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Preface

In 2003, the conclusion of the Human Genome Project identified approxi-
mately 25,000 genes. How all these genes and the hundreds of thousands 
of proteins that they encode interact to form physiological phenotypes and 
how molecular alterations potentially lead to abnormal patterns, includ-
ing cancer, is still largely unknown. Genes, cells, and tissues function 
through many intricate processes that span multiple scales in space and 
time. Therefore, focusing on a particular level of observation alone may not 
provide sufficient insight as to the mechanistic relationships across scales. 
However, the complexity involved is daunting and from an experimen-
tal perspective, it is often difficult technically if not prohibitively expen-
sive to alter all parameters involved, reproducibly, in an effort to explore 
the data space methodically. It is here where in silico biology driven by 
cutting-edge mathematical and computational methods and techniques 
will have a profound impact. Its translational goals in cancer research 
range from experimentally-testable hypothesis generation and cross-scale 
data integration to patient-specific prediction of progression and treat-
ment planning (in silico oncology). However, the scientific and technical 
expertise spectrum necessary to conduct such innovative multiscale mod-
eling research often exceeds the resources of a single research department, 
institution, or even country. And so this is nothing less than the dawn of 
a new era of interdisciplinary and multi-institutional collaboration, and a 
unique opportunity for international exchange to accelerate progress. In 
recognizing both the considerable challenges and the enormous potential, 
on October 23–24, 2008, the European Commission and the U.S. National 
Cancer Institute (NCI) jointly funded the First Transatlantic Workshop 
on Multiscale Cancer Modeling in Brussels, Belgium. For the first time, 
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this meeting brought together the majority of the top in silico modeling 
groups in the United States and in Europe. This textbook presents the best 
contributions of this groundbreaking event—the state of the art of multi-
scale cancer modeling.

Thomas S. Deisboeck, M.D.
Department of Radiology

Massachusetts General Hospital
Harvard Medical School

Boston

Georgios S. Stamatakos, Ph.D.
Institute of Communication and

Computer Systems
National Technical University of Athens

Athens
August 2010
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*	 All authors contributed equally to this chapter.
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Summary
At its simplest tissue homeostasis is the balance between cell proliferation 
and apoptosis that preserves the architecture and functionality of a tissue. It 
is estimated that 50 to 70 billion cells are dying every day in an average adult 
[1] and approximately the same number of cells need to be born to keep body 
integrity. This balance is maintained by multiple subcellular, intracellular and 
extracellular mechanisms including cell genetic management, cell-cell adhe-
sion, paracrine/autocrine signaling, and cell-ECM interactions. The process of 
carcinogenesis entails the escape from these mechanisms, and the evolution 
of the tumor cell population toward phenotypes that can exploit or become 
independent of the normal tissue microenvironmental constraints. In this 
chapter we consider the mechanisms that regulate normal tissue homeostasis 
and subsequently homeostatic escape in the development of cancer by using 
different modeling approaches that examine the role that physical constraints, 
cell-microenvironment interactions and evolutionary dynamics play.

Introduction
Homeostasis is a critical property of living beings that involves the abil-
ity to self-regulate in response to changes in the environment in order 
to maintain a certain dynamic balance affecting form and/or function. 
Homeostasis is of particular importance in multicellular organisms, where 
it is intertwined with development [2,3]. Organisms have evolved intricate 
control mechanisms that ensure developmental processes achieve their 
end points and stabilize (e.g., differentiate) as well as allow for a degree 
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Evolution, Regulation, and Disruption    ◾    3

of adaptability to a range of conditions (e.g., stress or damage induced by 
wounding). This allows for the emergence of a more robust system that can 
tolerate both external and internal perturbations [4]. However, there are 
limitations to this tolerance, and often it is the rare events that cause the 
most disruption [5]; think of the extinction of dinosaurs for an example. 
From an evolutionary point of view, this is a viable trade-off between the 
energetic cost of homeostasis versus the fitness benefit it would provide. 
In practical terms, homeostasis of living multicellular organisms is con-
strained in terms of the amount of disruption they can cope with and in 
terms of the amount of time they will remain homeostatic.

