorylated Y1173 (pY1173) binds only to the adaptor
Shc. The major downstream pathways include EGF-ERK via the Ras-Raf
MAP-kinase cascade (Citri and Yarden 2006), and the PI3K-AKT path-
way, which results in the activation of the downstream protein—serine/

OO

EGEFR

[ XX XXX Y XXX XY X)X ] 00000//00000000000000000000

RTK

Y1068p

D — GAB-1
— Grb2 l

PI3K

)
I

Ras — Raf — MEK — ERK

FIGURE 2.2 Network model of EGFR-mediated signaling used in this study.
Phosphorylation of the EGFR dimer occurs at either Y1068, which can bind
GAB-1 or Grb2, or at Y1173, which binds Shc. Activation of downstream proteins
AKT and ERK was used as indicators of cell survival signaling. Multiscale mod-
eling is achieved by calculating changes in dimerization, peptide binding affinity,
and phosphorylation in structural mutants of the receptor.
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threonine kinase AKT. In choosing the scope of a network, it is important
to include one or more species that serve as indicators of the oncogenic
potential of the system. Here, we include both AKT and ERK because they
are well-studied indicators of EGFR-mediated growth and survival behav-
iors (Citri and Yarden 2006).

The critical step in distinguishing wild-type and mutant signaling
models is defining kinetic differences between the systems. Differences
between the wild-type EGFR and L834R models are marked in Table 2.1
and include reactions affecting receptor dimerization, phosphoryla-
tion, and peptide binding. Rather than write each reaction equation

TABLE 2.1  Reaction rules for two-site phosphorylation model of the EGF
receptor

Event Reaction rule Forward  Reverse
Ligand/receptor binding  egfr(l) + egf(r) <> egfr(l!1). k, k.,
egf(r!l)

Ligand-induced receptor  egfr(I'1,r) + egfr(I'2,r) <> ky* k_,
dimerization egfr(l'L,r!3).egfr(12,r13)

Spontaneous receptor egfr(r) + egfr(r) <> egfr(r'1). ky* kst
dimerization egfr(r!l)

Receptor/ATP binding egfr(rl+,k) + ATP(r) <> k, k.t

egfr(r!+k!1).ATP(r!1)

Y1068 entering active egfr(yl068~u) <> ks kst
site egfr(y1068~b)

Y1173 entering active egfr(yl173~u) < ke k_¢"
site egfr(y1173~b)

Autophosphorylation of  egfr(r!1,y1068~b).ADP > k'
Y1068 egfr(r!1,y1068~p) + ADP

Autophosphorylation of  egfr(r!1,y1173~b).ADP > k'
Y1173 egfr(r!1,y1173~p) + ADP

Dephosphorylation of egfr(y1068~p) + phos > Vs K,
Y1068 egfr(y1068~u)

Dephosphorylation of egfr(y1173~p) + phos > Vi Ky
Y1173 egfr(yl173~u)

Note: The 10 rules generate 328 species and 3324 half-reactions representing all pos-
sible molecular intermediates and reaction steps. For simplicity, reaction rules
for adaptor protein binding, MAP kinase cascade, and ERK/AKT activation are

not shown.

* Denotes k, = k; because the on-rate of dimerization is diffusion limited.

" Denotes rate constants k_s, k_, k_s, kg, k,, and kg are each affected by mutation

L858R.

' Denotes the site of association for two molecules. For example, egfr(1!1).egf(r!1) are

bound through “I” and “r” sites on egfr and egf, respectively.
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separately, “reaction rules” (Hlavacek, Faeder, et al. 2006) are used to
define general types of interactions between functional domains among
the species in the model. For example, the rate constant k, in Table 2.1
that describes the catalytic turnover of Y1068 phosphorylation is applied
to all forms of the receptor that participate in this phosphorylation reac-
tion (e.g., monomer, dimer, ATP-bound). In this way, rules-based model-
ing ensures efficient and accurate construction of ODE-based signaling
models.

Providing Alternate Parameterization

through Docking Simulations

Once the network has been defined and the mutant oncoproteins identi-
fied, molecular docking is used to predict ligand binding in the absence
of a ligand-bound crystal structure and functional affinity data. Thus,
docking simulations provide the missing parameters that characterize
the mutant system. Automated docking tools such as AutoDock (Morris,
Goodsell, et al. 1998) in combination with more accurate approaches such
as free-energy perturbation may be used to predict how small molecules,
such as substrates or drug candidates, bind to a receptor of known three-
dimensional structure. The binding free energy is calculated based on the
intermolecular energy between protein and ligands and changes to the
solvation environment. For the EGFR/L834R model, binding modes were
determined for ATP as well the C-terminal peptides Y1068 and Y1173 to
the catalytic site. A global conformational search was performed using a
multiple conformation docking strategy, in which the protein flexibility is
taken into account implicitly. Note that rules-based modeling (Hlavacek,
Faeder et al. 2006) facilitates the reuse of kinetic parameters calculating
through docking simulations.

Resolving the Structure of Mutant Oncoproteins

through Molecular Dynamics

In order to perform docking simulations, it is necessary to acquire accurate
structural information about the molecules involved. In the EGFR/L834R
model, we model the receptor activation characteristics (whether active as
a monomer or requires dimerization) of the EGFR receptor tyrosine kinase
using molecular dynamics simulations. 10-30 ns trajectories of atomis-
tic and explicitly solvated systems of wild-type and mutant EGFR kinase
monomers and dimers are obtained and analyzed for specific stabilizing
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interactions such as hydrogen bonds and salt bridges, hydrophobic inter-
actions, and conformational changes.

RESULTS

Modeling the EGFR at the network, molecular, and structural levels allows
one to determine how point mutations in the EGFR receptor can alter sig-
naling characteristics leading to the onset of oncogenic transformations.
The model was constructed in “top-down” fashion, beginning with identi-
cal signaling networks that were differentiated by a defined set of mutant
oncoproteins. We now examine the effects of these differences in reverse

order, beginning with structural alterations in the tyrosine kinase domain
and proceeding to observe how these perturbations affect both receptor
kinetics and network behavior.

Activation of Wild-Type EGFRTK and L834R Mutant RTK

Crystal structures of the EGFRTK suggest that the conformational switch-
ing from an inactive to an active conformation involves a rotation of the
aC-helix and the shifting of the activation loop (A-loop) to make way for
substrate peptide (harboring the tyrosine residue) and ATP binding. To
assess the structural requirements for such a conformational shift, analy-
ses of bond patterns and hydrophobic interactions were performed to
identify specific interactions (H-bonds and salt bridges) between residues
of the aC-helix, and those of the A-loop needed to reorganize the enzyme
and allow conformational switching from inactive to active states. Most of
the stabilizing interactions holding the kinase in the inactive conforma-
tion are influenced by the dimer-interface residues, supporting an allos-
teric activation mechanism proposed for the wild-type (Zhang, Gureasko,
etal. 2006). Many of these interactions overlap with the residues associated
with several clinically relevant mutations, including L834R. The R substi-
tution of L at 834 destabilizes the specific (external H-bonds) interactions
associated with A-loop and aC-helix in the inactive but not the active
conformations. Thus, our analysis of stabilizing interactions presented in
Figures 2.3a and 2.3b serves as a platform for unifying the effects of these
mutations at a structural level. An important outcome of these simula-
tions is the notion that the mutant receptor can be active (and thus medi-
ate signaling) even as a monomer, that is, in the absence of any growth
factor binding. This establishes a small but crucial variation in network
topology between the wild-type and the mutant systems.
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FIGURE 2.3 (See color insert following page 40) Structural, kinetic, and network
analysis of the effect of L834R mutation in the EGFRTK. Visualization of the stabi-
lizing residues external to A-loop and aC-helix (blue), dimer interface residues (red),
and clinical mutations (green) of both the active (a) and inactive (b)) EGFR tyrosine
kinases. (c) Binding modes for ATP (cyan) and the optimal peptide sequence (yel-
low) in the EGFRTK domain. (d) Calculated ERK and AKT phosphorylation lev-
els in units of nM (peak-levels over an 1800 s time course) under serum-starved
(EGF-) and serum-cultured (EGF+) conditions for cell types with normal EGFR
expression and EGFR overexpression. The x- and y-axes represent log changes in
the binding affinity (K},) of the peptide relative to the wild type.

Ligand and Substrate Binding Affinities for EGFRTK

The structural basis for the context-specific kinetics of the C-terminal
tyrosine substrates is provided by our computational docking calculations
(Liu, Purvis, et al. 2007). Substrate peptides derived from tyrosine sites of
the EGFR C-terminal tail—Y1068 (VPEYINQ) and Y1173 (NAEYLRV)—
bound to the wild-type and the L834R mutant EGFR kinase revealed how
the structure of the bound peptide—protein complex is altered at the cata-
lytic site due to the arginine substitution of leucine in L834R (Figure 2.3c).
By employing this method, we computed the binding affinities for wild-
type and L834R mutant RTK binding to two peptide sequences consisting
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of Y1068 and Y1173. These calculations, reported in Table 2.1, are used
to parameterize the reactions involving inhibitor binding and substrate
phosphorylation in the systems model.

Differential Signaling through EGFRTK

To examine the effects of signaling through Y1068 and Y1173 on the down-
stream response, a series of 15 min simulations were performed for wild type
and mutants under different initial conditions (varying [EGF] and [EGFR])
and monitoring the resulting total phosphorylated ERK and AKT responses
(Figure 2.3d). A two-dimensional scan over K}, values associated with Y1068
and Y1173 phosphorylation in which the respective K}, values are allowed to
deviate from their default (wild-type) value over a logarithmic range of 5 log
units. This was achieved by adjusting k_; and k_g from Table 2.1. The result is
a two-dimensional matrix in which each element represents the total ERK
or AKT levels from a single simulation involving a unique pair of param-
eters. In Figures 2.3d and 2.3e each output state is quantified according to
the peak level of phosphorylation over the simulated time of 1800 s.

As indicated by the color maps in these scans, the effect of altered affin-
ities of the Y1068 and Y1173 sites to the catalytic domain of the EGFR is
that the L834R under normal EGFR expression exhibits differential down-
stream response, that is, a pronounced decrease in ERK activation (5-fold)
and relatively much smaller decrease AKT activation (15% decrease).
Our calculated responses for ERK short-term signaling for normal EGFR
expression (Figures 2.3d and 2.3e) agree with the experimental observa-
tions of Sordella et al. (Sordella, Bell, et al. 2004) and Tracy et al. (Tracy,
Mukohara, et al. 2004), who have also reported a pronounced decrease
in activated ERK to AKT ratio for the L834R mutant. These results sug-
gest that preferential activation of AKT in L834R could be one of the fac-
tors leading to enhanced AKT activation observed in non-small-cell lung
cancer cell lines.

DISCUSSION

While the genetic basis of cancer is well appreciated, the resulting com-
plexity in intracellular signaling mechanisms relevant for the conquest of
this disease resides at multiple levels of organization, ranging from the
subatomic realm involving mutations in individual protein domains to
the cellular level of macromolecular assemblies and membrane processes.
Relating cancer genotypes to disease phenotypes will be aided by the devel-
opment of specialized modeling tools to treat the hierarchy of interactions
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ranging from molecular (nm, ns) to signaling (um, ms) length and time
scales. By introducing increased resolution in phosphorylation kinetics
at the receptor level, the network model of EGFR-mediated signaling in
wild-type and mutant cells showed how mutant forms of the receptor use
an irregular pattern of tyrosine phosphorylation that preferentially acti-
vates the survival oncoprotein, AKT.

Recently, this type of multiscale analysis was used to explain why cer-
tain networks respond to antitumor tyrosine kinase inhibitors (TKIs) such
as erlotinib and gefitinib (Purvis, Ilango, et al. 2008; Shih, Purvis, et al.
2008). Specifically, the branched signaling model was employed to analyze
the inhibitory effects of the TKI erlotinib on EGFR phosphorylation and
downstream ERK and AKT activation. The results provided a mechanistic
basis for the enhanced inhibitor efficacy in mutant cell lines.

Thus, collectively, our results suggest that the clinically identified muta-
tions of the EGFR kinase induce fragility in the stabilizing interactions
of the inactive kinase conformation, providing a persistent stimulus for
kinase activation even in the absence of any growth factor. At a cellu-
lar level, perturbations driving network hypersensitivity through the
enhancement of phosphorylated ERK and AKT levels show a striking cor-
relation with observed mutations of specific proteins in oncogenic cell lines
as well as the observed mechanisms of drug resistance to EGFR inhibition.
Therefore, we suggest that cascading mechanisms of network hypersen-
sitivity/fragility at multiple scales enable molecular-level perturbations
(clinical mutations) to induce oncogenic signaling. Moreover, our results
describe a possible mechanism for preferential AKT activation in non-
small-cell lung cancer lines harboring EGFR activating mutations. This
preferential activation of a survival factor makes theses cell lines condu-
cive to pathway addiction, that is, reliance on the L834R EGFR-mediated
generation phosphorylated AKT for survival signals. The survival path-
way addiction also results in a remarkable sensitivity to TKIs targeting
the EGFR kinase.

The computational tools described here are ideal for assessing the likely
effect of novel EGFR and HER2 mutations and determining whether the
drug-sensitizing mutations implicated in non-small-cell lung cancer also
occur in other cancers. Such approaches can also be employed effectively
to address the issue of drug resistance to TKI therapy, which in the case
of non-small-cell lung cancers is either mediated by point mutations in
EGFR kinase (T790M) or the overexpression of HER3 and Met receptors
and to investigate other molecular therapeutics targeting for (e.g., VEGF
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and c-Met). Ultimately, these approaches could be used to optimize the
development of small molecule inhibitor therapies.

The multiscale modeling approach illustrated in this chapter enables the
incorporation of the molecular context and variability and their impact
on intracellular signaling pathways of oncogenic relevance and subse-
quent cell-fate decisions. This approach also enables the rationalization
and prediction of the role and nature of molecular variability in malignant
transformed cells as well as drug-sensitive/drug-resistant cells by bridging
the gap between molecular resolution/context and intracellular signaling.
The approach employed here can be seamlessly integrated with subcellular
resolution modeling in agent-based models emphasized in other chapters
(see Chapter 9).
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INTRODUCTION

The evolutionary transition from unicellular organisms to multicellular
organisms with differentiated tissues included a transition in the level
of organization at which natural selection acts (Maynard Smith and
Szathmary 1995; Buss 1987). Mutations that cause an increase in the repro-
duction and survival rates in unicellular organisms give those organisms
an advantage over their competitors. However, mutations that increase
reproduction and survival rates in somatic cells of a multicellular organ-
ism can lead to a fatal cancer. Natural selection on multicellular organ-
isms has led to mechanisms for suppressing somatic evolution on multiple
levels, including tumor suppressor genes that regulate the growth of cells
and the architecture of proliferative epithelia that limits the number of
cells that are vulnerable to neoplastic evolution (Cairns 2002, 1975).

It is also possible that selective pressure against cancer may have modi-
fied genome architecture. For example, most human cancers appear to
arise by chromosomal instability (Cahill et al. 1998) and linkage of tumor
suppressor genes (TSGs) with critical genes (CGs) necessary for cell sur-
vival could provide an additional mechanism for suppression of somatic
cell evolution. Deletion and loss of heterozygosity (LOH) can affect large
regions of a chromosome (Nishimura et al. 2002; Lai et al. 2007). Tumor
suppressor genes are commonly inactivated by LOH (Meltzer et al. 1991;
Cavenee et al. 1983; Pekarsky et al. 2002; Deocampo, Huang, and Tindall
2003) and loss of a single allele of a TSG can lead to a proliferative advan-
tage for the cell and eventually cancer (Wong et al. 2001; Cook and McCaw
2000; Fero et al. 1998). One potential mechanism to suppress such vulner-
ability would be genetic linkage of a critical gene with the TSG as a result
of natural selection against cancer. If the CG is haploinsufficient for cell
survival, then LOH in the TSG would be likely to cause LOH in the CG
and to lead to cell death rather than progression to cancer. Linkage of CGs
with TSGs would then act as a site-specific DNA damage checkpoint.

Tetraploidy is frequently observed in a variety of cancers and precancer-
ous conditions (Haapala et al. 2001; Whang-Peng et al. 1984; Lastowska
et al. 1997; Abe et al. 1985; Slaton et al. 1997; Cunningham et al. 1996;
Robinson et al. 1996; Shackney et al. 1995; Giaretti 1994; Eskelinen et al.
1992; Dutrillaux et al. 1991; Tachibana et al. 1991). A common pathway
to cancer seems to proceed from diploid cells, through a tetraploid inter-
mediate, followed by progression to hypotetraploid aneuploid populations
prior to malignancy (Barrett et al. 1999; Giaretti 1994; Merlo et al. 2008).
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The mechanism by which the tetraploid population predisposes to cancer is
not well understood, although most models postulate that it somehow cre-
ates a condition that is permissive for the subsequent evolution of chromo-
some abnormalities, including LOH (Shackney et al. 1989; Duesberg et al.
1998; Matzke et al. 2003; Li et al. 1997; Galitski et al. 1999; Rajagopalan et
al. 2003; Jallepalli and Lengauer 2001). We hypothesized that tetraploidy
may be selectively advantageous to neoplastic cells because some tumor
suppressor genes are linked in the genome to critical genes necessary for
cell survival, and by doubling the genome in a tetraploid cell, precancerous
cells are more likely to preserve enough copies of the CG alleles to survive
while deleting or inactivating the TSG alleles. Thus, cancers would tend
to come from tetraploid cells that happened to duplicate their genomes,
either by chance or due to a lesion in a gene involved in mitosis. Here, we
consider two types of critical genes. In the first case, inactivation of the CG
is recessively lethal for the cell. In the second case, the wild-type CG allele
is haploinsufficient for survival, so that a cell with only one active CG allele
has some nonzero probability of dying. We call a cell carcinogenic if it has
lost all of its TSG alleles but preserved at least one CG allele.

We evaluate the hypothesis that tetraploidy develops during neoplastic
progression as an adaptation that allows a neoplastic cell to inactivate a TSG
while preserving a linked CG. We also address three questions correspond-
ing to three levels of evolution. First, at the level of the cell, is a tetraploid
cell more likely than a diploid cell to inactivate a TSG while preserving a
linked CG? Second, at the level of a mosaic population of evolving precan-
cerous cells in a neoplasm, are carcinogenic cells more likely to arise from
a tetraploid precursor than a diploid precursor? Third, at the level of the
population of organisms, how would selective pressure have sculpted the
genomes of multicellular organisms with respect to linkage of critical genes
and tumor suppressor genes, assuming that cancer has played an impor-
tant selective role in the evolution of the genome? A set of mathematical
and computational models were used to answer each of these questions.