In order to understand the transition from normal tissue to invasive 
cancer, we should first understand how the normal form and function of 
the tissues under consideration is maintained to achieve a homeostatic 
balance (emerging from the integration of multiple subcellular, intracellu-
lar, extracellular, chemical, and physical signals/constraints). For example, 
the role of normal epithelial tissue (from which most tumors arise) is to 
separate the inner body compartments, such as prostate ducts produc-
ing prostatic fluid or breast glands secreting milk, from the surrounding 
environment and to control the exchange of nutrients and waste products 
between them. Biological homeostasis has to be achieved in a dynamic 
cellular milieu with a constant cell turnover (a cell lifespan ranges from 
3 days for skin cells, and 4 months for red blood cells, to several years for 
bone cells) and perturbations from various extrinsic factors (e.g., breast 
duct shrinkage after pregnancy or local tissue damage) and by counteract-
ing induced cellular changes such that homeostasis is restored. Therefore, 
when a damaged or mutated cell is not functioning as it should, the tissue 
will try to suppress the damaged cell and prevent further abnormalities. 
However, if this damaged cell gains a proliferative or migratory advantage 
over other cells and does propagate, it needs to do so at the expense of other 
cells and will ultimately defy the constraints imposed by the homeostatic 
mechanisms employed by the host tissue. In many cases, these constraints 
are physical, imposing structural constraints on the cells, for example, 
via cell adhesion, but they may also be chemical, for example, limited 
metabolite availability. In order to escape homeostasis and overcome these 
barriers, the mutant cells need to evolve to the point where they can sig-
nificantly modify their baseline phenotypes and potentially their environ-
ment. Therefore, the emergence of an invasive cancer can be viewed as an 
escape from homeostasis in which the natural synchrony between mul-
tiple cellular and microenvironmental variables is perturbed.
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The classical approach to oncogenic development views cancer as 
being a solely genetic disease, whereby genomic mutations are acquired 
in a stepwise fashion, leading to uncontrolled cell growth, invasion into 
surrounding tissues, and eventual metastasis (reviewed in Reference 
[6]). This reductionist view of oncogenesis sees the tumor cells exist-
ing in isolation, steadily acquiring mutations, with little interaction with 
their surrounding environment. In reality, tumor cells are embedded in 
a matrix of structural extracellular proteins, surrounded by other cells, 
such as endothelial cells, fibroblasts, and inflammatory and immune 
cells [7,8]. These multiple cell types make up the tumor microenviron-
ment, and are in continuous dynamic interaction with other stromal 
and tumor cells. Together, the cells generate a myriad of physical and 
chemical signals that converge to determine the metabolic, migra-
tory, growth, and survival behavior of the tumor cell. The acquisition 
of oncogenes alone cannot explain all aspects of tumor development, 
and there is evidence that escape from normal tissue homeostasis is an 
essential step in the carcinogenic process. In fact, the gene-centric and 
microenvironment-centric views of carcinogenesis are to some extent 
unified under the homeostatic hypothesis, since genetic mutations under 
microenvironment selection must together define phenotypes that have 
the potential to escape homeostatic control. By focusing on the cellular 
phenotype, we can examine what subcellular (e.g., receptor-driven cell 
processes, cell metabolism), cellular (e.g., cell–cell or cell–ECM adhe-
sion), and environmental perturbations (e.g., nutrient or growth factor 
distribution, stromal structure) are required for this liberation.

In this chapter, we will consider three different computational 
models that examine the role of homeostasis in carcinogenesis. 
Understanding normal tissue formation and maintenance will allow 
us to better under-stand how cancer can be initiated, and how it devel-
ops and progresses. In the first model, we consider a novel approach 
integrating genetic algorithms and cellular automata to investigate the 
evolution of homeostatic tissue. In the second, we use an immersed 
boundary framework to investigate how the disruption of intrinsic cel-
lular responses to extrinsic signals results in a homeostatic imbalance 
within an epithelial duct. In the final part, we present a model of pros-
tate cancer and examine the importance of both growth factor and 
stromal interactions in the maintenance of a homeostatic state, even in 
the presence of cancer.
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Evolving Homeostatic Tissue 
Using Genetic Algorithms
During embryogenesis, multicellular organisms follow a developmental 
program in which tissue architecture results from the interactions between 
cells and as a result of the processes of mitosis, motility, differentiation, and 
apoptosis. After reaching maturity, this architecture is maintained through 
an intricate and finely tuned balance of cell proliferation and loss. Given the 
consequences of homeostatic disruption (such as aging, psoriasis, or cancer), 
the organism has to be able to cope with genetic and environmental insults 
without significant disruption. Recently, a computational model has been pro-
posed by one of the authors to study the evolutionary origin of robust homeo-
stasis [10]. The difficulty of performing experiments to study evolutionary 
dynamics makes in silico approaches particularly useful. In that paper, an 
evolutionary algorithm (EA) was implemented to evolve the developmental 
rules of digital organisms, using three-dimensional cellular automata (CA). 
The developmental rules, shared by all the cells in an organism, match certain 
external and internal conditions (such as the presence of neighboring cells 
or the number of divisions the cell has gone through) with cellular actions 
(motility, division, and apoptosis). At any given time, a cell scans all relevant 
internal and external conditions and decides upon an action depending on 
the subset of the 100 rules that constitutes its digital genome. This mechanism 
has the advantage of making CA more evolvable, and thus their use in con-
junction with EAs more efficient than conventional CA [10].

The evolved organisms were selected to grow specific shapes for a num-
ber of time steps and to remain homeostatic for the rest of the simulation. 
During the homeostatic period, a number of different mechanisms were 
found such that the digital organisms maintained their form. Interestingly, 
these organisms evolved the capability to recover from severe wounds 
even though specific evolutionary pressure selecting for wound healing 
was missing. A study of the digital organisms’ evolutionary trajectory 
showed that organisms that evolved earlier were less capable of coping 
with environmental insults than those that evolved later (even if they were 
as fit from a homeostatic point of view). Furthermore, the organisms more 
capable of wound healing were those that had evolved a tissue-like archi-
tecture with a direction flux of cells driving tissue turnover (Figure 1.4A). 
This mechanism is similar to the stratified architecture that characterizes 
the human skin or the gut. These results suggest that robustness may be a 
by-product of the evolution of morphogenetic systems.
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Model

Motivated by this work, here we present a model of a tissue developing 
from a single cell into a homeostatic structure capable of growth control 
and self-repair. In particular, we focus on the simple case of a monolayer of 
cells forming a two-dimensional structure, similar to the lining formed by 
epithelial cells. This problem is studied in the context of an evolutionary 
hybrid cellular automaton [11–13], an individual-based model in which 
the behavior of each cell depends on its local environment consisting of a 
chemical species such as oxygen, which are modeled on a continuous level. 
Precisely how cells respond to their microenvironment is determined using 
a feed-forward artificial neural network, which takes extracellular cues as 
an input, and outputs the phenotype or behavior of the cell. Instead of dic-
tating a given mapping from environment to phenotype (as we have done 
previously), we will make use of an EA to evolve a cell behavior that gives 
rise to a homeostatic tissue. In the following, we will first briefly describe 
the underlying cellular automaton model, and then move on to discuss the 
implementation of the EA, and the results gathered from it.

Hybrid Cellular Automaton Model (HCA)
The tissue that we simulate is represented by an N × N × M cellular automaton, 
in which each grid point 


x = Δ(i, j, k) either contains a cell or is empty. Here, ∆ 

is the lattice constant, which determines the spacing between the grid points, 
or equivalently, the size of the cells. The cellular automaton is coupled with 
two concentration fields, one describing the concentration of oxygen c x t( , )



and the other the concentration of a generic growth factor (GF) g x t( , )


. The 
cells on the lattice influence these fields through oxygen and GF consump-
tion, but are also affected by the concentrations, as they serve as inputs to the 
response network that determines the behavior of the cells.

Response Network
The behavior of each cell is determined by a neural network that takes the 
number of neighbors on the lattice, the local oxygen concentration and 
GF concentration as input, and for each possible input calculates a pheno-
typic response. Phenotypes are limited to four: proliferation, movement, 
apoptosis and, in the absence of a network response, cellular quiescence. 
The response network consists of a number of nodes organized into three 
layers: (1) input, which takes information from the environment; (2) hid-
den; and (3) output, which determines the action of the cell. The nodes in 
the different layers are connected with varying weights, determined by 
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two matrices V and W, and the nodes in the hidden and output layer are 
equipped with internal thresholds θ and ϕ (see Figure 1.1). These parame-
ters fully determine the mapping from environment to phenotype and can 
therefore be seen as the genotype of the cells. For a more detailed descrip-
tion of the network dynamics, we refer the reader to Reference [14].

Chemical Fields
For the sake of simplicity, we consider only oxygen and a generic GF in 
our model. All cells are assumed to consume oxygen, although at differ-
ent rates depending on their phenotype, while only proliferating cells 
consume GF. Oxygen and growth factor production take place on the 
domain boundary via diffusion from surrounding tissue or blood vessels 
(see Reference [14] for a system of diffusion equations that have a similar 
form). As we are studying a thin slice of tissue (M<<N), we will assume 
that these concentration fields vary insignificantly in the z-direction, and 
we will thus only solve the equations in two dimensions.