MODELS
Model of a Single Cell

We first designed a probability model for the evolution of cells in a neo-
plasm. It is based on four assumptions. (1) Alleles of a TSG or a linked
CG can be inactivated individually at some rate s. Sequence mutations,
small deletions or insertions, and promoter hypermethylation may all
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play a part in inactivating an allele of a single gene. (2) One allele of
both the TSG and the linked CG may be inactivated by a single event
such as a large deletion. We will call this “double-gene inactivation.”
The rate of double-gene inactivation is encoded as a parameter d. We
will initially assume that the single-gene inactivation of the TSG and
the CG happen at the same rate s, though this assumption can be easily
relaxed. The single-gene inactivation rate s is a combination of the rates
of the three mechanisms for inactivating an allele of a gene: point muta-
tions, promoter hypermethylation, and small deletions. Time is updated
in the model by allele inactivation events. Because the next inactivation
event will either inactivate an allele of one gene, or alleles of both genes
at once, 2s + d = 1. Linkage is thus represented in the magnitude of d,
with d = 0 being unlinked and d increasing with linkage. (3) If a cell
loses all of its CG alleles, it dies. We also introduced a parameter h for
the haploinsufficiency of the CG defined as the probability that a cell
dies if it only has one intact CG allele. If & = 1, then cells with only one
CG allele also die. If h = 0, then only cells with no active CG alleles die.
If 0 < h < 1, then the cell has a probability h of dying when the first CG
allele is inactivated. Thus, & scales the penetrance of a single intact allele
of the CG for cellular lethality. (4) Loss of all TSG alleles is a rate lim-
iting step in carcinogenesis. Since malignant tumors generally derive
from a single ancestral progenitor cell (Nowell 1976; Sidransky et al.
1992), generation of a cell that has lost its TSG is likely to be a clinically
relevant event. For convenience, we will define a cell in this state as car-
cinogenic. The probability model for a single diploid cell is represented
in Figure 3.1. The representation of the possible changes in a tetraploid
cell is even more complex and has not been shown.

All the possible sequences of inactivation events that may develop in a
diploid or tetraploid cell were enumerated computationally. The probabil-
ity for each sequence was then computed, as

p(d,s,h,m,n,k)=(j)m (;)n(l—h)k

for m double-gene inactivation events, n single allele inactivation events,
ending in either zero active CG alleles or zero active TSG alleles, and
passing through k states with a single active CG allele, which may lead to

© 2011 by Taylor and Francis Group, LLC



Has Cancer Sculpted the Genome? m 49

Diploid Probability Model

= Critical gene inactivation
= Tumor suppressor gene inactivation - . N
- = Single gene inactivation (s) 1P ead state { ) Cancer state

’
— Double gene inactivation (d) V-

) Haploinsufficient state

FIGURE 3.1 A probability model of the evolution of a diploid cell. Tumor sup-
pressor gene (TSG) lesions (in black) and a critical gene (CG) lesions (in white) as
well as double-gene inactivation are illustrated. Over time, transitions caused by
single-gene inactivation (point mutations, small deletions, or promoter methy-
lation) are indicated by dashed arrows, and transitions caused by double-gene
inactivation (large deletions) are indicated by solid arrows. The four states inside
a bold, dashed circle are dead because both of the CG alleles have been lost. The
three states inside the thick grey circles are carcinogenic states because both of
the TSG alleles have been lost. There is an asymmetry between the carcinogenic
and death outcomes because a cell that has lost both alleles of the CG will die
regardless of how many TSG alleles are intact. The five states inside the thin dash-
dotted circles are states that may die due to haploinsufficiency of the CG gene
because they have only one intact allele at that locus. Even for this diploid model,
the sequence of possible events is complicated, necessitating the computational
enumeration of the tetraploid cell model.
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cell death due to haploinsufficiency. There are eight possible single-allele
inactivation events and four possible double-gene inactivation events cor-
responding to the four alleles of the CG and four alleles of the TSG in a tet-
raploid cell. We calculated the probability of events based on a tetraploid
genome. Thus, in order to make diploid and tetraploid cells comparable,
half of the events have no effect on a diploid cell because they “happen” in
the missing chromosomes. The possible sequences include multiple inac-
tivation events of the same allele, though only the first such event would
change the state of the cell.

The model calculated the total probability that a cell inactivates all of
its TSG alleles before inactivating all, or all but one, of its CG alleles by
summing across all sequences x,, , ,, which include m double-gene inacti-
vation events, n single-gene inactivation events, passing through k states

m,n,k>

with one active CG allele, and end with zero active TSG alleles and at least
one active CG:

P[inactivation of TSG| s,d,h, ploidy|= z p(d.s,h,m,n,k)

Xm,nk

Since an event can happen in an already inactivated allele (with probabil-
ity X), we use the expected number of hits in inactivated alleles before
the next event in an active allele (1/(1— X)) to calculate the probability of
making a state change.

Most cancers require the inactivation of more than one TSG (Renan
1993; Hanahan and Weinberg 2000; Vogelstein and Kinzler 1993).
However, our hypothesis applies equally to multiple TSGs and so, for sim-
plicity, we focus on a single TSG. The relative risk of tetraploidy was cal-
culated for each parameter setting by dividing the probability a tetraploid
cell becomes carcinogenic by the probability that a diploid cell becomes
carcinogenic:

RR= P[inactivation of TSG|s,d,h,4|/ P[inactivation of TSG|s,d,h,2] .

Model of a Neoplasm

We incorporated a stochastic simulation of the single-cell model into
a simulation of an evolving population of cells in a neoplasm with one
additional parameter. Diploid cells duplicated their genomes to become
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tetraploid cells at some rate f per time interval between mutational events.
A population of n (n = 10%, 10%, or 10°) cells was represented in a three-
dimensional mass. The state of each chromosome in a cell was explicitly
represented such that if a double-gene inactivation event occurred in a
chromosome that had already incurred inactivation of a single gene, the
net effect of the double-gene inactivation was to inactivate the remaining
gene on that chromosome. Initially, all cells were diploid with two active
alleles in both their TSG and CG loci.

Time was represented in discrete steps denoting the amount of time
until the next potential inactivation event in the population. At each
time step, the simulation selected a random cell with equal probability.
If the cell was diploid, with probability ¢, the cell’s genome was doubled
by copying the state of its two chromosomes into two new chromo-
somes. Next, a random integer between 1 and 4 was generated to specify
which copy of the chromosome incurred the inactivation, regardless of
the ploidy of the cell. If that number was 3 or 4 in a diploid cell, noth-
ing happened. This guaranteed that every chromosome mutated at the
same rate per allele; thus, tetraploid cells incurred twice as many muta-
tions as diploid cells per unit of time. Finally, the simulation inactivated
a single allele of the TSG with probability s, a single allele of the CG
with probability s, or both the TSG and CG with probability d. If the
inactivation reduced the cell to a single CG allele, the cell had probabil-
ity h of dying. A cell with no intact CG alleles automatically died. The
dead cell was then replaced by a neighboring cell that divided to produce
two daughter cells with the same chromosomal state of the parental cell.
This neighbor was selected through competition between ¢ (usually 4)
of the adjacent cells in the three-dimensional grid of cells (Blickle and
Thiele 1995). Competition was based on the number of intact TSG alleles
(Fodde and Smits 2002). If any of the ¢ neighbors had a single intact TSG
allele, one of those neighbors divided to replace the dead cell. Otherwise,
a randomly chosen neighbor divided to replace the dead cell. In this way,
the TSG was haploinsufficient because the presence of only one intact
allele resulted in a phenotype with a competitive advantage over cells
with more than one intact allele of the TSG. The parameter c scales the
degree of competition. With ¢ = 1, there is no competition. As ¢ becomes
larger, it becomes easier for a cell with a single TSG allele to spread in
the neoplasm.

If a cell became carcinogenic (lost all, 2 or 4, of its TSG alleles), the sim-
ulation was stopped and the ploidy of the carcinogenic cell was recorded
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along with the time (number of inactivation events simulated until a
carcinogenic cell was generated). The simulation of the entire neoplastic
population was repeated 1000 times to calculate the frequency of carcino-
genic cells arising from tetraploid cells rather than diploid cells. This was
replicated 50 times for each parameter setting. We ran the model under
all combinations of parameters n = 10%, 10% and 10% h = 0, 0.5, and ;
d=0.25,0.5,and 0.75; and t = 0.2, 0.5, and 0.8.

Model of Organismal Evolution

We used a genetic algorithm (Mitchell 1998; Goldberg 1989) to simulate
the evolution of a population of organisms under selection from death
by cancer. Each organism had “genetic” traits encoding parameters d, t,
and h. All traits had minimal values of 0 and maximal values of 1. The
traits of the initial population were set randomly from uniform distri-
butions between 0 and 1. There were m organisms in the population,
and each organism had a three-dimensional neoplasm of n cells. The
population of organisms was simulated for 40 generations, by which
time the population genetic traits had generally stabilized. For each
generation, we first calculated the fitness of every organism. The fitness
of an organism was determined by running the above simulation of a
neoplasm to determine the number of mutational events (amount of
time) until the organism developed a carcinogenic cell. Thus, organisms
with parameters that resulted in a longer time before carcinogenesis had
higher fitness scores than those that developed a carcinogenic cell rela-
tively rapidly. After we calculated the fitness scores of the organisms,
we generated the population for the next generation by tournament
selection, similar to the tournament selection in the competition of cells
within the neoplasm. This involved randomly choosing two organisms
from the population with uniform probability. The organism with the
higher fitness score was chosen to be a parent, and the other organism
was returned to the pool of potential parents. This was repeated to select
the mate of the first parent from another two random organisms. The
result of tournament selection is that the organisms with higher fitness
scores produce more offspring than the organisms with lower fitness
scores (Blickle and Thiele 1995). The parameters (traits) of the offspring
were determined by generating a random number from a Gaussian dis-
tribution with mean equal to the average of the parental traits, and stan-
dard deviation equal to half the difference between the parental traits.
This represents the possible recombinants and mutations in a multigene

© 2011 by Taylor and Francis Group, LLC



Has Cancer Sculpted the Genome? m 53

trait. The standard deviation for the Gaussian distribution had a mini-
mum value of 0.0025 to prevent evolution from stopping altogether. At

the end of 40 generations, the average population values for the traits
parameters d, ¢, and h were measured.

RESULTS

Are Tetraploid Cells More Likely to Become
Carcinogenic Than Diploid Cells?

Yes, if the TSG and the CG are linked. The relative risk of developing carci-
nogenic cells in tetraploid cells (Pr[carcinogenesis [4N]/ Pr[carcinogenesis
|2N]) is a function of the relative probability (d) that a lesion inactivates
both the CG and the TSG on a chromosome as well the degree of haplo-
insufficiency (h) of the CG (Figure 3.2). The probability that a tetraploid
cell (and a diploid cell) becomes carcinogenic decreases with both increas-
ing linkage (d) of the CG to the TSG and increasing haploinsufficiency

Critical Gene Haploinsufficiency and Close Linkage
Increase Tetraploidy’s Relative Risk of Carcinogenesis

Tetraploidy’s Relative
Risk of Carcinogenesis

FIGURE 3.2 The relative risk of carcinogenesis in a single cell due to tetraploidy.
Risk is plotted as a function of the relative probability that a lesion deletes both
the CG and the TSG (d) as well as the probability that a cell with only one func-
tional CG allele dies (h). Relative risk is calculated as Pr[carcinogenesis | tetra-
ploidy] / Pr[carcinogenesis | diploidy]. Carcinogenesis is defined as a cell losing
all of its TSG alleles before dying due to loss of CG alleles.

© 2011 by Taylor and Francis Group, LLC



54 m Carlo C. Maley, Walter Lewis, and Brian . Reid

Critical Gene Haploinsufficiency and Close Linkage
Reduce the Probability of Carcingenesis

Probability of Carcinogenesis
in a Tetraploid

FIGURE 3.3  The probability that a single tetraploid cell becomes carcinogenic, that
is, loses all of its TSG alleles before it dies, is due to the loss of CG alleles. The prob-
ability of carcinogenesis is plotted as a function of the probability that a lesion inac-
tivates both the CG and the TSG (d) relative to inactivating an allele of a single gene,
as well as the probability that a cell with only one functional CG allele dies (). The

direction of the x and y axes has been reversed relative to Figure 3.2 for a better view
of the surface.

(h) of the CG (Figure 3.3). However, the relative risk that a tetraploid cell
becomes carcinogenic increases with both d and h (Figure 3.2). On average
tetraploid cells require more hits per chromosome (Figure 3.4A) than dip-
loid cells (Figure 3.4B) to become carcinogenic, and thus more time before
they become cancerous. The time to the emergence of a carcinogenic cell
decreases slightly with increasing haploinsufficiency of the CG.

Is a Carcinogenic Cell More Likely to Arise from a Tetraploid

Cell Than a Diploid Precursor in a Neoplasm?

Not necessarily. The more closely the TSG and CG are linked, and the
higher the degree of haploinsufficiency at the CG locus, the more likely
that a carcinogenic cell will derive from a tetraploid cell (Figure 3.5).
In addition, the greater the probability that a diploid cell duplicated its

genome (t), the longer it takes before a cell evolves that has inactivated all
of its TSG alleles (Figure 3.6).
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(A) Tetraploid Cell

Time to Carcinogenesis

(B)

Time to Carcinogenesis

FIGURE 3.4 A tetraploid cell (A) takes longer to become carcinogenic than a
diploid cell (B). Tetraploid cells delay carcinogenesis regardless of the linkage
between the TSG and CG as represented by the relative probability d that both
are lost in a double-gene inactivation event as well as the probability that a cell
with only one functional CG allele dies (h). Time is measured by the expected
number of inactivation events until a cell has inactivated all of its TSG alleles
while preserving some of its CG alleles. Time until carcinogenesis may be greater

than the total number of alleles because inactivation events may occur at the
same locus multiple times, to no effect.
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Carcinogenesis in a Tetraploid Clone
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FIGURE 3.5 The probability that a carcinogenic cell evolves from a tetraploid
cell in a neoplasm. The probability depends on the linkage (d) between the TSG
and the CG (x axis) as well as the penetrance of haploinsufficiency in the CG (h)
and the relative probability that a diploid cell becomes tetraploid (t). For each
parameter setting, 1000 neoplasm simulations were run to calculate the prob-
ability, and that was repeated 50 times to estimate statistical error for those prob-
abilities. In all cases, the simulation involved neoplasms of 10° cells. Standard
error bars are plotted but are < 0.01 in all cases.

How Would Evolution at the Organismal Level
Change the Parameters of the System?

The genetic algorithm was run with a population of m

1024 organ-
isms in which each organism had a three-dimensional neoplasm with
n = 1000 cells. Natural selection was based on the age at which an organ-
ism developed a carcinogenic cell in their neoplasm. The longer an
organism survived without generating a carcinogenic cell, the higher the
probability it would produce more oftspring. Over 118 runs of the model,
the genetic algorithm maximized linkage between the CG and the TSG
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Tetraploidy Delays Carcinogenesis
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FIGURE 3.6 Time until carcinogenesis in a neoplasm. This shows the aver-
age number of mutational events (because time is scaled by mutational events)
per cell in a neoplasm before one of the cells evolved with all of its TSG alleles
inactivated (carcinogenesis). The emergence of a carcinogenic cell is delayed by
increased linkage between the CG and TSG (d), increased haploinsufficiency in
the CG (h), and by increased probability that a cell duplicates its genome (£). 50
replicates of 1000 neoplasm simulations were run for each parameter setting. In
all cases the simulation involved neoplasms of 10° cells. Standard error bars are
plotted but are < 0.001 in all cases. The scale of the y axis is much smaller than in
Figure 3.5 because time is averaged across all the cells, and many of the 10° cells
in the neoplasm had not suffered any inactivation events by the time the first
carcinogenic cell evolved.

(mean d = 0.9873, standard deviation = 0.0002). It also maximized the
penetrance of cellular lethality due to the loss of a single CG allele (h =
0.9903, standard deviation = 0.0019). Furthermore, the chance of a cell
making a transition from a diploid state to a tetraploid state was raised,
but not maximized (t = 0.774, standard deviation = 0.019). The results were
the same for a two-dimensional tumor with 1024 cells.
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DISCUSSION

This model addresses three questions regarding the hypothesis that tetra-
ploidy in neoplastic progression is an adaptation that allows a neoplastic
cell to inactivate a TSG while preserving a linked CG. Our results suggest:
(1) tetraploid cells are more likely than diploid cells to inactivate a TSG while
preserving a linked CG; (2) carcinogenic cells are more likely to evolve from
a tetraploid precursor when a TSG is linked to a CG than when the TSG and
CG are not linked; (3) carcinogenic cells are more likely to evolve from a tet-
raploid precursor when a TSG is linked to a haploinsufficient CG than when
it is linked to a recessively lethal CG; and (4) if cancer has been an impor-
tant selective pressure in the evolution of multicellular organisms, then TSGs
should be tightly linked to CGs that are haploinsufficient for cell survival, and
somatic cells should have retained the capacity for genome reduplication.

In our model, tetraploidy increases the chance that a cell will eventually
become carcinogenic, but also delays the inactivation of the TSG alleles.
The evolution of neoplastic genome duplication is constrained by two
opposing forces: an organism would evolve higher fitness if it reduced the
chance of genome duplications in its cells because tetraploid cells are more
likely to develop cancer than diploid cells, but tetraploid cells take longer
than diploid cells to become carcinogenic, and so the organism should
evolve higher rates of genome duplication to delay the onset of cancer.
The tendency to achieve equilibrium between these two opposing forces
results in the evolution of high but not maximal rates of genome duplica-
tion in the model. Genome duplication may be an adaptation to buffer the
cells against the loss of p53 (TP53) or other lesions that are critical neoplas-
tic events leading to genetic instability.

A priori, we could not be certain whether the results for a single cell
would generalize to a neoplasm because a clone with a single intact TSG
allele had a competitive advantage over other cells and might expand rap-
idly throughout the population of neoplastic cells. Does this mean that
diploid cells would tend to dominate the neoplasm because they are only
a single TSG hit from gaining this competitive advantage? Or would tet-
raploid cells have an advantage because they are better able to preserve
their CGs? Figures 3.5 and 3.6 indicate that carcinogenic cells evolve from
tetraploid cells when the CG and TSG are more closely linked (d) and,
when the CG is haploinsufficient for cell survival (h), similar to the single-
cell model. Tetraploidy also delays the onset of carcinogenic cells in the
neoplasm and the loss of all the TSG alleles in a single cell.
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Haploinsufficiency of the CG affects time to carcinogenesis differ-
ently in the single-cell (Figures 3.4a and 3.4b) and neoplasm (Figure 3.6)
models. In a single cell, haploinsufficiency of the CG tends to prevent the
longer sequences of events that lead to carcinogenesis, which involve both
TSG and CG inactivation events, but does not affect the relatively short
sequences of single-gene inactivation of the TSG alone. A high degree of
haploinsufficiency tended to reduce the likelihood that a cell became car-
cinogenic, but if it did, it became carcinogenic through a short sequence
of single-gene inactivation events in the TSG, such as point mutations,
methylation, or small deletions. Thus, if only the cells that became car-
cinogenic are considered, a high degree of haploinsufficiency in the CG
appears to lead to a short time (sequence of events) until the cell becomes
carcinogenic. Within a neoplasm, the total time until a carcinogenic cell
emerged in the population of cells, not in a single cell, was measured.
Haploinsufficiency of the CG causes the clearance of cells with lesions
from the population. This reduces the probability that a cell becomes car-
cinogenic and delays the time until a carcinogenic cell emerges.

The linkage of a CG to a TSG essentially provides a form of apoptotic
response to DNA damage that is specific to the TSG locus. We predict
that if cancer has been an appreciable selective force on the evolution of
our ancestors, human genomes should have CGs tightly linked to TSGs.
Such CGs should be haploinsufficient, unable to maintain the viability of
the cell with a single functional allele. The haploinsufficiency of the CGs
should only apply to cells in adults, lest they add to the genetic burden of
the embryo. Furthermore, evolution should have maintained the capacity
for human cells to duplicate their genomes as an adaptation to delay the
onset of cancer.

Linkage of TSGs and CGs may explain some of the variability of can-
cer incidence between tissues. For example, cells in the small intestine
may require the expression of a gene linked to a TSG in order to survive,
whereas cells in the colon may not require the expression of the same gene.
The protective effect of linked CGs might be altered if exposures of our
modern lifestyle are sufficiently different from the selective pressures that
sculpted the genomes of our multicellular ancestors.

The set of cellular lethal critical genes is unknown and difficult to iden-
tify. One potential example of a TSG linked to a CG is the linkage of the
TSG p27to the oncogene KRas2. KRas2 and p27 (CDKNIB) are within 1 cM
on chromosome 12 (Kemp, Kim, and Philipp 2000). KRas2 may be a criti-
cal gene in that KRas2 knockouts are embryonic lethal in mice, though
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not cellular lethal in all tissues (Koera et al. 1997). Linking a CG that is
also an oncogene to a TSG may have the added benefit of creating opposite
selective pressures that balance amplification of the oncogene against loss
of the TSG. There are a number of TSGs that are closely linked to onco-
genes, including BRCA1 3Mb from ERBB2, MLHI 4Mb from CTNNBI,
ERCC2 5Mb from AKT2, MUTYH 5Mb from MYCLI, CEBPA 7Mb from
AKT2, TCFI1 9Mb from PTPN11, and NFI1 9Mb from ERBB2.

Our model only considered a single TSG locus in the genome of a cell.
Carcinogenesis is a multistep process that involves more than one TSG in
most tissues (Renan 1993; Hanahan and Weinberg 2000; Vogelstein and
Kinzler 1993). However, the results of our model should be independent
for each locus and so would apply to every TSG locus in a multistep model
of cancer progression.

Four different, though not mutually exclusive, hypotheses have been
advanced in the literature for the observation of tetraploidy in neoplas-
tic progression. (1) Diploid cells duplicate their genomes at some normal
rate, but the tetraploid cells are inherently unstable and so more likely
than diploid cells to activate oncogenes and inactivate tumor suppressor
genes (Shackney et al. 1989; Duesberg et al. 1998; Matzke et al. 2003). (2)
Disruption of TP53 (p53) or some mitotic gene deregulates chromosome
segregation and/or mitosis that leads to both tetraploidy and aneuploidy
(Lengauer, Kinzler, and Vogelstein 1998; Shackney and Shackney 1997;
Cahill et al. 1999; Fodde and Smits 2002; Nowak et al. 2002). Whether
chromosomal instability generally comes before or after TSG inactiva-
tion has been hotly debated (Rajagopalan et al. 2003; Sieber, Heininmann,
and Tomlinson 2003; Moolgavkar and Luebeck 2003). (3) Doubling the
genome and then losing large portions of chromosomes may be selected
in a neoplasm because it provides a mechanism by which cells can evolve
different gene product dosages by changing the number of alleles of the
different genes (Li et al. 1997; Galitski et al. 1999; Rajagopalan et al. 2003).
(4) Doubling the genome may provide a genetic buffer that allows the cell
to survive further chromosome instability (Jallepalli and Lengauer 2001).
While our hypothesis is similar to the last two hypotheses, the difference
is that we posit linkage between CGs and TSGs that drives selection for
tetraploidy.

We did not represent in our model the possibility that tetraploid cells
are inherently genetically unstable (Shackney et al. 1989; Duesberg et al.
1998; Matzke et al. 2003), and so might have a higher rate of inactivation
than a diploid cell. If this rate is sufficiently high, it might eliminate the
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delay in the onset of cancer caused by genome duplication. However,
changing just the frequency of inactivation should not affect the rela-
tive risk of tetraploidy because the elevated inactivation rate would
apply equally to both the TSG and the CG. Similarly, an increase in
the inactivation rate should not affect the selective pressure to tightly
link a CG to a TSG. The relative risk of cancer in tetraploid cells would
only decrease if the ratio of single- to double-gene inactivation shifted
toward more frequent single-gene inactivation compared to diploid cells.
Most hypotheses assume the opposite that tetraploid cells would have
increased chromosomal instability relative to diploid cells (Jallepalli and
Lengauer 2001; Matzke et al. 2003; Shackney and Shackney 1997) and
thus an increased proportion of large deletions that would inactivate
alleles of both linked genes.

Barrett’s esophagus is a model for human neoplastic progression
(Neshat et al. 1994; Reid and Rabinovitch 1988; Maley 2007) and thus a
potential test case for hypotheses of neoplastic progression. It is a pre-
cancerous condition of the esophagus in which the normal multilayered
squamous cells of the esophagus are replaced by hyperproliferative colum-
nar cells. In Barrett’s esophagus, flow cytometric tetraploid cell populations
predict future progression to aneuploidy (Galipeau et al. 1996). Further,
tetraploidy also predicts an increased chance of progression to cancer (RR
=11.7,95% CI = 6.2 - 22) (Rabinovitch et al. 2001). Tetraploidy is typically
observed in cells that have lesions in TP53 (Galipeau et al. 1996). Both
TP53 and CDKN2A (p16/INK4A) tumor suppressor genes are commonly
inactivated by loss of heterozygosity in Barrett’s esophagus (Galipeau et
al. 1999; Reid et al. 2001; Wong et al. 2001), and fluorescent in situ hybrid-
ization analysis shows that LOH in TP53 is often, though not always,
associated with genome reduplication (Wongsurawat et al. 2006). These
observations are all consistent with our model of linkage between TSGs
and CGs driving neoplastic progression through a tetraploid intermedi-
ate. It is unknown if there are CGs closely linked to CDKN2A or TP53.

The importance of multiscale modeling is highlighted by the fact
that the single-cell model showed that tetraploid cells are more likely to
inactivate a TSG than diploid cells, suggesting that tetraploidy should
increase the risk of cancer, but the cell-tissue multiscale model showed
that the capacity to evolve tetraploidy delays cancer onset, and the
cell-tissue-population multiscale model suggests that the capacity to
evolve tetraploidy should have been preserved as a tumor suppression
mechanism.
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Our results suggest that the effects of natural selection on tumor sup-
pressor genes linked to critical genes can explain the observations of
somatic genome reduplication during neoplastic progression. This result
does not require an assumption of greater chromosomal instability in tet-
raploid cells relative to diploid cells. Nor does it require an assumption of
selective effects of gene dosage alterations due to copy number changes in
the genome. This is not to say that our model argues against either chromo-
somal instability or gene dosage modulation in progression, both of which
may be important. We have shown that they are not necessary assump-
tions to explain the phenomenon of tetraploidy in neoplastic progression.
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INTRODUCTION

The unstable character of most cancers, as reflected by the high levels of
genomic, cytogenetic, and epigenetic variation, seems an almost universal
feature of tumorigenesis. Such cellular disorder is particularly well illus-
trated by the presence of high levels of aneuploidy: multiple losses and
gains of parts or even entire chromosomes can be seen, together with
many chromosome rearrangements (Lengauer et al., 1998). It has been
properly described as a “gallery of horrors” and such a disorder opens
interesting, and I believe largely unanswered questions concerning the
nature of cancer itself. The evolutionary dynamics of tumors is thus char-
acterized by selection processes in parallel with unusual levels of genetic
variation (Loeb, 1991) more consistent with what we would expect from
unicellular systems (Cairns, 1997). Increased genetic instability has been
suggested as an adaptive trait of microbial species. When facing high
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levels of environmental stress, those mechanisms controlling the accurate
replication of DNA might be overcome and checkpoints ignored. This is
less reasonable in the tissue context, where cooperation among cells and a
control of tissue and organ size is an essential part of global homeostasis.
Failures in properly replicating the genome face multiple internal controls
that force the system to stop dividing or even to die.

The evolutionary nature of cancer progression was earlier highlighted
by John Cairns. As he pointed out, although competition and variation
is the source of improvement and change in nature, when turning to the
competition between individual cells within a complex organism “we see
that natural selection has now become a liability” (Cairns, 1975). Looking
at cancer as a process where Darwinian evolution plays a major role
(Cairns, 1975; Merlo et al., 2006), we can gain real insight into its origins
and dynamics. Perhaps not surprisingly, Darwinian evolution has become
an important issue within medicine (Greaves, 2007).

Genomic instability seems to be a common trait in many types of can-
cer (Cahill et al., 1999) and is a key ingredient in the Darwinian explor-
atory process required to overcome selection barriers. By displaying high
levels of mutation, cancer cells can generate a progeny of highly diverse
phenotypes able to escape from such barriers (Loeb, 2001; Merlo et al.,
2006). In this context, as shown by Maley and co-workers for the prema-
lignant condition known as Barret’s esophagus, clonal diversity measures
(adapted from theoretical works in ecology and evolution) can predict
tumor progression to adenocarcinoma. As these authors point out, “pro-
gression to cancer through accumulation of clonal diversity, on which
natural selection acts, may be a fundamental principle of neoplasia with
important clinical implications” (Maley et al., 2006). In this chapter, we
consider some recent mathematical and computational models of tumori-
genesis involving genetic instability. These models overlap in several ways,
incorporating different layers of complexity, spatial context, and ways of
introducing the unstable behavior of cancer cells. All of them share a com-
mon view of cancer heterogeneity that links it with another type of biolog-
ical system: RNA viruses. These viruses are known to exhibit high levels
of mutation (Domingo et al., 1995). As a consequence of such high levels
of mutation, together with high levels of replication, RNA viruses form
very diverse populations, which have been named quasispecies (Eigen
et al., 1987; Schuster, 1994). These clouds of mutants have been shown to
behave as the units of selection and are responsible for the rapid adapta-
tion of viruses to their changing environments, particularly, the immune
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response in vertebrates. One key prediction of the model is that there is a
critical mutation rate beyond which viruses are nonviable. Such transition
is sharp and, thus, small increases in mutation rate beyond this threshold
would effectively eliminate the virus. This prediction has been tested and
shown to be correct (Loeb et al., 1991; Coffin, 1995), thus opening a new
approach to antiviral therapies.

Some of these ideas are summarized in Figure 4.1. Standard models
(a) consider cancer progression as described by a two-population prob-
lem (see, for example, Gatenby, 1995, 1996). Here, we show cancer cells
as gray spheres occupying some locations within a healthy tissue (H, not
shown). In the simplest approximation, all cancer cells are considered as
having the same kinetic properties, and thus the tumor is described as
a single, homogeneous population C. A two-dimensional model in the
(H,C) space can be constructed and compared with predictions from the
cellular automaton model (CA). An extension of this simple approach is

} @) o

v
HC H,C(1), ..., C(n)} {T(Cmy

Mean field model Linear model - CA model String model
[ ]

Digital genome model {H,C(1), ..., C(n); [(C(i))}

FIGURE 4.1 Different levels of approximation to the dynamics of unstable can-
cer. These models include homogeneous systems (a) where all cancer cells are
equivalent and (b) heterogeneous models where rates of growth and/or death
are introduced as continuous numbers and a number of different subpopulations
are allowed to exist (here, the size of the spheres indicates the presence of vari-
able traits). A more realistic scenario would consider cells as carrying a genome
(c) where genes involved in growth and stability are included, together with a
set of essential genes. By incorporating this digital genome description into a
spatially explicit model, several key components of tumor progression can be
incorporated.
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to explicitly introduce the variable character of cells due to genetic het-
erogeneity (b). In this case, a better population description is achieved,
and different effects associated to population noise, bottlenecks, or spa-
tial dynamics are much better represented. This complexity can be made
explicit by using a multistate CA model (here, the different radius of cells
just indicates different phenotypic continuous traits) and also using a
mathematical (mean field) model ignoring spatial interactions but intro-
ducing population structure.

Finally, we can also go into a more detailed description of cell organi-
zation by considering a string picture (c). Here, each cell and its pheno-
typic traits are captured by the mapping between mutation affecting genes
involved in different locations along the string (Solé, 2003). These digital
genomes are a very simplified way of introducing genome organization
and can help understanding how growth and instability affect each other.
Moreover, by explicitly using the fitness landscape associated with different
mutational events, we can also track the exact progression paths followed by
the tumor. This approach reveals an unexpected complexity embedded in
the presence of a runaway effect, pushing instability levels toward criticality.
Several common features shared by RNA viruses and unstable cancer popu-
lations can help to better understand some of the counterintuitive patterns
displayed by unstable tumors.

MEAN FIELD MODEL

Our first example concerns a very simple characterization of instability
based on the assumption that all cancer cells can be considered equal. This
is of course in contradiction with the idea that instability generates het-
erogeneity. In this picture of tumorigenesis, we sacrifice realism in favor of
well-defined predictions. The basic model involves two differential equa-
tions associated with normal and cancer cell populations. These equations
read

I _ por— Ho(H,C)
dt
9€ _ por(uc-ca,0)

where P° indicates the basal cell replication rate associated to normal
cells, whereas T'(1t) indicates the effects of the instability rate | on the
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replication of cancer cells. The last term in the right-hand side of both
equations introduces selection of master replicating strains. It represents
an outflow from the system, and can be easily computed using some addi-
tional assumptions. In particular, it can be shown that the previous set of
equations is being reduced to a single equation by assuming that the total
population size (C + H) is constant. For convenience, we normalize the
total population to one. If this assumption is introduced, we have

dH dC _d(C+H)
dt dt dt

which gives ®(H,C)=P°(H+TI'(1)C). Using this result, we obtain after
some algebra:

dC
E—P}’(F(M)—DC(I—C)

Such an equation captures the essential dynamics of the model and, in par-
ticular, the presence of two possible equilibrium states, namely, a cancer-
wins phase (C = 1, H = 0) and a host-win (i.e., healthy tissue) (C=0, H=1)
phase. As it happens with other phase transitions in complex systems
(Solé et al., 1996; Solé and Goodwin, 2001), some important lessons can
be extracted by understanding the nature and universality of the transi-
tion. The critical boundary of a transition is easily obtained from the con-
dition I'(L) =1. Now we need to include in the mutation-dependent term
some reasonable link between instability, growth, and deleterious effects.
This can be done by assuming that instability allows hitting growth-related
genes, but also essential genes whose loss or mutation are lethal. One pos-
sible choice is

I(w)=(1+pn,8G)(1— )

which includes the positive effect associated with growth-related muta-
tions (first term on the right-hand side) and a second component introduc-
ing the adverse effects of hitting essential genes. Here, n, and ny indicate
the number of growth-related and essential (housekeeping) genes, respec-
tively, and §G is the average increase of growth due to the first class of
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FIGURE 4.2 Mean field model of a two-species interaction system involving
cancer and normal cells. Cancer cells are identical in their replication and muta-
tion rates, and a fixed trade-off between replication and mutation is introduced.
One prediction from the model is that two possible phases are present: either the
tumor fails to propagate or wins and occupies all space. The critical line separat-
ing these phases depends both on the efficiency of cancer cells to replicate and
the amount of instability. As we can see here, we can shift from the cancer phase
(gray) to the healthy tissue phase by increasing instability rates. The two pictures
at both sides of the phase diagram are two examples of the associated potential
function (whose minima correspond to equilibrium states).

mutations (see next section for a detailed discussion). This choice allows
us (for each set of parameters) to find the corresponding critical mutation
rate (1 _. An example of the phase diagram associated with this model (for
a given set of parameters) is shown in Figure 4.2. The gray area indicates
the domain where cancer propagates (here we use o = ngSG). We can see
that the boundary of this domain is a function of both instability and the
selective advantage provided by growth-related mutations. An immedi-
ate result from this picture is that small changes in instability (a slight
increase) can shift the system from normal to cancer. An additional illus-
tration of this result can be obtained by using the potential function ¢, (C)
associated to the previous equation. Specifically, a potential function fol-
lows the following property:

4c_ df,(C)

dt dC

or, in other words, 9, C)=- ff (C)dC , where f(C) is the function describ-
ing the growth dynamics of the C population. As defined, this function
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will be such that the minima of it correspond to the stable equilibrium
points associated to our system, whereas the maxima will indicate unsta-
ble equilibrium. For our system, we have

¢H(C)=—RO(F(M)—l)JC(l—C)dC=—P,"(F(M)—I){C;—C:}

The two examples shown in Figure 4.2 illustrate the point.

It can be shown that the critical instability rate scales as the inverse of
the number of housekeeping genes. In other words, on a first approxima-
tion, we have |, =1/ny,. This is an interesting finding, since it predicts
a limit (an upper bound) to the maximal amount of genomic instability
compatible with viable cancer cells. Another important result is that this
type of model (several variations have been explored) seems robust to
several relevant modifications, such as the exact functional form of the
instability-replication relation (Solé and Deisboeck, 2004). The robustness
of our prediction suggests that this type of error catastrophe might play a
role in cancer, or might be used in future approaches to cancer treatment,
since a small increase in genomic instability close to the boundary can
cause the collapse of the population.

This type of model can be extended in several ways. One of them (Solé
et al.,, 2008) included a more accurate description of tissue architecture, in
particular, the presence of stem cells and cancer stem cells. In this approach,
we expand our picture of cancer organization by adding one important
ingredient: cancer stem cells (Reya et al., 2001). In Figure 4.3, we show one
example of the type of tissue organization that has been analyzed. Here, a
healthy tissue competes with a cancer cell population involving cancer stem
cells (Sc) and differentiated cancer cells (C). The CSC population is consid-
ered constant (in this way, we can maintain the model complexity under
control) and, thus, cancer cells will always be present. Once again, the two-
phase scenario is also present, as indicated in the lower picture of Figure 4.5.
Here, together with a cancer-wins phase, there is a scenario where both
cancer and the healthy tissue coexist. This corresponds to a situation where
cancer would be always present, but its relative impact would be controlled
by the parameters defining the replicative potential of mutants as well as
the limits imposed by instability levels. A chronic state is here defined by
the gray area where once again we can keep the system in a safe state of low
level, benign configuration provided that instability levels are high enough.
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FIGURE 4.3 A model of cancer progression considering the presence of cancer
stem cells also displays phase transitions. Now, the existence of a stable, constant
compartment of cancer stem cells allows two basic phases to be present. In one
the tumor wins, whereas in the second (gray area) coexistence between both can
be observed.

An additional extension of the previous models involved a multistep
scenario where genetic instability levels could change (increasing) as fur-
ther mutations accumulate. This was done (Solé et al., 2008) by considering
a linear arrangement of cell types involving increasing levels of genomic
instability. One given element of the chain displays a given mutation rate,
which can affect other genes involved in stability thus further increasing
mutation levels. As we move through this linear chain, faster clones allow
tumor progression to proceed, but also increase the likelihood of entering
inside a dangerous domain of damaging mutation levels. The key result of
this model was the finding that the cancer cell population self-organizes
around a narrow domain of high instability levels, thus approaching the
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critical line. Below this domain, a gap is observed, with virtually no cancer
cells having intermediate or low levels of instability. This result supports
our previous conclusion concerning the possible evolution of unstable
tumors toward a fragile organization where cells replicate and adapt but
are also likely to experience decline if instability is further increased even
by a small amount.

The models outlined earlier are all simplifications of the intrinsic rich-
ness associated with genome complexity. Evolution and stochasticity, as
well as explicit spatial degrees of freedom, have been ignored or oversim-
plified. It seems clear that the assumptions implicitly made in our toy mod-
els should be explicit. The following section shows how this can be done
using a representation of genome architecture that seems to capture some
of the evolutionary dynamics that are likely to occur in real tumors.