Cellular Automaton
For each time step a cell is in a proliferative state, an internal counter 
is increased, and when it has reached a certain value tp correspond-
ing to the time of the cell cycle, the cell divides and a daughter cell is 

No. of
neighbours

Oxygen conc.

GF conc.

Proliferation

Apoptosis

Movement

φθ
WV

Figure 1.1  The layout of the response network that determines the behavior of 
the cells. The microenvironment of each cell is presented to the input layer of the 
network. This information is then fed through the network under the influence 
of the connection matrices V, W and the threshold vectors, and the node with the 
strongest response in the output layer determines the behavior of the cell. If no 
node reaches a value above 1/2, the cell becomes quiescent.
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placed at random in one of the neighboring empty grid points. If no 
empty space exists, cell division is halted until empty space emerges. 
If a cell takes on the motile phenotype, it moves at random into one of 
the empty neighboring grid points. If no empty space exists, the cell 
remains stationary. Motile cells move with a probability pm to regulate 
speed. If apoptosis is the network response, then the cell dies, and its 
space becomes available in the following time step. A cell can also die 
from starvation or necrosis due to a lack of oxygen (i.e., c < cn, where cn 
is the oxygen level at which cells become necrotic). In order to account 
for the stochastic nature of cell behavior, we also include a small spon-
taneous death rate pd.

The initial conditions of the system are uniform concentrations of oxy-
gen and GF and a single cell with a given genotype (set of network param-
eters) at the center of the grid. Each time step the chemical concentrations 
are solved using the discretized equations. The position of each cell is cor-
rected with respect to neighboring cells that have moved or died; that is, 
a suspended cell drops along the z-axis until it touches another cell or the 
bottom of the domain. All the cells on the grid are then updated in ran-
dom order as follows:

	 1.	The microenvironment is sampled, and the response of the network 
is calculated.

	 2.	The cell consumes oxygen and GF according to the phenotype chosen.

	 3.	The phenotype choice is evaluated, and the grid is updated accordingly.

Evolutionary Algorithm (EA)

Evolutionary approaches have been used to solve various problems in 
computer science, such as hardware development, image classification, 
and robot control [15]. What these approaches all have in common is that 
they try to harness the power of natural selection. Central to this is the 
notion of a fitness function, which to each candidate solution assigns a 
value used to rank all the solutions to the problem. Another necessary 
feature is that the solutions can be randomly modified (mutated) and even 
mixed with each other.

Here, we want to find a set of network parameters or genotype, which 
when seeded into a single cell, and given time to grow, give rise to a tissue 
that is homeostatic. More precisely, we want a single cell to multiply such 
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that the population creates a monolayer of cells that are not stacked on top 
of each other. This can be formalized as the following fitness function:

	 F = no. of cells in the bottom layer 
	 + no. of empty grid points in all other layers	 (1.1)

The goal is then to find a genotype that maximizes this function. One com-
plication is that the fitness function is multiobjective, that is, it contains 
two distinct parts, and in this case it has been shown that simply sum-
ming them is not the best approach [16]. Instead, we employ the sum of 
weighted ratios, which assigns weights to the different objectives depend-
ing on the current minimum and maximum values of the two objectives 
in the population. If we call the two objectives F1 and F2, then the fitness 
of genotype g is defined as

	
F g F g F

F F
F g F
F

( ) ( ) ( )min

max min

min

ma
= −

−
+ −1 1

1 1

2 2

2
xx min− F2 	

(1.2)

where Fi
min,max refers to the minimum and maximum value of each objec-

tive currently present in the population.
The EA consists of a population of candidate solutions, which are sub-

ject to a selection process. We have chosen a tournament-based selection 
process, which also makes use of a low degree of elitism. This means that 
a fraction pe = 5% of the best solutions are carried unaltered into the next 
generation, while the rest of the population engage in tournaments. Four 
solutions are picked at random and are compared in pairs, and this gener-
ates two winners and two losers. The winners are carried over to the next 
generation, while the losers are replaced by the offspring of the winners. The 
offspring are either generated by single point mutations to the parents’ geno-
types (occurs with probability 1/2) or by crossing-over their two genotypes 
(with complementary probability 1/2). This process is repeated until all solu-
tions in the population have engaged in a tournament, and this constitutes 
one generation in the EA. (See Figure 1.2 for a graphical representation of 
the selection process.) Point mutations are implemented by changing one 
of the network parameters (matrix entries or node thresholds) by adding a 
random member from a normal distribution. The cross-over is implemented 
by mapping the network parameters of both parents into two vectors, pick-
ing two random indices, and swapping the contents above and below these 
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points. In most cases these is disruptive, but in some cases it generates a 
novel solution with a higher fitness than the parents’.