DIGITAL GENOME MODEL

A different approach that has been taken is to consider the problem of
cancer quasispecies in terms of sets of strings of bits (Solé, 2003). In this
model approach, each cell is replaced by a string carrying a set of “genes,”
whose state will be indicated as 1 or 0. Normal tissue defines a particular
string & that has a given replication rate. Here, we take for convenience
the sequence where all bits are 1. On the other hand, mutations can affect
any bit in any string in such a way that replication is not accurate and
a mutated string appears. In the original formulation of the problem,
two populations where considered. One is described by one particular
string, whereas the second class included all possible mutants generated
from the original sequence. This model did not considered explicit space,
and all bits in the string (here representing genes) would only affect rep-
lication speed. The model was thus a well-mixed population of strings
representing the competition between healthy and tumor cell popula-
tions, and confirmed the previous predictions based on the mean field
model, in particular, the presence of a well-defined phase transition. An
example of these results is summarized in Figure 4.4. Here, we display
(a,b) the hypercube of 4-bit strings under two different conditions, cor-
responding to the two phases of the model. In (a), instability levels are
low and efficient mutants have been generated, creating a quasispecies
that spreads through part of the landscape. The lower left corner would
indicate the population of healthy cells, which is small. If instability rates
increase beyond the threshold, the healthy tissue is capable of outcompet-
ing the cancer quasispecies, as shown in (b). The population distribution

© 2011 by Taylor and Francis Group, LLC



76 m Ricard V. Solé

100

80

Populations
foN
S

'S
o

20

0 0.02 0.04 0.06 0.08 0.1
Genetic Instability

(©

FIGURE 4.4 Phase transitions in the string quasispecies model. Here, a popula-
tion of mixed strings is used to model a single-peak landscape where the 1111
string has the lower replication rate (the master sequence), whereas all others
differ from it at least in one bit and have a smaller replication rate. The upper
diagrams (a,b) display the fitness landscape for this small-size example with only
n =4 bits. In (a) a moderate level of genetic instability allows generating strings
with faster replication rates, whereas for higher levels (b) the deleterious effects
associated to increased mutations render mutating strings nonviable. A marked
transition is clearly visible.

is displayed in (c), with both the number of strings for the healthy tissue
(here indicated as x) and the number of mutant sequences differing in 1,
2, or 3 bits from the master. Although the healthy tissue is unable to win
below a critical mutation level, it becomes successful once cancer moves
beyond criticality.
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A last step in our increasingly detailed modeling efforts will consider the
integration of cell-level organization, space, and genome. Each cell is now
explicitly located in a given point of a three-dimensional spatial domain. In
this way, we take into account the limitations imposed by spatial constrains,
in particular, the reduced competition resulting from local interactions.
In this context, it has been shown that spatial dynamics in cancer seems
strongly influenced by its spatial organization (Gonzalez-Garcia etal., 2000).
In particular, limited dispersal enhances spatial heterogeneity, both at the
genetic and phenotypic levels. Now every cell includes an internal descrip-
tion of 3-bit strings, associated each with one class of gene. Specifically, we
consider genes linked to proliferation, stability, and those having essential
roles in cell survival. Once again, introducing housekeeping genes allows us
to set some limits to the levels of instability that can be achieved. The three
compartments define this digital genome, and they are

1. A set G of growth-related genes. Here, G = {Gj} with j = 1, .., n,
genes. This set includes genes affecting the rate of replication of a
given cell. Their loss or mutation increases the replication rate of
cells. This would include both tumor suppressor genes (such as APC
or p53) and oncogenes (RAS or SRC). Although they act in differ-
ent ways (are targeted in opposite ways by genetic alterations) here
me make no explicit distinction (Vogelstein and Kinzler, 2006). This
assumption simply considers the fact that the impact of both kinds
of mutation is an effective increase in the number of cancer cells.
This assumption ignores relevant features of tumorigenesis that are
not within the scope of our approximation. The exact origins of
such driving events (alterations in cell division rates or disruption of
checkpoint controls) are not within the scope of our approximation.

2. A setS of stability-associated genes, S = {S} with j= 1, ..., n.. Mutations
in these genes lead to increased levels of mutagenesis. These stability
genes (Vogelstein and Kinzler, 2004) are typically genes playing a key
role in preserving genome integrity, and their failure can have large
effects. In a nutshell, these genes (including BRCA1, BLM, or ATM)
keep genetic changes under control. As a consequence, their failure
or loss triggers further increases in mutations in other genes. If these
mutations affect growth-related genes, the tumor can gain fitness
through increased replication. If other stability genes are affected,
further instability will be observed.
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3. A set H of housekeeping (HK) genes, H = {h} with j = 1, ..., n,,. These
genes are associated with essential functions whose failure leads to
cell death. In real cells, HK genes are expressed in a constitutive
manner in all tissues. Examples would include genes coding for
ribosomal proteins actin, GAPDH, and ubiquitin (see Eisenberg and
Levanon (2003)).

The genome of the k-th cell, to be indicated as I'(k), is thus defined from
the three previous subsets and will be essentially a Boolean string, where
a given gene can be in two possible states, namely, 1 and 0, indicating
wild-type and mutated loci, respectively. Changes in strings associated to
growth or stability will have an impact on cell proliferation although their
nature is very different. These strings are, for the k-th cell,

G(k) = (le ’GZk""’Gnk)

and for growth-related genes and

S(k)=(Si>SaseerS)
for stability genes. The set of HK genes to be indicated as
H(k)=(H,;,Hy>-s Hyp)
and thus the digital genome is given by:
I'(k)=G(k)u S(k)u H(k)
Finally, an additional pair of strings are included, introducing the impact

of each mutated gene on the growth or stability (mutation) properties of
the cell. These strings are given by:

8G =(8G,,5G,,...5G,)

which is position but not cell dependent, for growth and

o = (3,015,011,
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for instability effects associated with mutations in each gene. The effects of
changes are additive, and thus can be calculated, for the k-th cell as follows:

RCI)=P'+ Y G,3G,
j=1
for the growth term and
B(CU) =t + Y 8,04,
k=1

for the instability one. Since we assume that any damage affecting HK
genes is lethal, no probability needs to be introduced for their effect. The
two previous expressions give the probabilities of replication and muta-
tion of this cell. For simplicity, we take the same number of genes in each
compartment. This approach allows studying tumorigenesis under a mul-
tiscale perspective: both cells and cell populations are being taken into
account, and the phenotypic traits characterizing cell kinetic parameters
are evolvable and implicitly defined by genome structure. We can thus
follow the changes taking place within the tumor and what drives them.
Two important problems can be addressed here. One is the emergence
of unstable clones and genomic heterogeneity under spatial constraints.
The second is the patterns displayed by progression paths followed by the
tumor cell population. The first is already known to us from the previous
model approaches, but now we have little constraints since every property
of the cell population is ultimately associated with the microscopic contri-
butions of genome-level changes.

As shown in Figure 4.5, the model displays a tendency to increase both
growth rate and instability. These parallel changes seem to result from a
coevolution of both instability (which allows to hit growth-related genes)
and growth. Clones of cells having one or several mutated prolifera-
tion genes will expand, carrying with them those mutations associated
with instability. Such mutations then can expand also triggering further
increases of instability and accelerating tumorigenesis. Although in some
cases instability goes first and in others proliferation, the general trend
seems to be a parallel coevolution of both phenomena. The upper row in
Figure 4.5 (a—c) shows three snapshots of the model at three different steps
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in the simulation. Here, a tumor slowly develops from random mutations,
which eventually become successful. We can see this evolution under a dif-
ferent perspective by looking at the information provided by how genome
composition changes over time. This is illustrated in Figure 4.5d-f, where
we display the evolution of the occupancy of the instability-growth space
followed by one run of the model. Specifically, we measure how many
cancer cells (here displayed as the relative fraction) have a given number
of mutated (or lost) genes associated with either replication or mutation.
Starting from the lower left corner of this diagram, we can see that a cloud
(the cancer quasispecies) develops and expands toward the upper right
corner, thus involving mutations in both stability- and replication-related
genes. The final outcome of the evolutionary dynamics of these digital
genomes is variable. Sometimes, the whole tumor moves to the highest
instability-replication levels and remains at that. Sometimes, the initial
mutations driving tumorigenesis affect stability genes, afterward followed
by replication genes. Others, replication genes come first. However, in gen-
eral, the typical scenario involves both types of genes, with a slight initial
contribution of stability-related mutations. We could say that there is a
special type of coevolutionary dynamics here. Mutations in stability genes
will be typically neutral, particularly, while far from criticality. However,
such mutations will increase the likelihood of hitting growth genes, and
the clonal amplification of these will facilitate the expansion of unstable
cells, which in turn are likely to produce offspring displaying higher insta-
bility and so on.

PROGRESSION PATHS AS COMPLEX NETWORKS

When we analyze the abundance of each string (digital genome) in our
unstable tumors, we find that the resulting probability distribution is highly
skewed. It is dominated by a few strings having large populations coexisting
with many others whose population sizes are rather small. If we plot the fre-
quency N(m) of strings present in m cells in the tumor, it decays as a power
law, that is, it follows a distribution N(m)= AmP (here A is a normaliza-
tion constant). It is interesting to notice that such a shape has been reported
from the analysis of chromosome abnormalities in several types of cancer,
including breast, colorectal, and renal (Frigyesi et al., 2003). The presence of
these power laws has important implications, in particular, in terms of the
meaning of taking small samples from the tumor, since the enormous vari-
ability associated with these distributions makes statistical averages rather
unreliable.
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A last message is obtained by watching closely the patterns of network
organization associated with the transitions between different genomes.
Even at the very small sizes considered in these models (where n = 20
genes of each class where used), the potential combinatorics are enor-
mous. Although a heterogeneous model with different levels of growth
rate should favor some genes in relation to others, and perhaps lead to a
more or less linear chain or gene—gene correlation defining a linear pro-
gression, the analysis of the transitions between different genomes (i.e.,
single-gene mutational events) pictures a rather different, highly nonlin-
ear image (Figure 4.6). Previous work on progression pathways has shown
that this is far from a trivial problem, but strong evidence suggests that
parallel paths are expected to occur (Subramanian and Axelrod, 2001;
Sontag and Axelrod, 2005). However, the general question of what kind
of global network organization might be at work has only recently been
considered.

Instead of a roughly linear graph, we obtain a complex network of
state transitions that describe a scenario where most genomes appearing

FIGURE 4.6 Complex pathways of tumorigenesis in the digital genome model.
Here, we display the complete graph of genome transitions that took place in the
process shown in Figure 4.5.
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through the progression process have just one or two links with others,
whereas a few nodes display a large number of connections. These hubs
are typically linked to successful populations of strings from which many
other mutants were generated. This network does not follow the standard
picture of tumor progression as described by early attempts of understand-
ing the steps required for the process to succeed (Fearon and Vogelstein,
1990). Instead, the pattern of connections follows a rather heterogeneous
organization, which can be characterized by means of a scale-free distri-
bution of connections (Albert and Barabasi, 2002). More precisely, the
probability P(k) of nodes having k links between a given genome I'(k)and
another one I'(k”) follows a fat-tailed distribution, namely:

P(k) =%k—7 exp(llz)

where Z is a normalization constant and K a given cutoft. This distribution
implies (as we can see from Figure 4.6) that most elements have just one or
two links, whereas a few of them have many connections. In most complex
networks (here too), the exponent y is bound between two and three. One
important consequence of this architecture is that there will be problems
in defining the variance associated with the system and thus to properly
define statistical significance. It is not difficult to show that, for very large
K values, when a power law dominates the distribution, the second-order
moment <k*> diverges, since we have

M

<k’>= J-kz—de = L(M3—Y -1)
3=y
1
where M indicates the maximal number of links that a node can achieve.
As M grows, and given that 2 <y < 3, this average will rapidly diverge and,
as a consequence, the statistical deviations will diverge too. This result
gives a rather different picture from a tumor as describable in terms of
standard average values and supports the view that better predictors must
consider clonal diversity (Maley et al., 2006).

DISCUSSION

The success of unstable tumors in adapting and growing within their

hosts creates a paradoxical situation. Aneuploidy is known to be a burden
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to cell viability and has severe effects on organismal growth and devel-
opment (Torres et al., 2008). Moreover, aneuploidy provides a source of
enormous variation. As David Pellman puts it, “Aneuploid cancers are like
Tolstoy’s unhappy families: each aneuploid cancer has its own particular
abnormal chromosome content, and thus its own abnormal characteris-
tics.” Actually, it is well known that there are many more aberrations in
solid tumors have been shown to be recurrent (Albertson et al., 2003). The
typically reduced fitness caused by aneuploidy, and the great variability
associated with cancer progression require an appropriate explanation.
Mathematical and computer models explicitly considering the impact of
such instability can be useful in order to provide tentative answers. As sug-
gested in early papers (Solé and Deisboeck, 2004), the similarities existing
between viral quasispecies and unstable cancer provide a relevant insight.
RNA viruses are known to replicate close to the error catastrophe and,
thus, an important part of their mutants are nonviable. Living at the error
threshold allows these populations to escape from the constant pressure
of the immune system (Domingo, 2000). The cost of such elevated muta-
tional load is compensated by the plastic responses that are intrinsic to the
quasispecies structure. Information is preserved, and selection forces can
act. Once the threshold is crossed, genetic drift dominates the scene and
the viruses are no longer able to adapt. Is that the case in unstable tumors?
Our models suggest that this might be the case since the presence of an
error catastrophe in cancer-normal competition models seems a generic
property. On the other hand, the failure of stability-preserving mecha-
nisms that takes place during carcinogenesis, particularly, those associ-
ated with balanced segregation of chromosomes, should be expected to
trigger multiple cascades of changes. As a consequence, genetic instability
should be expected to increase through time since the loss of stability-
related genes is irreversible. In other words, if instability can be estimated
using some average “mutation” rate, this value should grow over time. The
tumor will thus approach the error catastrophe, and how fast this hap-
pens will determine how close the evolved cancer population will be to the
critical boundary. All this variability seems to articulate rather well with
the pattern of pathways emerging from the digital genome model. A scale-
free network gives us an appropriate picture of the complex dynamics fol-
lowed by our in silico tumors. Instead of parallel or even linear pathways,
we observe the most diverse network of interconnected transitions. As it
happens with most complex systems displaying this pattern, robustness
and fragility go together. The multiplicity of paths tells us that therapies
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addressing progression in terms of simple chains of events might fail. The
existence of hubs on the other hand is likely to provide new ways of think-
ing of potential Achilles heels of cancer.
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INTRODUCTION

The human colon is lined with a single layer of epithelial cells that under-

goes continuous self-renewal by long-lived tissue stem cells compartmen-
talized into basic proliferative units (crypts), each of which is a finger-like
invagination into the lamina propria connective tissue of the colon.
Significant progress has been made recently in the molecular identifica-
tion and characterization of intestinal stem cells [1,2], which are located
at the base of the crypts, where they give rise to transit-amplifying cells
that are committed to different cell lineages (goblet cells, enterocytes, and
enteroendocine cells). The transit-amplifying cells and their differenti-
ated progenies migrate up the crypts toward the intestinal lumen into
which they are shed after apoptosis and detachment from the underlying
stroma.

It is generally believed that molecular feedback mechanisms among tis-
sue stem cells, their progeny, and interactions with the underlying stroma
control the stable maintenance of the intestinal epithelium. Understanding
this control, its potential defects, and how they might affect stem cell
kinetics during tumorigenesis would clearly provide important input for
the development of biologically based cancer models [3-5]. For example,
it has been suggested that the mechanisms that control cell cycle check-
points, DNA repair, and apoptosis are in some ways optimized to delay the
onset of neoplastic progression, although experimental evidence for this
hypothesis is still lacking [6]. In this chapter, we step away from the bio-
logical details of the problem and take a broader view to address the basic
question: how do the mechanisms that contribute to the homeostatic con-
trol of tissue stem cells manifest themselves in the integration of the cell-
level, crypt-level, and tissue-level dynamics? To answer this question, we
introduce a stochastic multiscale model for intestinal tissue homeostasis
that spans the cellular and tissue scales. The model incorporates explicitly
both stem cell and crypt kinetics, including the process of crypt branch-
ing. By assuming that crypt branching results from the budding of a new
crypt containing one or more stem cells, we identify constraints imposed
on the model by the requirement of homeostasis, that is, the overall bal-
ance of crypt branching and death while maintaining a constant mean
number of tissue stem cells and a stationary number and size distribution
for nonextinct crypts. Mathematical expressions such as the crypt sur-
vival and the first passage time to crypt branching are derived and used
for simulations of crypt phylogenies that facilitate the validation of the
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derived constraints. We also explore violations of the constraints and their
consequences for unconstrained tissue growth. In short, this model rep-
resents an attempt to capture effectively the homeostatic control mecha-
nisms by mathematical constraints formulated in terms of the cell-level
and crypt-level kinetics.

Colorectal cancer is associated with a number of successive genomic
changes [7-13]. Among the earliest changes are (epi)genetic defects that
lead to the abrogation of control mechanisms that free mutant stem cells
from the crypt constraints that enforce proper cell turnover, allowing
them to accumulate in the tissue [14,15]. Quantifying these constraints
in terms of the biological parameters describing the crypt dynamics may
therefore help us better understand the consequences of defective control
mechanisms and their role in tumor initiation and progression.

MODEL OVERVIEW

Stem Cell Divisions and Single Crypt Dynamics

Although they make up only a small subset of the overall cell population
in a crypt, stem cells are primarily responsible for maintaining, repair-
ing, and regenerating the single layer of epithelial cells in the intestine. A
crypt may be lost due to stem cell death or may bifurcate to produce new
crypts. Although the exact mechanisms that trigger crypt bifurcation are
unknown, it is commonly assumed that doubling of the number of stem
cells in a crypt in response to spontaneous or induced crypt death in its
neighborhood is a likely cause (e.g., see Reference [16]). Here, we idealize
this view by assuming that “bud-forming” stem cells give rise to distinctly
branching crypts and that their formation results from sporadic (asymmet-
ric) stem cell divisions that generate one daughter cell that forms a branch-
ing crypt bud and one daughter cell that remains in the parent crypt.

For the mathematical development of the stochastic framework, we
focus on the stem cell population within a crypt and ignore transit-
amplifying cells and fully differentiated cells as their role is not essential
for our arguments. Within the stem cell compartment of the crypt, a bud-
ding crypt is a population of stem cells derived from progenitors that (in
a prespecified time interval) gave rise to crypt bifurcations. In contrast,
the parent crypt is the lineage excluding the budding crypts. In general,
we assume that a parent crypt having n, stem cells at time s contains X(t,s)
stem cells at time ¢, s < ¢, and evolves according to the four fundamental
cell division processes shown in Figure 5.1. Incidentally, this assumption
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is consistent with Potten and Loeffler’s concept of functionally equivalent
stem cells [17-19], which postulates that each stem cell has the same poten-
tial to maintain a crypt. Specifically, a stem cell may divide symmetrically
to form two stem cells within the parent crypt at a rate of a(t,s) per cell per
unit time, it may die or undergo a symmetric cell division that gives rise
to two transit-amplifying cells committed to differentiation with a rate of
B(t,s) per cell per unit time, or it may undergo an asymmetric cell divi-
sion with rate L(t,s) per cell per unit time to form one stem cell and one
transit-amplifying cell within the parent crypt, where Y(t,s) is the number
of transit-amplifying cells in the parent crypt at time .

Furthermore, a stem cell may divide with rate p(t,s) per cell per unit
time to produce one stem cell within the parent crypt and n, stem cells
within a newly formed crypt branch. The reasoning here is that crypt
bifurcation (albeit triggered by a single stem cell) can be followed by a
short phase of stem cell multiplication. The effective size of a newly born

P X(t,s) = number of SCs in parent crypt
Birth of SC '\./ Y(t,s) = number of TACs in parent crypt
Z(t,s) = indicator for crypt budding

alt,s) Fl

Parent crypt

Asymmetric SC ng SCs at time s Crypt branching
division X(t,s) SCs at time t (budding, bifurcation)

B(t,s) l

oo
Loss of SC 'S\'f"
o.o

@ Stem cell (SC)
O Transit-amplifying
cell (TAC)

FIGURE 5.1 A multiscale modeling framework for crypt stem cell dynamics.
A stem cell undergoes four cell division processes: birth (symmetric division to
form two stem cells within the parent crypt), death (apoptosis or symmetric cell
division to form two transit-amplifying cells), asymmetric cell division (forms
one stem cell and one transit-amplifying cell), and crypt bifurcation (forms
1 + n, stem cells, one in the parent crypt and », stem cells initiate a new budding
crypt; only n, = 1 is shown). The rates are respectively aut, s), B(t, ), 1(t, s), and
p(t, s) per stem cell per unit time.
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crypt, n, = 1,2,3, ..., is subsequently also referred to as the crypt birth size.
Let Z(t,s) be the stochastic indicator variable for a branching by time ¢
from a parent crypt having n stem cells at time s:

0, nocryptbranching by timet

Z(t,s):=
(£,5) {1, otherwise (5.1)

Note that both the parent crypt and the budding crypts derived from it
are described by the same cell kinetics. Within this framework, a budding
crypt may play the role of a parent by giving rise to further budding crypts
of its own. We first consider the case where a budding crypt is born with a
single stem cell (1, = 1), followed by the general case (n,, > 1).

Joint and Conditional Generating Functions of Parent Crypt Sizes

For simplicity, we assume that all cell division parameters are constants,
that is, ou(t,s) : = o, B(t,s) : = B, W(t,s): = W, and p(t,s) : = p. Let V(x, y, z; 1, s,
n,) be the joint probability generating function (PGF) of the three processes
X(t, s), Y(t, 5), and Z(¢, s) for a parent crypt having n, stem cells at time s < t,

Y(x,y,z;t,s,n,):= Z xiyfz"Prob{X(t,s)z i,Y(t,s)=j,
i,jk (5.2)

Z(t,s)=k| X(s,s)=n,,Y(s,s)=Z(s,s)= 0}

Then it satisfies the partial differential equation

oW (x, y,z;t,s,n, )/at

= [oc(x2 —x)+BA—x)+ux(y—1)+px(z —1)]8‘P(x,y,z;t,s,n5 )/ax, G3)

with the initial condition ¥(x, y, z; s, 5, ny) = X" . A similar expression
involving one indicator variable has been applied by Jeon et al. [20].
Since our present goal is mainly to understand the stem cell population
dynamics, this formulation makes it convenient to marginalize, and
thereby ignore, the asymmetric transit-amplifying cell-generating stem
cell division process by setting y = 1 in Equation 5.3, which produces
the modified PGF
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y(x,z;t,s,n):=Y(x,y=1z;t,s,n,)

= 2 xiz"Prob{X(t,s) =i,Z(t,s)=k| X(s,s)=n,,Z(s,s)= 0}.
ik

(5.4)

Also, we are interested in the number of stem cells in a parent crypt hav-
ing n, stem cells at time s < t and that no crypt branching has occurred by
time f, whose PGF is obtained by setting z = 0 in Equation 5.4, y(x, 0; ¢,
s, ny) = [0(x, 0; t, s)]"s, where

O(x,z;t,5):=y(x,z;t,5,n,=1)

=) xiz Prob{ X(t,9)=i, Z(t,5) = k| X(s,5)=1,Z(s,5) =0}
ik

(5.5)

is the joint PGF for the number of stem cells at time ¢ in a parent crypt
having a single stem cell at time s < ¢, and crypt branching. ¢(x, 0; ¢, s) has
been shown to satisty [21,22]

q)(x O't S) — 1+l V(W—n)e*V(t*S) — W(V _n)e*W([*S) (5‘6)
Y o (w=m)et=) —(v—m)et=))

where

V::%[‘“JFB*'P—\/((HBJFP)Z‘40‘3}’ (5.7)
w:=%[—oc+B+p+\/(0€+B+P)2—40€|3J7 (5.8)
n:=o(x-1). 59

It is also of interest to marginalize the joint PGF of parent crypt size and
branching on the parent crypt branching process, which is accomplished
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by setting z = 1 in Equation 5.4. This produces the PGF for the number of
stem cells in a parent crypt having n  stem cells at time s < ¢, regardless of
whether a budding crypt has formed before time t, y(x, 1; t, s, n,) = [(x, 1;
t, s)]"s, where ¢(x, 1; t, s) can be shown to satisty (see Appendix)

B(X -1)—(ox— B)e—(a—ﬁ)(t—s)

0(x,Lit,s) = o(x—1)— (o —B)e-oBe=) "

(5.10)

Equation 5.10 was applied by Luebeck and Moolgavkar [23] to initiation-
promotion carcinogenesis models for analyzing the sizes of premalignant
lesions. Finally, we are interested in the number of stem cells in a parent
crypt having n, stem cells at time s < t conditioned on no parent crypt
branching by time ¢, which has the PGF (Appendix)

O(xit,5,n,)i= Y. xProb{X(t,9)=i] X(5,5)=n,, Z(5,5) = Z(t,5)= 0}

1

_[(I)(x,o;t,s)r
| o(0t,s) |

(5.11)

Parent Crypt Extinction Time and First Passage Time to Branching

For a parent crypt containing n  stem cells at time s < t,let T, and T, be the
random variables for the time to extinction and the first passage time to
branching, respectively. It can be shown (Appendix) that the cumulative
density functions (CDFs) for such a crypt satisty

Prob{Te St}
12)
=Prob{ X(t,5)=0] X(s,5)=n,,Z(s,5) =0} =[0(0,1;£,5)]",
and
Prob{Tb St}
(5.13)

= Prob{Z(t,s) =1|X(s,s)=n,,2Z(s,s)= 0} = 1—[¢(1,0;t,s)]ns,

where the latter is equivalent to one minus the probability of the crypt
having not undergone budding by time t (crypt branching survival).
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Similarly, for a parent crypt having n, stem cells at time s < ¢, the crypt
extinction time conditioned on no prior occurrences of crypt branching,
and the first passage time to crypt branching conditioned on nonextinc-
tion, have the respective CDFs

Prob{T, <t|T, >t}

0(0,0;t,s)

o (5.14)
$(1,05t,s) }

= Prob{X(t,s): 0| X(s,s)=n,,2Z(s,s)=Z(t,s)= 0}:[

and
Prob{T, <t|T, >t}
= 1—Prob{Z(t,s): 0| X(t,s)>0,X(s,s)=n,,2Z(s,s)= 0}

_ (609" ~[0(0.0:,9)]" (5.15)
1-[o,Le9)]*

When the cell death rate exceeds the cell birth rate (B > o), extinction
is certain for any parent crypt, regardless of its initial size and the num-
ber of prior branchings (Figure 5.2a). Also, depending on the number of
stem cells (n,) in a parent crypt at time s, branching may never occur,
since the crypt may suffer extinction before it generates a budding crypt
(Figure 5.2b). This occurs more frequently for parent crypts having smaller
initial sizes. In general, increasing the initial number of stem cells in a par-
ent crypt shortens its time to first branching and extends its lifetime, since
a larger crypt increases the probability of branching and is less suscep-
tible to extinction. Although crypt extinction is certain (assuming 3 > ov),
parent crypts that have not undergone prior branchings are more suscep-
tible to extinction than those that have generated progeny (i.e., given rise
to branching crypts) (Figure 5.2¢c). Again, this can be attributed to the
dominance of cell death over cell birth, which drives down the sizes of the
crypts, thereby shortening their time to extinction. Finally, conditioned on
crypt survival, all parent crypts will eventually generate progeny, regard-
less of their initial sizes (Figure 5.2d).

As we will show in the next section, Equations 5.14 and 5.15 are espe-
cially important for the identification of mathematical constraints on stem
cell homeostasis.
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FIGURE 5.2 Cumulative density functions for the time to extinction and the
first passage time to branching in a parent crypt having n = 1, 10, or 20 stem
cells at time s, o0 = 0.035, B = 0.042, p = 0.002 per stem cell per unit time. (a) Time
to crypt extinction. (b) First passage time to crypt branching. (c) Time to crypt
extinction given no prior occurrence of crypt branching. (d) First passage time to
crypt branching given nonextinction.

TISSUE-LEVEL AND CRYPT-LEVEL
CONSTRAINTS FOR HOMEOSTASIS

To derive a constraint for a constant mean number of stem cells in a tis-

sue, regardless of its specific structure, we employ the generalized Luria-
Delbriick model introduced by Dewanji, Luebeck, and Moolgavkar [24].
The model was originally developed for quantifying the spontaneity of
mutations in bacteria prior to their selection, a phenomenon Luria and
Delbriick demonstrated experimentally in their 1943 Fluctuation Analysis
[25]. In the current context, the generalized Luria-Delbriick model may
be applied as follows. Assume that there is a constant number of X stem
cells in a tissue, which gives rise to budding crypts according to a Poisson
process with rate p per stem cell per unit time, and each crypt contains
n, = 1 stem cells at the time of birth. The stem cells within a budding crypt
formed at time u < t undergo a birth-death process {X(t,u), u < t} with
X(u, u) = n, having birth and death rates ou(t, u) and B(#, u) per stem cell
per unit time, respectively. Under constant parameters, that is, out, u): = o
and B(t, u): = B, it can be shown that the total number of stem cells in the
tissue at time ¢, X(¢), satisfies (Appendix)
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E[X(t)]=’§'_p§[1—e-<ﬁ-w]. (5.16)

Thus, stationarity of the overall stem cell number in the tissue may be
obtained by imposing the condition lim,_,_ E[X(f)] = X under the assump-
tion B > o, which produces the tissue-level constraint § = o + n,-p. The
simplicity of this tissue-level constraint is a consequence of the assumed
cell-to-cell independence. Although this constraint will guarantee a model
tissue with constant mean size (irrespective of the choice of 1,), it does not
control its fluctuations over time, nor its possible extinction. Here, we shall
not be concerned about this shortcoming as we will consider the tissue to
be very large (compared with the crypt stem cell niche) and the overall
fluctuations controllable by other means or model extensions that impose
additional constraints. For example, the overall stem cell population in a
tissue could be controlled effectively by a Prendiville process with reflec-
tive boundaries rather than a simple linear birth death process [26,27].

The number of budding crypts in the tissue may be controlled by balanc-
ing the loss and the gain of crypts within the tissue. This can be achieved
by equating the mean time to crypt extinction conditioned on no prior
branching and the mean first passage time to crypt branching conditioned
on nonextinction. This is mathematically equivalent to equating the means
of these random variables having CDFs given by Equations 5.14 and 5.15.
For consistency, we will generally assume that n, = n,, that is, equality of
the arbitrary initial crypt size of the parents at time s with the crypt birth
size, unless mentioned otherwise. Upon numerical differentiation of the
CDFs and integration for computing the means, we obtain a relationship
between o, B, p, and #,, defined to be F, (o, B, p, 1) = 0. For any n, > 1,
the tissue-level and crypt-level constraints are combined to obtain F, (0,
o + 1,-p, P> 1) = 0, whose solution can be well approximated (via a linear
regression) by p = L,-o with a dimensionless constant L, that renders the
composite constraint scale invariant.

The relationships between o.and the other parameters (3 and p) enforced
by these constraints are shown in Figure 5.3. For a given o and increasing
ny, p decreases and reaches a minimum at n, = 4, while 3 exhibits a slight
increase but remains mostly unchanged up to n, = 4, relative to p. This
suggests that as budding crypts increase their birth size, they become less
vulnerable to extinction, and the tissue responds with a reduction of the
branching rate to prevent excessive expansion of the overall tissue. For
n, > 4, both the death rate and the crypt branching rate increase, the former
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FIGURE 5.3 Crypt birth size versus (a) /o and (b) p/o. under the combined
crypt-level and tissue-level constraint Ferypt(o, a + n,-p, p, n,) = 0. For each of

n,= 12,3, ..., 10, a linear regression in the form of p = L,-a is performed on the
combined constraint and /o is obtained via B = o + ny-p = o -(1 + #,,-Ly).

TABLE 5.1

Death Rate and Budding Rate Per Stem Cell Per

Hour Under the Constraints for oo = 0.009627/(stemcell-h) and
Crypt Birth Sizes n, = 1,2, ..., 10, 15, 20 Stem Cells

Crypt Birth Size n,

1

O 0 NI N Ul W W N

—_
v O

20

0:032685
0:031468
0:037398
0:045290
0:054257
0:063972
0:074416
0:085498
0:096912
0:108763
0:174840
0:249341

Death Rate

Branching Rate p

0:023058
0:010924
0:009257
0:008916
0:008926
0:009057
0:009256
0:009484
0:009698
0:009914
0:011014
0:011986

Note: The values are obtained via linear regressions in the form
of p = L, o on the combined crypt and tissue level con-
straint, F,, (0, O + m, -p, P, 1) = 0.

linearly with n, and the latter approaching a constant close to one, consis-

tent with the observation that /o has a unit slope as a function of n,.

In the examples provided here, we assume a symmetric cell cycle time
of 72 h (Totafurno et al. [28]). This yields o = 0.009627/(stemcell-h). } and p
may then be uniquely determined for any n, 1 by the tissue-level and crypt-
level constraints (Table 5.1). To demonstrate that these constraints yield
the desired homeostatic (stationary) behavior at the crypt and tissue levels
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and to obtain tissue-level distributions for the number and sizes of crypts,
we simulate crypt phylogenies as described in the following section.

CRYPT PHYLOGENY SIMULATIONS

Define an event for a crypt to be either an extinction or a branching. Then,
starting with a parent crypt having n, stem cells at time s, we perform a
straightforward Monte Carlo simulation to obtain the occurrence time
t, of the first event and the corresponding (parental) crypt size, n,,, if the
event is a branching. If the event is an extinction, there are ¢, = 0 nonex-
tinct crypts at time #, and further simulation from that branch arrests;
otherwise, an additional (budding) branch with n,, = n, stem cells is
created, and the sizes of the ¢, = 2 nonextinct crypts at t,, {n,;, n,,}, are
recorded. For each of i = 1, 2, the identical simulation scheme is performed
on the ith branch with ¢, and n,; as the initial time and size, respectively, of
the crypt. The first event time in each of the two crypts is saved, at which
point the crypt lineage loses (via extinction) or gains (via branching) a
crypt depending on the nature of the event. The minimum of the two first
event times from the two branches, t,, and the sizes of the ¢, nonextinct
crypts at t,, {1’121,1122,...,71252 }, are recorded. The procedure is repeated until
the simulation reaches the time of observation, t, at which point the sizes
of all ¢y nonextinct crypts, {nKl’nK27"‘7anK} , are recorded to yield tissue-
level data such as the number and sizes of nonextinct crypts, and the total
number of stem cells in the tissue. We use simulated crypt phylogenies to
explore in more detail how the mathematical constraints derived earlier
affect the tissue at the different levels of organization.

Figure 5.4 shows two illustrations of crypt phylogenies, one starting
with a crypt containing a single stem cell (Figure 5.4a), the other with
10 stem cells (Figure 5.4b). Both examples assume #, = 1, o0 = 0.009627/
(stemcell-h), B = 0.032685/(stemcell-h), and p = 0.023058/(stemcell-h). In
Figure 5.4a, the parent crypt forms six lineages throughout the first 50
h, three of which remain alive at that time. The parent crypt goes extinct
after 23.8 h, and the tissue it generates is sustained by the budding crypts,
none of which contains more than one stem cell at the time of observa-
tion. A tissue generated from a parent crypt staring with 10 stem cells
gives rise to six budding crypts over the next 20 h (Figure 5.4b). All seven
lineages remain nonextinct at that time, with the largest crypt (the parent)
containing six stem cells, while two stem cells occupy the largest budding
crypt. In comparison, the tissue with n, = 10 produces more crypts over
the same duration than the one with n, = 1; however, we will show that the
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FIGURE 5.4 (See color insert following page 40) Phylogenies of tissues gener-
ated from a single parent crypt with o = 0.009627, 3 = 0.032685, and p = 0.023058
per stem cell per hour. The parent crypt of the sample tissues initially contain
(@) ny =1 and (b) n, = 10 stem cells, observed after 50 and 20 h, respectively.
For each tissue, the simulation highlights the parent crypt lineage (orange), the
extinct lineages (X), and each budding branch is designated by the green letter
B. The occurrence time of an event (extinction or branching) and the number of
stem cells (blue) at the event time are also shown.
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mean numbers of stem cells per crypt converge for the two cases, because
they both assume identical values for the crypt birth size n,.

EXPLORING CRYPT- AND TISSUE-LEVEL BEHAVIOR

Tissues in Homeostasis

First we consider the case where a crypt branch is born with a single stem
cell (n, = 1). The crypt-level constraint stabilizes the mean number of non-
extinct crypts generated from a parent crypt (Figure 5.5a). For n, = 1 and
n,= 10, the stationary mean number of nonextinct crypts are approxi-
mately 0.839 and 8.330 per parent crypt, respectively. Stationarity of the
overall number of stem cells in the tissue imposed by B = o0 + n,-p and a
stationary mean number of crypts in the tissue guarantee that the mean
number of stem cells per crypt also reaches stationarity. Figure 5.5b shows
that the mean crypt size approaches 1.197 stem cells independent of the
choice for the initial crypt size, n,. We will demonstrate that this indepen-
dence of the mean number and sizes of crypts on n, holds also for n, > 1.
The implemented constraints therefore yield model tissues with sta-
tionary mean crypt numbers and crypt sizes. To validate the effects of the
constraints in tissues whose budding crypts are effectively born with mul-
tiple stem cells (1, > 1), we simulate tissues with the same total number of
stem cells but with different initial parent crypt sizes. Let N be the number
of stem cells in a tissue, then given a parent crypt that initially contains #,
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; g 8 - “,r* n.=10 8%1'8_ ~\n "
20 . =0 Vg =
eg 649 ; < L6 \
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0 = 104"
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FIGURE 5.5 Mean number and sizes of nonextinct crypts in a tissue generated
from a single crypt initially containing n, = 1 or n, = 10 stem cells. (a) Mean num-
ber of nonextinct crypts in the tissue. (b) Mean number of stem cells per non-
extinct crypt in the tissue. For each case, 1000 samples are generated with rates
o =0.009627, B = 0.032685, p = 0.023058 per stem cell per hour, and observation
times t = 5, 10, 25, 50, 75, 100, 150, 200, and 250 h.
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stem cells, this is accomplished by simulating N/n, such parent crypts per
tissue (Figure 5.6). To demonstrate this for n, = 2 and n, = 5, tissues con-
taining 500 stem cells initially (250 and 100 crypts per tissue, respectively)
are simulated and analyzed.