Each run was started with a population of size Ns = 50, where all 
genomes are randomly generated. The number of time steps used for each 
fitness evaluation was tmax = 200, which, since the size of the grid is 200 × 
200, means that a genotype with proliferative capabilities will be able to 
fill the entire domain, while it still needs to exhibit homeostatic behavior 
to receive a high fitness. The total number of generations iterated with 
the EA was set to Tmax = 20, which means that we had to run Ns + (1 − pe)
NsTmax/2 = 500 realizations of the underlying HCA model.

Results and Discussion

Because the EA is seeded with a random starting population, and only ran-
dom variation and selection drives the search for a homeostatic genotype, 
we do not impose any constraint on how the cell population solves the 
problem of tissue homeostasis. Instead, our aim was to investigate (using 
our model) which mechanisms emerge for maintaining homeostasis. We 
achieved this aim by running a number of EAs with different random 
initial populations of solutions, and analyzing the sequence of solutions 
generated by them. The different genotypes were then compared to one 
another by analyzing the phenotypes they give rise to and by investigating 
their growth dynamics.

1 2 3 4 5 6

1 2 3 4 5 6

7

7" 9"7' 9'

8 9 10 Ns-3 Ns-2 Ns-1 Ns

Point mutations Cross-over

Gen. t

Gen. t+1

Top pe solutions

Figure 1.2  Schematic of the evolutionary algorithm. In each generation, the top 
pe most fit solutions are carried unaltered into the next generation. The remain-
ing genotypes are paired off in tournaments where the winners give rise to off-
spring either by point mutations or cross-over.
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The growth patterns generated by the most fit genotypes in one such 
run are shown in Figure 1.4B. These plots show the distribution of cells 
in the domain at the end of each fitness evaluation, from a top view, 
which means that if several cells are stacked on each other only the 
topmost cell is visible. From this sequence, we can see that the EA has 
explored several different solutions before settling on a completely pro-
liferating phenotype T = 11 to 19. At T = 1, the fittest solution consists of 
a slow-growing phenotype, which forms a tissue with a low cell density. 
This is then replaced by a phenotype that forms a ring-like structure in 
which no cells reside in the interior of the domain (T = 3). From T = 5 to 
9, the fittest genotype is one that fills the entire bottom of the domain, 
and does so by adopting a motile phenotype. This type of solution is then 
taken over by a fully proliferative phenotype, which remains the fittest 
solution until the end of the run.

In order to get a better understanding of the tissue architecture gener-
ated by the final genotype, we also plotted the cell density in the domain 
at t = 200. This can be seen in the lower part of Figure 1.4B, and shows that 
most of the tissue consists of a monolayer of cells with isolated cells lying 
on top (the mean cell density is 1.08 cells/grid point). This means that the 
genotype meets the requirements of the fitness function fairly well, but 
we need to understand in more detail how this homeostatic behavior is 
achieved. A useful way of analyzing the behavior of a genotype in the 
model is to calculate the behavior of the genotype in all possible microen-
vironmental conditions. As the input is three dimensional (number of 
neighbors, oxygen, and GF concentration) and the output is one dimen-
sional and discrete (proliferation, movement, apoptosis, and quiescence), 
the behavior of the genotype can be visualized as a function from three to 
one dimensions, in which each point in the input space is associated with 
a phenotype. This type of plot for the final genotype (T = 19) is shown in 
Figure 1.3a, and from this we can conclude that the possible behavior of 
the genotype is limited to proliferation and apoptosis. The absence of any 
quiescence or movement in this apparently homeostatic genotype suggests 
that apoptosis might play an important role in its behavior.