Assuming that n, = n,, the stationary mean number of crypts is
approximately 318.880 for n, = 2 and 212.760 for n, = 5 (Figure 5.7a). For
n, = 10 on the other hand, the stationary mean numbers for n, = 2 and

S e P LT E LY R Y p— 1

N Crypts per Tissue

n5:2|2||2||2 |2|
Tissue initially

—»  contains
N stem cells

N/2 Crypts per Tissue

N/5 Crypts per Tissue

FIGURE 5.6 Constructing tissues having identical total stem cell number but
different initial parent crypt sizes. To obtain a tissue containing N stem cells, N/
n, parent crypts each having n_ stem cells initially are simulated.
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FIGURE 5.7 Mean number and sizes of nonextinct crypts in tissues having crypt
birth sizes nb = 2 and nb = 5 stem cells. (a) Mean number of nonextinct crypts
in the tissues. (b) Mean number of stem cells per nonextinct crypt in the tissues.
For each case, 1000 samples are generated with rates o, = 0.009627, p = 0.032685,
and p = 0.023058 per stem cell per hour, and observation times ¢ = 5, 10, 25, 50,
75,100, 150, 200, and 250 h.
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TABLE 5.2 Stationary Distributions of the Number of Stem Cells in Nonextinct
Crypts in a Tissue with n, =n,=1,2,0r5

Crypt Size (Number of Stem Cells)

ny(=n,) 1 2 3 4 5 6 7 8

1 86:5%  11:6% 1:2% 0:6% 0:1% 0:0% 0:0% 0:0%
2 51:9%  37:4% 8:9% 1:5% 0:3% 0:0% 0:0% 0:0%
5 42:2%  20:2% 14:6% 11:2% 10:3% 1:1% 0:2% 0:2%

Note: In each case, a tissue initially containing 1000 stem cells is simulated with rates
o =0.009627, o. = 0.032685, and p = 0.023058 per stem cell per hour and observed
after £ =200 h.

n, = 5 mostly coincide for the first 25 h before splitting off and converg-
ing with their respective stationary means. Figure 5.7b indicates that
regardless of n, n, = 2 generates a tissue having a stationary mean crypt
size of 1.56 stem cells, while tissues having n, = 5 are sustained by crypts
having 2.35 stem cells on average. Our simulations clearly show that the
stationary mean number and size of the crypts in a model tissue of fixed
size depend on the crypt birth size parameter n,, while they are insensi-
tive to the choice of n.. With the exception of n, = 1, the stationary mean
crypt size tends to be smaller than n,. Furthermore, stationary distribu-
tions for crypt sizes within the model tissues show that, regardless of the
crypt birth size n,, crypts containing a single stem cell dominate such
tissues (Table 5.2). This may be considered a failure of the model, given
that recent experimental evidence suggests that the stem cell number
(per crypt) is between four and six in the murine colon [29]. However,
the stochastic intercrypt variation of this estimate remains uncertain. In
the formulation presented here, only 13.5% of the crypts contain more
than one stem cell in a tissue with n, = 1, while such crypts make up
48.1% and 57.8% of tissues with n, = 2 and n, = 5, respectively.

Neoplastic Tissue

Tumor development in crypt-structured tissues, such as the colon or
Barrett’s esophagus, may be associated with violations of the biological
constraints that characterize tissue stem cell homeostasis. Naturally, we
expect the number of tissue stem cells to increase over time when the
constraints are violated in favor of increased net cell proliferation. This is
demonstrated in Figure 5.8, where a tissue with n, = n, = 2 experiences an
increase in the net cell proliferation rate either through a 20% increase in
the birth rate o, or a 20% decrease in the death or loss rate [3.
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FIGURE 5.8 Mean number and sizes of nonextinct crypts in tissues with vio-
lated constraints having crypt birth size of nb = 2 stem cells. (a) Mean number of
nonextinct crypts in the tissues. (b) Mean number of stem cells per nonextinct
crypt in the tissues. For each case, 1000 samples are generated with rates o =
0.009627, B = 0.032685, and p = 0.023058 per stem cell per hour, and observation
times ¢ = 50, 100, 125, 150, 175, 200, 225, and 250 h. The constraints are violated
by either increasing the birth rate or decreasing the death rate.

In either case, the response is such that the mean number of non-
extinct crypts increases over time in a seemingly exponential fashion
(Figure 5.8a). However, the case where 3 is decreased exhibits a much more
drastic increase of the crypt number. On the other hand, the mean crypt
sizes exhibit only modest increases and interestingly remain mostly con-
stant throughout time for both cases (Figure 5.8b). The former observation
can be explained by the relative difference in net cell proliferation, that is,
((1+20%)0.—B+p)/(oe—(1-20%)B +p) = (00/ B) = 0.3, while the latter sug-
gests that crypt sizes are mainly controlled by the crypt branching parameter,
p, which remains constant in these examples. Thus, our results indicate that
during neoplastic progression (and possibly also during fetal development),
lesion (or tissue) growth is more likely the result of a downregulation of cell
differentiation or apoptosis rather than an upregulation of cell division.

DISCUSSION

Both deterministic [30,31] and stochastic [32,33] models for the dynamics of
normal colonic mucosa exist. Most of these models are designed to describe
the dynamics at the scale of a single proliferative unit (colonic crypt). A
more thorough review is presented by van Leeuwen et al. [34]. Although
these crypt-level models provide valuable information at that organiza-
tional scale, they offer no insight on the effects of coupling dynamics at the
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cellular and tissue scales. Here, we introduce a framework that accounts for
stem cell dynamics spanning the organizational scales of the stem cells, the
proliferative units, and the tissue. Stochastic processes such as cell division,
cell death, and crypt branchings are explicitly incorporated into the model
framework to describe the relationships among the parameters that yield
stable population dynamics at the crypt and tissue levels.

By requiring a constant overall stem cell number in the tissue and bal-
ancing the (conditional) times to crypt loss and crypt gain, the model
yields constraints sufficient to maintain the mean number of nonextinct
crypts, their mean sizes, and thus the mean overall stem cell number in the
tissue, although at this level of approximation the fluctuations of the latter
remain uncontrolled. This may be remedied by imposing constraints that
involve higher moments of the crypt extinction time and the first passage
time to crypt branching. We interpret these constraints, which couple the
rates of cell division, sporadic or induced cell death, and crypt branching,
to capture effectively the complex feedback mechanisms that govern the
homeostatic control of stem cells within the normal colonic mucosa.

Our crypt-phylogenic simulations reveal several interesting observa-
tions. First, stable numbers of progeny both on the cellular level and on the
crypt level are obtained, from which stationarity of the number of nonex-
tinct crypts in the tissue follows. As a function of the crypt birth size (n,),
the constraints decrease the ratio of the crypt branching rate to the symmet-
ric stem cell division rate before approaching one, while they stipulate an
increase of the ratio of the death rate to the birth rate with increasing #,,.

Finally, the abrogation of feedback mechanisms that normally maintain
the colonic tissue appears to play an important role in colon tumorigen-
esis. Initiating mutations, that is, mutations that lead to clonal expansions
by uncompensated increases in crypt bifurcation and/or uncontrolled
increases in crypt size likely violate (at least locally) the constraints iden-
tified here. We explore the effect of such violations by varying o and f3
independently, in one case increasing o by a fraction, in the other decreas-
ing B by the same fraction. Both scenarios effectively increase the net cell
proliferation rate, o + p - 3. However, because the tissue constraint stipu-
lates B > 0, decreasing the rate of stem cell loss, B, results in a higher net
cell proliferation rate compared with increasing o (by the same fraction).
Thus, our framework predicts that tissue expansions are accompanied
by crypt proliferation in the tissue while the crypt sizes remain relatively
unaffected. Alternatively, the spreading of neoplasms via crypt bifurca-
tions may also be driven by direct increases in the crypt branching rate, p.
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The consequences of such a violation, in comparison to the perturbations
in stem cell kinetics so far tested, remain to be explored.

APPENDIX

Derivation of Equation 5.10
Let g(t, s) and G(t, s) be defined by
t
g(t,s):= exp{—! [oc(u,s)—B(u,s)]du} (5.17)

and

G(t,s)::J ou,s)g(u,s)du, (5.18)

respectively; then for aut, s) = acand B(t, s) = B, it is easy to see that g(t, s) =
e @Pt-9 and G(t,s)= O%_B[l - e*“‘*ﬁ)(‘*s)} . According to Dewaniji et. al. [24],

the probability generating function (PGF) is

x—1
(x—l)G(t,s)—g(t,s)’ (5.19)

o(x,L;t,5) =1~
which can be shown to satisfy

O(x,1;t,s)= 2 x"Prob{X(t,s) =i| X(s,s)=1,Z(s,s)= 0}

- x—1
(x=1)G(t,s)—g(t,s)

x—1

=1-
(x— 1)L[1— e (@B)i=9) |- g-(@P)i-9)
o—p

L (a—B)(x-1)
o(x—1)- [Oc(x -1)+(a— B)]e‘(“‘ﬁ)“‘s)

_ ox—1)—(ox —B)e~ P — (0. —B)(x—1)
o(x—1)— (o —P)e(@Bi=s)

= B(x—1)—(ox —B)e~(*P=2
o(x—1)—(ox —P)e-(0B)e=s) )

(5.20)
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Derivation of Equation 5.11

o(x;t,s,n,)= 2 xiProb{X(t,s) =i| X(s,s)=n,,2Z(s,s)=Z(t,s)= O}

2 x"Prob{X(t,s) =i,Z(t,s)=0| X(s,s)=n,,Z(s,s)= 0} (5.21)

1

Prob{Z(t,s) =0|X(s,s)=n,,2Z(s,s)= O}

=y(x,0t,5,n,)/ W(L,0t,5,1n,) = 0(x,03t,5)/0(L,05,5) ] .
Derivation of Equation 5.14
Prob{T, <t|T, >t}

= Prob{X(t,s) =0|X(s,s)=n,,2Z(s,s)=Z(t,s)= 0}
(5.22)

3 Prob{X(t,s) =0,Z(t,s)=0| X(s,s)=n,,Z(s,s)= 0}
B Prob{ Z(t,s)=0| X(s,s)=n,,Z(s,s)=0}

=y(0,0;t,s,n, )/W(I,O;t,s,ns)= [¢(0,0;t,s)/¢(1,0;t,s)]”‘.

Derivation of Equation 5.15

Prob{T, <t|T, >t}
=1-Prob{Z(t,s)=0| X(t,5)> 0,X(s,s)=n,, Z(s,5)=0}
=1-Prob{Z(t,s)=0,X(t,s)>0| X(s,s)=n,,Z(s,5)=0}/
Prob{ X(t,s)>0| X(s,s)=n,,Z(s,s)=0}
=1-[Prob{Z(t,s)=0| X(s,s)=n,,Z(s,s)=0}/
(1-Prob{ X(t,s)=0] X(s,s)=n,,Z(s,s)=0}) (5.23)
—Prob{Z(t,s)=0,X(t,s)=0| X(s,s)=n,,Z(s,s)=0}/
(1-Prob{X(t,s)=0| X(s,s)=n,,Z(s,5)=0})]
=1-(w(1,0:t,5,1,) = W(0,0;t,5,1,))/ A=W (0, L;t,5,n,))
_[60.0:9]" = [00.0:6,9)]"
1-[0(0,1;£,9)]"

=1
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Derivation of Equation 5.16

Let 6(z; t, u, n,) be the PGF for the number of stem cells at time ¢ in a bud-
ding crypt that is born with 7, stem cells at time u < t. It is easy to see that
0(z;t,u,n, =1)=0(z,1;t,u)=1-(z— 1)/((2—1)G(t,u)—g(t,u)) and satisfies

BG(Z'tul)/az‘ = —(z=1)G({tu)—~(z-1)
T -G - gtV (5.24)

— 1/g(t,u) — e—(B_Oﬂ)(f—u) ,

for g(t, u) and G(t, u) given by Equations 5.17 and 5.18, respectively, under
the constant-parameters assumption; that is, aut, u) = o, B(t, u) = 3. Now,
let ©(z; t) be the PGF for the overall stem cell number in a tissue having a
stationary number of X stem cells, where any budding crypt is born with
n, 2 1 stem cells. Then, according to Parzen [35], it satisfies

@(z;t):exp{L pX[e(Z;fau,”b)—l]d”}, (5.25)

where 0(z; t, u, u,)=0(z; t, u, 1)**. From this and the trivial fact that 6(1; t,
u, 1) = 0(1; t) = 1, the mean of X() can be derived as

E[X(1)]=00(z:t)/ 02| _,

du

z=1

=0(L1)- _[: pX '{;Z[G(Z;t,u,l)"b —1]}

t
=n, .pXJ‘0 0(1;t,u,1)m! .{ae(z;t,u,l)/az}\zzldu (5.26)

t
= nb pXJ. e—(ﬁ_(x)(f—u)du
0
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INTRODUCTION

Colorectal cancer accounts for 13% of all cancers in the United Kingdom,
with around 35,300 new diagnoses and 16,000 deaths occurring each year
(http://info.cancerresearchuk.org). Colorectal cancer is predominantly
a disease associated with old age, with 80% of diagnoses being made in
patients over the age of 60. As a result of longer life expectancy and declin-
ing fertility rates, the proportion of people in this age group is growing
faster than any other. In the future, colorectal cancer is therefore sure to
rise in prevalence (http://www.who.int/topics/ageing/en).

Colorectal cancers originate from the epithelium that covers the luminal
surface of the intestinal tract. This epithelium renews itself more rapidly
than any other tissue, being completely replaced every 2-3 days in mice [1]
and 5-6 days in humans [2]. The renewal process requires a coordinated
program of cell proliferation, migration, and differentiation, which begins
in the crypts of Lieberkiithn that descend from the epithelium into the
underlying connective tissue (see Figure 6.1). At the base of each crypt,
a small number of stem cells proliferate continuously, producing transit
amplifying cells, which migrate up the crypt axis and divide several times
before differentiating into the various cell types that constitute the epithe-
lium (enterocytes, goblet cells, and enteroendocrine cells). Upon reaching
the crypt orifice, cells undergo apoptosis and are shed into the lumen.

Under normal conditions, the foregoing cellular processes are tightly
regulated by biochemical and biomechanical signals. It is believed that

[ .
DC] DD Cells shed into lumen
[l ||| [Differentiated cells
Migration anq | [ H
differentiatior o H
H o Transit cells
[ ]
[ m
U Stem cells

FIGURE 6.1  Schematic of a colonic crypt. Stem cells at the crypt base proliferate
continuously, producing transit amplifying cells that migrate up the crypt and
differentiate. Cells at the top of the crypt undergo apoptosis and are shed into
the lumen.
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the first stage of colorectal cancer is caused by the accumulation of genetic
alterations that disrupt normal crypt dynamics and cause cells to increase
their net proliferation rates. The associated proliferative excess gener-
ates biomechanical stress within the crypt, which may deform in order
to accommodate the additional cells. The dysplastic cell population may
expand further by invading neighboring crypts and/or inducing crypt fis-
sion, leading to the formation of an adenoma. Identifying the mechanisms
that govern the cellular dynamics of normal crypts is therefore funda-
mental to understanding the origins of colorectal cancer.

The Wnt pathway is known to play a key role in stem cell maintenance
[3,4], cell-cell adhesion [5], cell-fate specification (cell differentiation) [6],
central nervous system patterning [7], and tissue development [8,9]. Wnt
is an extracellular factor that, when detected by receptors on the outer
cell membrane, triggers a cascade of events, culminating in upregulation
of intracellular -catenin levels [10]. A cell’s response to Wnt signaling
is believed to be mediated predominantly through the concentration and
subcellular localization of B-catenin [11]. At the base of the crypt, high lev-
els of Wnt are believed to encourage “stemness” (lack of differentiation),
proliferation, and high cell-cell adhesion. By contrast, the low-Wnt envi-
ronment at the top of the crypt stimulates cells to stop proliferating, dif-
ferentiate, and weaken their bonds of cell-cell adhesion, preparing them
for apoptosis and sloughing into the lumen at the top of the crypt [12].

Most cancers can be initiated by a wide number of different mutations,
but almost all colorectal cancers carry activating mutations in a single
pathway, the Wnt pathway, with over 80% carrying a double truncation
mutation in the gene that encodes the protein APC [13,14]. Thus, the Wnt
pathway plays a crucial role in the initiation of colorectal cancer.

As in many cases in biology, colorectal cancer emerges from the inter-
action of processes that span many different spatial scales. At the genetic
level, mutations occur that cause intracellular processes to respond inap-
propriately to homeostatic cues. This, in turn, affects behavior at the tissue
level due to abnormal apoptotic and mitotic responses. Multiscale math-
ematical modeling can provide insight into how such a complex, highly
regulated system operates, both normally and pathologically. A multi-
scale model cannot account for everything, and in order for a model to be
computationally tractable, we must simplify processes at each level. For
example, we can exploit different timescales, or use Boolean approaches
to simplify the biochemical/metabolic pathways that operate within
individual cells. At the tissue level, we need to consider different ways of
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modeling a collection of cells, ranging from individual cell-based models
right through to the continuum limit. When constructing a multiscale
model, which simplifications are appropriate and how processes at each
level should be combined remain open questions.

In this chapter, we illustrate the challenges inherent in multiscale mod-
eling by taking colorectal cancer as an example. In the next section, we
describe a multiscale model that incorporates simple subcellular models
of the Wnt signaling pathway and the cell cycle into a discrete, mechanical
model of cell movement in a colonic crypt. This model has been used to
investigate several aspects of crypt behavior and to explore different ways
of coupling these effects within a fully integrated tissue-level model. The
results of these investigations are discussed in the following section. We
then conclude with a discussion of alternative modeling approaches and
avenues for further work.

STRUCTURE OF THE MULTISCALE MODEL

Mathematical modeling of Wnt regulation of cell activity within intesti-
nal crypts presents a formidable challenge as the Wnt pathway plays an
important role in determining a range of cell-level behaviors (e.g., adhe-
sion, proliferation, cell-cell interaction) via mechanisms that are not yet
fully understood. In order to investigate how mutations in the Wnt path-
way affect crypt dynamics, we therefore require a multiscale framework

that takes into account these cell-level behaviors. We now describe a mul-
tiscale model in which simple subcellular models of the Wnt signaling
pathway and the cell cycle are embedded within a discrete, mechanical
model of cell movement.

Wnt Signaling Model

Various mathematical models of Wnt signaling have been proposed. Lee
et al. (2003) [15] model the Wnt pathway by a system of nonlinear ordi-
nary differential equations (ODEs), which describe the evolution through
time of key cytoplasmic protein concentrations, including p-catenin.
This model is analyzed by Mirams et al. (2009) [16], who exploit the dif-
ferent timescales involved to reduce the system to a single ODE, which
determines how [-catenin evolves in response to a Wnt stimulus. In
addition to providing biological insight into the roles of different pro-
teins on different timescales, this type of systematic model reduction
is extremely useful in order to achieve tractable computation times for
multiscale simulations.
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The localization of subcellular p-catenin has been modeled, also as a
system of nonlinear ODEs in [17]. This model is used to examine vari-
ous hypotheses about underlying biochemical mechanisms; for example,
whether -catenin undergoes a conformational change that favors its
involvement in cell-cell adhesion rather than transcription, or whether its
fate is determined solely by competition for binding partners.

Wht-Dependent Cell-Cycle Model

The cell cycle is the orderly sequence of events in which a cell dupli-
cates its contents before dividing into two cells. Since cancer is a disease
associated with uncontrolled cell proliferation, the cell cycle consti-
tutes a major target for anti-cancer drug development. This has stimu-
lated extensive experimental research and the formulation of detailed
mathematical models designed to enhance understanding of the reg-
ulatory networks involved and to explore potential therapeutic inter-
ventions. Such models are typically formulated as systems of coupled
nonlinear ODEs that characterize changes in the levels of key cell-cycle
proteins [18].

We employ the model for the Wnt pathway developed by van Leeuwen et
al. (2007) [17] to calculate the associated position-dependent levels of gene
expression and use these to link the outcome of the Wnt model to the cell-
cycle model developed by Swat et al. (2004) [18], as shown in Figure 6.2.
As a result, near the bottom of the crypt, where cells are exposed to high
levels of Wnt, the production of Wnt-dependent cell-cycle control proteins
is enhanced and cells progress through the cell cycle. In contrast, near the
crypt orifice where Wnt levels are low, little or no cell division takes place.
Full details of the subcellular models of Wnt signaling and the cell cycle
are given in [19].

Mechanical Model

A variety of discrete model frameworks can be used to describe the
mechanical behavior of tissue, ranging from lattice-based models, cell-
center (“point mass”) models, and vertex-based (“non-point-mass”) mod-
els [20]. We use a tessellation-based, cell-center approach, in which the
centers of adjacent cells are connected by linear springs [21] and a Delaunay
triangulation is performed at each time step, in order to determine cell-
cell connectivity.

Following [21], we determine cell movement by balancing the
forces exerted on an individual cell by its neighbors with a drag force.

© 2011 by Taylor and Francis Group, LLC



116 m Alexander G. Fletcher, et al.

[ Wnt concentration ]

A

van Leeuwen (2007)
Wnt-signaling model

\

Membrane-bound I3 Cytoplasmic Y Nuclear
B-catenin level B—catenin level B-catenin level

i

[ Cell adhesion model ]

Swat et al. (2004)

Cell-cycle model

A

‘ Mechanical model ’

FIGURE 6.2 Influences of the Wnt-signaling model inside a single cell. Note that
the Wnt concentration that is experienced depends on the position of the cell
within the crypt. The cell-adhesion model influences the motion of the cell, and
the cell-cycle model influences the proliferation (and hence again the dynamics)
of the cell; thus, the output influences the cell position and changes the input to
the Wnt-signaling model. Each cell in a multiscale simulation carries its own
Wnt-signaling model.

Specifically, let r; be the position of the center of cell 7, and define r; =11,
and 1; =1;/|r;|. The force exerted on cell i by an adjacent cell j is defined
to be

E; =1 5;(|r [ =), ©.1)

where 1 is the spring constant and s; is the prescribed rest length between
cellsiand j (i.e., the distance between them for which the force of interac-
tion vanishes). In order to investigate the effect of variable cell-cell adhe-
sion, in the section titled, “Variable Cell-Cell and Cell-Matrix Adhesion”
we will consider three choices for the spring constant W;. In the first case,
W; = U takes the same constant value for all neighboring cells i, j. In the
second case, to avoid an unrealistically strong attraction between distant
neighboring cells, we suppose that [ increases with the cell-cell contact
length. In this case we take
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My (D)=He; (DV3/L 62)

where e (t) is the length of the edge between cells i, j and L is the dis-
tance between neighboring cell centers in an equilibrium, hexagonal
lattice (in such a regular lattice, €; EL/\/E, so the first case is recov-
ered). In the third case, we assume that the spring constant depends
on the concentration of p-catenin-E-cadherin complexes on the cell
membrane, these being determined from the Wnt signaling model (see
section titled “Wnt Signaling Model”). In particular following [17], we
use the following expression to determine the spring constant con-
necting cells i and j:

Wy (6) = e, ()min{B,(t)C,; (1) E(t), B,()C (1) E;()}/ Qs (6.3)

Here, C,; denotes the Wnt-dependent concentration of adhesion com-
plexes on the surface of cell i; E; and B, denote its perimeter and sur-
face area, respectively; and Q, is a scaling factor that ensures that
under equilibrium conditions, the first case is recovered (for details
see [19]).

The total force exerted on cell i by its neighboring cells is

£=2 (64)
i

where the sum is over all cells j that are connected to cell i. An overdamped
limit is assumed, for which inertial effects are negligible compared to
dissipative terms, so that the equation of motion of cell i is

dr,
v.—=F, 6.5
“dt (6.5

where Vv, is the drag coeflicient of cell i. In order to investigate the effect
of variable cell-substrate adhesion, in the section titled “Variable Cell-
Cell and Cell-Matrix Adhesion” we will consider two different cases for
the drag coeflicient. In the first case, v,= v takes the same constant value
for all cells i. In the second case, we suppose that the drag coefficient
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is proportional to the surface area of contact between a cell and the
underlying basement membrane, since a larger cell has more focal adhe-
sions. In this case, we prescribe

Vi(t):(d0+d1Bi(t))V’ (6.6)

where the parameters d,, d, satisfy d, =2(1—d,)/ (\/ELZ) so that for an
equilibrium, hexagonal lattice we recover the first case.

The equation of motion is discretized numerically using a forward Euler
approach, from which it is straightforward to deduce that the position of
the cell at time ¢ + At is related to its position at time ¢ via

1 (t+At)= ri(t)+%Fi(t). 6.7)

1

The rest length s;; between cells is assumed to be the typical diameter of
a crypt cell. When a cell divides, as determined by its internal cell-cycle
model, a new cell is placed at a smaller fixed distance in a random direc-
tion. The rest length s; between the two daughter cells increases linearly
over the course of an hour to the mature cell rest length (to emulate the
mitosis phase of the cell cycle). Thus, the nuclear B-catenin influences the
cell-cycle model (and so indirectly the mechanics as extra cells are added),
and membrane-bound p-catenin influences the mechanical model.
Intracellular B-catenin is influenced by cell position due to the imposed
Wnt gradient along the crypt axis, which feeds back and influences the cell
cycle and mechanical models.

Methodology and Implementation Using Chaste

For simplicity we focus on an individual crypt, treating the three-
dimensional tubular crypt as a monolayer of cells lying on a cylindrical
surface. We take a discrete approach, modeling each cell individually. For
simulation purposes, it is convenient to roll the crypt out onto a flat planar
domain and impose periodic boundary conditions on the left and right
sides. The structure of the multiscale model is depicted in Figure 6.3. It
comprises the three interlinked modules discussed earlier: a model of the
Wnt signaling pathway [17]; a model of the cell cycle [18], which together
with the Wnt model determines each cell’s proliferative behavior; and a
mechanical model of cell movement [21].
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FIGURE 6.3 Diagram illustrating the modular nature of our multiscale crypt
model. The occurrence of cellular events (proliferation, differentiation, migra-
tion) is monitored at discrete time steps t,. By coupling Wnt signaling, cell cycle,
and mechanical models, we are able to predict the spatiotemporal behavior of

every cell at time ¢,,,, given the state of the system (e.g., intracellular protein lev-

n+1>

els, cell position, Wnt stimulus, location of neighboring cells) at time ¢, and the
model parameters.

Chaste (Cancer, Heart and Soft Tissue Environment) is a collabora-
tive software development project that is designed to act as a high-quality
multi purpose library supporting computational simulations for a wide
range of biological problems. In this context, “high-quality” means that
the software is extensible, robust, fast, accurate, and maintainable and
uses state-of-the-art numerical techniques. It is also open-source, and so
can be adapted by other developers. Chaste has been developed by a multi-
disciplinary team including mathematicians and software engineers. This
ensures that the code is well structured as a piece of software, while at the
same time practical and useful as a computational modeling tool. While it
is a generic extensible library, to date attention has focused on the fields of
cardiac electrophysiology and tumor growth [22].

Chaste is written using an agile method adapted from a technique
known as “eXtreme Programming” [23]. This programming methodology
is characterized by test-driven development, in which a test is written to
cover any new functionality in the code before it is implemented [24]. This
enables developers rapidly to discover, diagnose, and fix bugs in the code.
The main Chaste code has been written in object-oriented C++, which
leads naturally to more modular code: software that is easier to abstract,
to modify, and to document. This is especially advantageous for multi-
scale models of the type considered in this chapter, as it allows different
simulations to be generated in a straightforward manner, by using the
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appropriate components, and preventing unnecessary repetition of code.
Further details on Chaste, including visualization movies and user sup-
port, are available at http://web.comlab.ox.ac.uk/chaste/.

RESULTS

The multiscale model described earlier has been used to study several
aspects of normal crypt behavior and to investigate coupling of processes
occurring across a number of spatial scales. We now summarize our
results to date.

Wnt Signaling in the Crypt

It has been postulated that a Wnt gradient exists in the crypt, stimulating
proliferation at the base and promoting differentiation toward the top.
Use of the multiscale model in [19] led us to predict that a Wnt gradient
along the entire crypt axis is not necessary to provide a p-catenin (and
hence proliferation) gradient. Indeed, Wnt expression in a neighborhood
of (approximately) the three cells at the base of the crypt is sufficient to
establish a proliferation pattern that extends throughout the crypt; this
is because cells move up the crypt more quickly than their Wnt signal-
ing pathways can adapt to the reduction in the local Wnt stimulus. These
results are illustrated in Figure 6.4, where the height at which a cell
divides, and the corresponding cell-cycle duration are recorded in a scat-
ter graph, for a crypt containing stationary cells and another containing
cells that move.

Van Leeuwen et al. (2009) [19] perform simulations of the multiscale
model in order to compare the distribution of P-catenin inside each
cell in the crypt, under the two hypotheses stated earlier (the simpler
hypothesis states that p-catenin fate is determined by competition for
binding partners, whereas the second hypothesis proposes that 3-catenin
can undergo a conformational change that favors binding to E-cadherin
at the cell membrane). The results of such simulations are shown in
Figure 6.5. The different patterns of P-catenin associated with each
hypothesis suggest that it should be possible to discriminate between
them by measuring the distribution of B-catenin within the epithelial
cells that line a crypt.

Mitotic Labeling

Mitotic labeling experiments are often used to characterize the proli-
feration and cellular dynamics of intestinal crypts (e.g., [25]). These
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FIGURE 6.4 The cell-cycle duration response of a coupled Wnt signaling and
cell-cycle model to varying Wnt stimuli. Simulation performed in a crypt that is
23 cells high. Top: The Wnt gradient imposed upon the crypt. Middle: Cell-cycle
durations if cells are held in fixed positions; the predicted Wnt threshold for cell
division is about 0.66. Bottom: Cell-cycle durations in a dynamic crypt simula-
tion; for each cell in the simulation, the cell-cycle time is plotted as a function of
the cell’s position at the time of division.

experiments involve injecting laboratory rodents with an agent that is
incorporated into cells during the S phase of the cell cycle and is passed
on to their progeny. The distribution of clonal populations can be moni-
tored over time by dissecting the crypts longitudinally and recording the
positions of labeled cells along the two dissection lines. Given a sample
containing several crypts, the outcome of the experiment is summarized
in the form of a labeling-index (LI) curve, which shows the percentage of
labeled cells per cell position at the time of sacrifice. We have used our
multiscale model to perform similar in silico LI experiments. At time ¢ =0,
we label all cells that are in the S phase. The simulation proceeds under the
assumption that labeled cells behave in the same manner as their unla-
beled counterparts, except that they transmit labels to their daughters.
After a fixed time, we stop the simulation and perform a virtual crypt
dissection. The LI curves obtained from the virtual dissections descend
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FIGURE 6.5 (See color insert following page 40) A quasi-steady simulation of
cells stained for p-catenin, under two different hypotheses, as discussed [17] and
as implemented in van Leeuwen et al. (2009). The Chaste visualizer displays the
concentrations of nuclear and cytoplasmic levels of f-catenin on the green scale
and membrane-bound B-catenin on the grey scale, facilitating a qualitative com-
parison with crypt staining or GFP-labeling experiments.
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FIGURE 6.6 Results of virtual labeling-index experiments. Data obtained from
250 crypt simulations. Height up the crypt is expressed in units of length L.
(left) Percentage of labeled cells per position along the dissection lines. Bullet
points and crosses correspond to results obtained 40 min and 9 h after labeling,
respectively. (right) True average percentage of labeled cells as a function of dis-
tance from the crypt base. Grey and black bars represent the results obtained 40
min and 9 h after labeling, respectively. (Reproduced with permission from van
Leeuwen et al. Cell Prolif. 42 doi:10.1111/j.1365-2184.2009.00627.x. 2009.)

gradually, suggesting a smooth decrease in the percentage of labeled cells
with increasing distance from the crypt base (Figure 6.6a). However, our
model shows clearly segregated proliferative and differentiated popula-
tions, with an abrupt boundary between labeled and unlabeled cells in
the averaged data (Figure 6.6b). This discrepancy is due to dissection and
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suggests that data from standard LI experiments may tend to overestimate
the true position of the labeled cells.

Clonal Expansion and Niche Succession

Over time, the progeny of a single stem cell may dominate an entire crypt
via a process termed monoclonal conversion, since the resulting crypt con-
sists of a single clonal population [26]. Since mutations occur in single
cells, the process of monoclonal conversion is important in the context
of carcinogenesis as a mutant clone descended from this single cell has to
persist in a crypt, by proliferating and eventually dominating it, in order
for a mutant clone to gain a foothold in the colonic epithelium. Once a
crypt has become mutant monoclonal, the mutant population can spread
to neighboring crypts, either by top-down invasion, or through a process
called crypt fission whereby a crypt divides into two.

Our multiscale model is ideally suited to study expansion of a clonal
population in silico, and to predict conditions under which a crypt may
become monoclonal. The main advantage is the ability to follow a clone’s
progress in real time, something that is impossible with current experi-
mental techniques. We simulate the experiments of Taylor et al. (2003)
[27], in which the progeny of cells with mitochondrial DNA (mtDNA)
mutations that are functionally neutral are tracked. Such cells express a
phenotype, for example, cytochrome-c oxidase (CcO) deficiency, which
appear blue in histochemical stainings. In addition to wild-type crypts,
Taylor et al. (2003) [27] observed crypts either partially or wholly filled
with blue cells. In the former, “there is a ribbon of CcO-deficient cells
within an otherwise normal crypt that is entirely compatible with the
view that there are multiple stem cells in some crypts.”

We investigated clonal expansion for two alternative model assumptions:
first, following [21], the stem cells were fixed at the crypt base and assumed
to divide asymmetrically; and second, following [19], the stem cells were
unpinned and their proliferative behavior determined by the local Wnt stim-
ulus. The results presented in columns I and II of Figure 6.7 reveal that if the
stem cells are fixed in position, then an initial blue-stained stem cell invari-
ably generates a thin, blue trail that moves upward toward the crypt orifice.
Discontinuities in the clone can occur, due to waiting times between con-
secutive cell divisions. Importantly, although the trail’s pattern can change
in time, it does not expand laterally. Thus, under the original model assump-
tions, we are unable to capture the broad, wavy blue ribbons observed by
Taylor et al. (2003) [27]. In contrast, as columns III and IV of Figure 6.7 show,
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FIGURE 6.7 (See color insert following page 40) Clonal expansion in the crypt.
Each column shows six snapshots from two independent in silico experiments
performed with the model in [21] (columns I and II) and standard (i; = and
v;=V) model in [19] (columns III and VI), respectively. At time t = 0, a single
cell is stained with a blue dye. This label is transmitted from generation to gen-
eration, giving rise to a clonal population of labeled cells. Columns II and IV
highlight how the labeled populations evolve in time, whereas columns I and II
show the clonal composition of the crypt. In column II, the stem cells, which are
pinned to the base of the crypt, are highlighted in green. In the DMC simula-
tion (columns IIT and IV), the population of labeled cells eventually takes over
the crypt. (Reproduced with permission from van Leeuwen et al. Cell Prolif. 42
doi:10.1111/j.1365-2184.2009.00627.x. 2009.)
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if the stem cells are free to move and cell fate is determined by local environ-
mental conditions then, over time, clonal populations either expand in size
or become extinct. In particular, the progeny of a single cell will eventually
populate the entire crypt, and further, this cell will always eventually leave
the crypt. These results suggest that cell “stem-ness” may depend on local
biochemical cues rather than being an intrinsic property of a cell.

Variable Cell-Cell and Cell-Matrix Adhesion

As discussed in the section titled “Mechanical Model,” we have considered
a number of different cases regarding the dependence of cell-cell and cell-
matrix adhesion on cell shape and Wnt signaling. In order to compare the
impact of these different model assumptions on cell kinetics, we followed the
dynamics of a standard crypt simulation (in which ;= lLand v, = v; denoted
NN) for 800 h and then repeated this for three other cases: the case of area-
dependent cell-matrix adhesion only (denoted YN); the case of contact-
edge-dependent cell-cell adhesion only (denoted NY); and the case of both
contact-edge-dependent cell-cell adhesion and area-dependent cell-matrix
adhesion (denoted YY). Results are shown in Figure 6.8. We find that YN
cells located near the crypt base are larger than their NN counterparts. This
is because in the YN case, if two cells of different sizes are attached by a com-
pressed spring, the smaller cell moves apart more rapidly than the larger one.
Consequently, small newborn cells leave the crypt base quicker than in the
NN case. We also find that in the NY case, cells are more hexagonal in shape,
and the crypt is densely populated with closely packed cells. In this case, the
dependence of spring forces on cell size could eventually lead to a critical
situation in which migration ceases completely; this can be prevented in the
YY case, where variable cell-matrix and cell-cell adhesion are considered.

Hypotheses for Crypt Invasion

It is a matter of great debate how a single, mutant cell establishes a mutant
epithelium within the crypt [28]. Two mechanisms have been suggested:
top-down and bottom-up morphogenesis. Under top-down morphogen-
esis, a mutant cell at the top of a crypt expands not only laterally and
downward but also invades (adjacent) crypts containing normal epithe-
lium [29]. Under bottom-up morphogenesis, the mutant cell originates at
the base of the crypt and increases in number through proliferation, until
its progeny populate the entire crypt [30].

The model has been used to investigate the behavior of cells with APC
or f-catenin mutations, the most common in colorectal cancer [31], within
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FIGURE 6.8 Dependence of cell size and geometry on cell adhesion. Results
from four crypt simulations in dynamic equilibrium with different mechanical
assumptions: NN = standard model; YN = area-dependent cell-matrix adhesion
only; NY = contact-edge-dependent cell-cell adhesion only; YY = contact-edge-
dependent cell-cell adhesion and cell-size-dependent cell-matrix adhesion; and
EQ = values for hexagonal equilibrium lattice. Height up the crypt is expressed
in units of length L. (a) Average cell area as a function of cell position. (b)
Average shape value (perimeter?/area) as a function of cell position. (Reproduced
with permission from van Leeuwen et al. Cell Prolif. 42 doi:10.1111/j.1365-
2184.2009.00627.x. 2009.)

the crypt. Mutations in these proteins enable cells to proliferate inde-
pendently of Wnt [10]. Such mutant cells have also been shown to have a
more rigid cytoskeleton [32], higher levels of cell-stroma [13] and stronger
cell-cell adhesion [33]. We model these changes by allowing the damp-
ing constant to depend on whether the cell is mutant or not. The model
was then used to establish the properties a mutant cell would require
to allow top-down and bottom-up morphogenesis to occur. Numerical
simulations reveal that mutant cells, which do not proliferate in a Wnt-
dependent manner, can establish themselves within the crypt if they have
higher levels of cell-substrate adhesion and a more rigid cytoskeleton.
Top-down morphogenesis requires higher levels of cell-substrate adhe-
sion and cytoskeleton rigidity than bottom-up morphogenesis.

DISCUSSION

In this chapter, we have presented a computational framework that allows
us to integrate biological processes that act across a broad range of spatial
scales. We have considered the model in the context of colorectal cancer

and used it to address issues such as the role of Wnt signaling in the crypt,
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the process of monoclonal conversion, and the effects of model assump-
tions regarding cell-cell and cell-stroma adhesion.

In modeling the dependence of cell proliferation on Wnt signaling, we
have neglected other pathways that are known to play an important role
in regulating crypt structure.

Bone morphogenetic protein (BMP) signaling, which converges with
the Wnt pathway to regulate B-catenin, is thought to control the process
of stem cell self-renewal [34]. Dysregulation of BMP signaling can result
in crypt fission and excessive quantities of crypt-like structures [35], as
observed in humans with juvenile polyposis syndrome. The control of the
Eph/ephrin signaling pathway may also be highly relevant in ensuring the
proper crypt structure, as demonstrated by the fact that loss of expres-
sion of EphB receptors is correlated with the onset of invasive behavior
[36]. Lastly, all proliferating cells in the crypt largely depend not only on
Wnt but also Notch signaling; neither pathway is sufficient on its own to
maintain proliferation [37]. Future work will involve the construction of
mathematical models to investigate how these different pathways interact
to control the proliferation of cells within the crypt, and incorporation of
these models within the multiscale framework described in this chapter.

Many of the results presented in the section titled “Results” are con-
sistent with independent experimental observations of colonic crypts.
However, to have confidence in the model, we should account for the
model assumptions that are implicit in our cell-center model by contrast-
ing our model with other discrete model frameworks. In particular, it
remains to be established which discrete model is best suited to a given
biological problem.

Cell-center models, such as that presented in the section titled
“Mechanical Model,” can efficiently simulate cell proliferation, growth,
and migration in the crypt. Moreover, it is straightforward to incorporate
differential cell-cell adhesion [38-41] and to vary cell-substrate adhesion
by varying the cellular drag coefficients. However, a disadvantage of such
cell-center models is their reliance on the Delaunay triangulation, mean-
ing that the number of vertices and the shapes of the cells do not change
smoothly [42]. An alternative approach is cell-vertex modeling, in which
cells are treated as polygons in 2D or polyhedra in 3D [43]. In cell-vertex
models, the dynamics of each cell is governed by the movement of its
vertices, these being determined by explicitly calculating the resultant
forces or minimizing a global energy function. Cell-vertex models can
describe changes in cell shape more realistically than cell-center models.
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This is particularly important in the context of crypt modeling as we may
wish to couple cell shape and surface areas to subcellular control models,
as described in the section titled “Mechanical Model.” Cell-vertex models
are particularly suitable for modeling differential cell-cell adhesion,
an important feature of cell dynamics in the crypt, as common muta-
tions in colorectal epithelial cells are thought to affect cell-cell adhesion.
However, the inclusion of differential cell-substrate adhesion is not so
straightforward, as the drag terms include contributions from cells sur-
rounding a given vertex. While cell-vertex models do not require the
computation of a Delaunay triangulation at each time step, the higher
spatial resolution considered in cell-vertex models results in a larger sys-
tem dimension than that of a cell-center model. Osborne et al. (2010)
[44] have developed a cell-vertex model of the crypt and, using numerical
simulations, have found that it exhibits qualitatively similar behavior to
our cell-center model.

A major problem with discrete models, especially those incorporating
stochastic behavior, is their computational intensity. For example, in the
case of our multiscale model, a large number of simulations are needed
to determine how a proliferative advantage bestowed on mutant cells
translates into an increase in their probability of becoming the dominant
clonal population within a crypt, and how this increased probability var-
ies with the location of the initial mutation within the crypt. Moreover, as
the molecular details of subcellular pathways become increasingly more
complex, systematic and rational model reduction becomes a critically
important tool, as a modeling approach that simply includes all known
molecular details quickly becomes intractable. One resolution of this
problem is to develop a continuum model that replicates the qualitative
features of the original discrete model. We can then apply mathematical
techniques to analyze the coarse-grained model and, for instance, estab-
lish quickly the necessary phenotypic traits for mutant cells to take over
a crypt via the top-down and/or bottom-up morphogenesis. Such con-
tinuum models can be derived either formally [45] or phenomenologi-
cally [44].

By viewing the epithelial cells that line a crypt as a one-dimensional
chain of connected linear springs, Murray et al. (2009) [45] have for-
mally derived a continuum model for cell number density. This model
comprises a reaction-diffusion equation with a spatially non-uniform
proliferation term and a nonlinear diffusive flux term, with diffusion
coefficient
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D(q)= V:Lﬂ’ (6.8)
where g denotes the cell number density and 1 and v denote the spring
constant (assumed the same for all cell-cell interactions) and damping
constant (assumed the same for all cells). As Figure 6.9 shows, there is
generally good qualitative agreement between the cell velocities obtained
with this coarse-grained model and those obtained from our 2D multi-
scale model. A discrepancy between the two models for smaller values of
U arises from the assumption that the crypt is one-dimensional.

Using a phenomenological approach, Osborne et al. (2010) [44] have
developed a 2D continuum model for a crypt in which cells are treated as
an incompressible viscous fluid obeying Darcy’s law. As Figure 6.10 shows,
model simulations compare reasonably well with the multiscale model,
as well as with a cell-vertex model of the crypt. However, the continuum
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FIGURE 6.9 Steady-state crypt velocities, v, plotted against crypt height, y. Thousand
simulations of a 2D periodic crypt were run, and the average cell velocities (markers)
were compared with the velocities predicted by the corresponding continuum model
(lines). In this plot y.=0.3, T, =14, and L =20.1. The circles and solid line corre-
spond to 1L =40, whereas the crosses and dashed line correspond to L= 80.
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FIGURE 6.10 Comparison of cell-center, cell-vertex, and continuum crypt mod-
els. In each graph, the dotted vertical line y = H,, delineates the upper boundary
of the Wnt-stimulated region: cells proliferate for y < H,, and for y > H,, they
do not. Left: Dependence of average speed up the crypt axis on distance from
the crypt base. Right: Dependence of average cell compression (natural cell area
minus actual cell area) on distance from the crypt base.

model does slightly overestimate cell velocities within the crypt, as a result
of the assumption of cell incompressibility, which in 1D corresponds to
the limit L — oo in the Murray et al. model [45].

There are now a multitude of such integrative models in the literature
(see, for example [46-48]). Similar to these, the modeling approach dis-
cussed in this chapter suffers from the problem that we have made simpli-
fications at each scale and, while we can investigate the errors induced at
each level, we have not developed a theory for how to do this across scales.
This remains an open question. Therefore, an important future challenge
for the modeling community is to develop a systematic way of constructing
such models. As described earlier, one possible way to approach this might
be in the recent research that aims to develop continuum models of indi-
vidual-based computational schemes (see, for example, [45,49,50]). This
allows us not only to see precisely where the different modeling assump-
tions at the cell-level affect tissue-level behavior, but may also allow us to,
in the future, use the well-developed mathematical machinery for partial
differential equations to address key problems in multiscale modeling.
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INTRODUCTION

The transition from normal tissue to invasive cancer is a multistep process
in which increasingly malignant cellular populations emerge over time
(1-3), generally coincident with accumulating genomic mutations. This is
often described as “somatic evolution” (4-5) because it appears formally
analogous to Darwinian evolution in nature. While this conceptual model
is well accepted, the interactions with phenotypic properties and envi-
ronmental selection forces that determine individual fitness remain ill
defined. Furthermore, the language of evolution is often employed in car-
cinogenesis without full explanation. For example, it is often stated that,
during carcinogenesis, some random mutations “confer a selective growth
advantage” resulting in clonal expansion and subsequent tumor growth.
However, precisely how a genomic change alters the phenotype and
how a phenotypic trait interacts with environmental growth constraints
and selection factors remains vague. Thus, while the conceptual model is
appealing and well accepted, the dynamics governing the Darwinian inter-
actions of altered cellular genotypes with changing microenvironments
often remain unclear. Theoretical models of tumor development typically
include a sequence of genomic mutations and epigenetic changes synchro-
nous with progressive drift of cellular populations from normal through
premalignant lesions to invasive cancer (6). Line drawings (“Vogelgrams”)
(6) have been developed to correlate alterations in specific oncogenes and
tumor suppressor genes with a linear progression from normal tissues
through premalignant lesions (large and small polyps) to invasive colorec-
tal cancer. This approach, although useful conceptually and pedagogically,
is overly simplified, ignoring, for example, the stochastic nature of muta-
tions, mitigating intracellular processes such as the chaperone function
of heat shock proteins, and the critical role of microenvironmental selec-
tion factors that determine the fitness of any given phenotype. The role
of the mutation rate in driving somatic evolution remains the subject of
debate. Loeb and others (7) hypothesize an increased mutation rate due to
defects in chromosomal stability, or DNA repair pathways is necessary as
a forcing function to produce the number of genomic changes required for
evolution of invasive cancer. This assumes the background mutation rate
is insufficient to allow the necessary carcinogenic mutations to accumulate
in the human life span. The role of the mutator phenotype is supported by
observation of large numbers of mutations in most cancer cells (8) and
increased mutation rates in early colon and esophageal cancers (9,10).
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On the other hand, Tomlinson and others cite (11,12) empirical evidence
and mathematical models to demonstrate that normal mutation rates are
sufficient for tumor evolution in microenvironments generating strong
clonal selection. Bissell and colleagues (13-16) have published a number
of studies showing that microenvironmental factors such as the extracel-
lular matrix (ECM) and admixed normal cell populations alter tumor cell
proliferation independent of permanent genomic change and find that,
in some stages of the somatic evolution of the malignant phenotype, the
environment plays a greater role than mutagenesis. Finally, the muta-
tor hypothesis does not typically incorporate epigenetic phenomenon
such as DNA methylation and acetylation or intracellular factors such as
heat shock proteins that can maintain phenotypic robustness in the face
of genomic heterogeneity. In fact, reversible changes in phenotype are
observed in Bissell’s studies and are clearly dependent on environmental
factors. This phenomenon likely plays an important role in carcinogen-
esis and development of metastases [17]. As with any nonlinear process,
the complex multistep transformation of normal cells to invasive cancer
will not be fully understood without formal mathematical models (18,19).
To this end, a number of quantitative models of carcinogenesis have been
developed based on methods adapted from information theory, cellular
automaton models, and evolutionary game theory. Insights from these
models, in conjunction with experimental observations, have yielded a
number of insights into the Darwinian dynamics of somatic evolution.

MODEL: EVOLUTIONARY GAME THEORY

Evolutionary Game Theory allows the concept of somatic evolution to be

formalized and framed mathematically to examine the cellular and intra-
cellular dynamics (20) that lead to the evolution of specific properties of
the malignant phenotype (17,20). In general, a volume of tissue contains ns
distinct cellular populations designated x;, i = 1, ..., n  and described by a
phenotype vector ui composed of multiple scalar components. Population
and mean phenotype vectors are

x=[x, ... x,] (7.1)
u=[u ...u,] (7.2)

where x; is the number of individuals in population 7 and u is adaptive
phenotypic properties of each cell population. This could be linked to
quantitative data by designating each orthogonal axis in u to be the
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genes in a microarray. Alternatively, they could be specific measur-
able phenotypic properties such as proliferation rate, glucose uptake,
etc. Note that “mean phenotype” assumes some phenotypic diversity
within each cellular population as observed in clonal populations of
both normal and transformed cells (13), and this diversity is typically
represented through suitable distribution functions. In this somatic
ecosystem, cellular fitness, defined by proliferative capacity, may be
determined through a fitness-generating function (G-function) (21-26)
with a virtual variable, v. Setting the virtual variable equal to the phe-
notype of a population produces its fitness, which is a function of x, u,
and substrate concentration R. The relationship between fitness H, and
the G-function is

Gvw,x,R),_,=H Wx,R)i=1..,n, (7.3)

The population dynamics may be written as n, fitness functions or one
fitness-generating function.

%; =x;H,(u,x,R)=x,G(V,u,x,R)|,_, (7.4)

The G-function simplifies writing the equations of motion and provides
a conceptual advantage for understanding system evolution as a plot of
G versus v for fixed u, x, and R is a geometric representation of the adap-
tive landscape upon which evolution takes place. We present later some
results based on a multiple G-function model describing tumor growth
and development within somatic ecosystems. For now, we use a single
G-function model—a simpler approach that, nevertheless, yields identical
qualitative results to the more comprehensive model.

G(v,u,x,R)=B,| 1— (7.5)

Zn a(v,u)x; (E(V)RZ )
= m|.

K(v) RI+R>

It is immediately apparent that the first right-hand term in parenthe-
ses is the Lotka-Voltera equation. K is the carrying capacity, and a is
the quantitative effects of one population on another. The second term
represents substrate dynamics, where R is the concentration of a critical
substrate, substrate uptake obeys Michelis-Menten kinetics (hence, the
E and R, terms), and m represents the substrate utilization to maintain
basic cell function. The overall value of this term must be positive (i.e.,
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substrate uptake must exceed basal demand) for proliferation to occur.
Thus, in Equation 7.5, cell populations in vivo are subject to several growth
constraints: (1) “Tissue organizational” controls are included in the first
right-hand term these include: (a) intracellular factor, that determine
population density [K(v)] through growth promoters such as oncogenes
and growth inhibitors, including tumor suppressor genes, senescence, and
apoptosis pathways, and (b) extracellular controls generated within the
environment [defined by a(v, u)] through cell-cell interactions or prod-
ucts of other cell phenotypes, such as the ECM, soluble growth promot-
ers, etc., consistent with studies demonstrating that environmental factors
exert significant control in normal tissue development (31-33). (Note that
both K(v) and a(v, w) are lumped phenomenological terms.) (2) Substrate
availability (second right-hand term), that is, cells must obtain substrate
in excess of basal metabolic demand m to supply energy and macromol-
ecules for proliferation. B, = d, c,, where c, is a constant converting excess
substrate into new cells, and d, is maximum proliferation rate. We assume
normal cells under physiologic conditions are not subject to substrate
limitations, so their proliferation is controlled solely by tissue controls.
Pathological exceptions include acute or chronic ischemia such as stroke,
myocardial infarction, or diabetic ulcers.

RESULTS: THE PHYSICAL MICROENVIRONMENT
AND EVOLUTION OF THE MALIGNANT PHENOTYPE

Evolutionary Game Theory

When these evolutionary models are applied to carcinogenesis, several
interesting conclusions are reached:

1. Initial tumor cell growth is controlled by normal tissue constraints
generated by cellular interactions with other cell populations, the
extracellular matrix, and soluble or insoluble growth factors. Thus,
cellular adaptation in early carcinogenesis will favor phenotypic
alterations that reduce these constraints, such as loss-of-function
mutations in tumor suppressor genes and gain-of-function muta-
tions in oncogenes. That is, since proliferation of normal cells under
physiologic conditions is controlled by the social constraints in
Equation 7.5 (the first right-hand term) and not substrate limitations
(the second right-hand term), evolutionary pressures favor muta-
tions that reduce cellular sensitivity to normal growth constraints.
Thus, the initial evolution of tumor cells requires loss-of-function
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mutation in tumor suppressor genes and gain-of-function mutations

in oncogenes similar to the conventional view of carcinogenesis as
. <« »

expressed in, for example, the “Vogelgram.

2. Global evolutionary dynamics that determine the time course of this
process are governed by:

0=

2 0G(v,u,x,R)

7.6
i) (7.6)

where o is the variance of the phenotypic distribution around the
mean and dG/dv is the slope of the fitness landscape representing the
change in fitness for a given change in phenotype.

There are two points in Equation 7.6 that may provide insight
into somatic evolution. First, the evolutionary rate is dependent on
phenotypic and not genotypic diversity or, more broadly, evolution
selects phenotypes not genotypes. Nevertheless, the dependence of
evolutionary dynamics on o; reflects the increased rate with which
phenotypically diverse populations explore the fitness parameter
space and does support the hypothesis that increased mutation
rates, by generating multiple phenotypic variants, promotes carcino-
genesis (7). Second, Equation 7.6 demonstrates that evolution is not
solely dependent on phenotypic diversity (and, therefore, the muta-
tion rate), because cellular populations may evolve even with limited
phenotypic diversity (i.e., low mutation rates) if microenvironmen-
tal conditions generate strong clonal selection pressures increasing
0G/dv. This is similar to modeling results by Tomlinson (12) and con-
sistent with observations by Bissell et al. (13-17) that tumorigenesis
of genetically stable populations may be promoted or suppressed by
wounding, peritumoral stromal cells, ECM alterations, changes in
growth factor concentrations, etc. (31,32). (3) Even multiple muta-
tions in oncogenes and tumor suppressor genes only led to self-
limited growth (Figure 7.1). This is because growth of tumor cells
is eventually limited by substrate availability resulting from cellular
proliferation. This predicted a previously unknown era in carcino-
genesis in which somatic evolution was dominated by microenviron-
mental hypoxia and acidosis.

Evolutionary-model-predicted carcinogenesis proceeds through two
distinct phases (33-36). The second of these phases, in which cellular
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growth in premalignant lesions is limited by substrate limitation, had
not been previously identified in traditional theoretical models of car-
cinogenesis. This led us to reexamine in detail the cellular and environ-
mental dynamics that might result in substrate-limited evolution and the
role of these interactions in emergence of the glycolytic phenotype dur-
ing carcinogenesis (34-47). How could this occur in typical premalignant
lesions such as colon polyps or breast ductal carcinoma in situ (DCIS)?
This requirement for substrate limitation led to the realization that, while
premalignant lesions are often characterized as highly vascularized, this
is true only in a macroscopic sense. That is, while a premalignant lesion
such as a polyp or carcinoma in situ may have a vascular stroma, the
hyperplastic epithelia are physically separated from their blood supply by
a basement membrane. This is illustrated in Figure 7.1 as the hyperplas-
tic epithelium of a carcinoma in situ is clearly delimited from the stroma
by a thin basement membrane. Blood vessels are confined to the stromal
compartment and, hence, early carcinogenesis and development of the
malignant phenotype actually occur in an avascular environment. As a
result, substrates, such as oxygen and glucose, must diffuse from the ves-
sels across the basement membrane and through layers of tumor cells,
where they are metabolized. The diffusion and consumption of substrate
was modeled by Krogh (43) as early as 1919 through reaction-diffusion
equations that demonstrated oxygen concentrations will decrease with
distance from a capillary such that oxygenated cells were limited to a dis-
tance of less than 150 um from a blood vessel (38). In the 1950s, empirical
studies by Thomlinson and Gray showed that viable tumor cells were not
observed at distances greater than 160 um from blood vessels, consistent
with Krogh’s calculations. Subsequent experimental studies in window
chambers in animal models have demonstrated that near-zero partial
pressure of oxygen (pO,) is observed at distances of only 100 um from a
vessel (39,40).

Thus, premalignant lesions, provided their basement membranes
remain intact, will inevitably develop hypoxic regions near the oxygen dif-
fusion limit, as persistent proliferation leads to a thickening of the epithe-
lial layer, pushing cells ever more distant from their blood supply, which
remains on the other side of the basement membrane (Figure 7.1). At this
penumbral layer, microenvironmental selection forces will favor pheno-
types that adapt to harsh environments (through resistance to hypoxia and
acid-induced cell toxicity) and successfully compete for scarce resources,
such as oxygen and glucose.
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This is consistent with the model predictions of an era in carcino-
genesis dominated by substrate limitation. Low oxygen concentrations
appear to be the first substrate limitation confronting neoplastic cell
populations as reaction-diffusion models, and empirical studies have
shown that pO, decline more rapidly with distance from blood vessels
than do glucose levels. Although the presence of hypoxia in premalig-
nant in situ lesions has not been measured directly, it can be inferred
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FIGURE 7.1  (See color insert following page 40)
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from the frequent observation of necrosis in these lesions and by dem-
onstration of hypoxia-inducible enzymes such as carbonic anhydrases
IX and XII in late stage DCIS, particularly adjacent to areas of necro-
sis (41). While the upregulation of glycolysis is a successful adaptation
to hypoxia/anoxia, it also has significant negative consequences due
to increased acid production, which causes significant decreases in
local extracellular pH. Prolonged exposure of normal cells to an acidic
microenvironment typically results in necro