In order to investigate this further, we measured the number of cell 
births and cell deaths during a simulation. These rates are shown in 
Figure 1.3c as a function of time, together with the total number of cells 
present on the grid. As expected, the birth and death rates are fairly bal-
anced, but they are very high even when the tissue is fully formed, with 
approximately 83% of the cells in the tissue being replaced every cell cycle. 
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This suggests that the final genotype maintains tissue homeostasis by bal-
ancing its high proliferation rate with an equally high rate of apoptosis. 
This type solution is commonly arrived at by the EA, and is in contrast 
to those solutions that maintain tissue homeostasis by halting cell divi-
sion when the tissue forms. An example of such a phenotype is shown in 
Figure 1.3b, which consists mostly of proliferation and apoptosis, but note 
that there is a small (but obviously significant) subset of the input space 
that gives rise to motility. Looking at the birth and death rates of this ge-
notype (Figure 1.3d), we see that they are considerably smaller than for the 
previously analyzed genotype. This genotype has evolved a mechanism to 
deal with both decreases and increases in local cell density by essentially 
exploiting the migratory phenotype as a means to become quiescent; that 
is, if a cell is surrounded by other cells and becomes a motile phenotype, it 
essentially acts as if it were quiescent.
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Figure 1.3  (a), (b) The behavior of two final genotypes visualized by mapping 
to each point in input space the associated phenotype determined by the response 
network. (c), (d) The equivalent time evolution of the total number of cells and 
the birth and death rates for these two genotypes. Time is scaled according to 
cell cycles.
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We have shown that by coupling an HCA model of tissue growth with 
an EA, we can evolve cell (geno)types that form a homeostatic tissue. 
The two evolved genotypes analyzed present contrasting mechanisms by 
which tissue homeostasis can be maintained. One does so by continually 
shedding cells via apoptosis, and the other by lowering the total prolifera-
tion rate of the tissue so that it just balances the spontaneous rate of apop-
tosis. An important feature that the model does not currently include are 
somatic mutations, which occur in the tissues of all multicellular organ-
isms. These mutations can transform cell behavior and are the underlying 
cause of cancer in somatic tissue. In our model, in which no mutations 
occur (except in the EA), two mechanisms for maintaining a homeostatic 
tissue emerge from the evolutionary process, but one may be selected over 
the other by imposing a certain environment. Our conjecture is that a 
proliferative genotype is more likely to evolve in an environment in which 
the rate of spontaneous mutations is high, while a conservative genotype 
is likely to evolve when the mutation rate during cell division is elevated. 
Clearly, each of the genotypes could produce cancer if sufficiently mutated, 
but the one that induces massive cellular turnover is more likely to spread 
damaging mutations than the more conservative one and is therefore more 
prone to cancer, at least in the short term.

By growing homeostatic tissue structures, evolution highlighted that 
there are different genetic routes to achieve the same phenotypic outcome. 
One simplification, however, was to create an idealized single tissue mono-
layer when in reality most of the epithelial tissues are made up of multiple 
layers and form ductal-like structures. Next, we consider the development 
of just such a structure and examine how homeostasis is achieved and 
what happens when it is perturbed.

Homeostatic Imbalance in Epithelial Ducts 
Driven by Erroneous Cell Responses
Normal tissue microarchitecture enables individual cells to interact with 
one another and with the stromal microenvironment either directly via 
cell membrane receptors or indirectly through a diverse array of soluble 
factors. Normal cells can respond to changes in their external environ-
ment (i.e., chemical or physical stimuli from other cells or from the ECM) 
by modifying their internal machinery (chemical, physical, genetic) to 
maintain a stable equilibrium. However, when this homeostatic regula-
tion is disturbed, the intrinsic cell environment may become unstable, 
resulting in uncontrolled cell behavior, leading to disruption of tissue 
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Figure 1.4  (See color insert following page 40) (A) Example of homeostatic 
organism with tissue-like architecture and cell flux with upward direction. The 
digital organism develops for 99 time steps, after which it is wounded by remov-
ing a layer of cells and then allowed another 50 time steps to see if it is capable of 
recovery. (B) Time evolution of the EA showing the most fit genotypes at different 
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Figure 1.4  (Opposite) generations in the run, where the process converges on a 
genotype that predominately proliferates. Arrow: cell density of the final genotype 
(T = 19). (C) Homeostatic imbalance in epithelial ducts driven by erroneous cell 
responses modeled by the IBCell. 1. A cluster of epithelial cells with color-coded 
receptor and nuclear staining. 2. A sequence of snapshots showing a central cross-
section through a normally developing epithelial duct, composed on one layer of 
tightly packed cells enclosing the hollow lumen. 3. A sequence of snapshots show-
ing that the disruption of cellular responses to the death signals results in lumen 
repopulation. 4. A sequence of snapshots showing that the disruption of cellular 
responses to the mitotic signals results in dysfunctional acini manifesting a high 
degree of abnormally folded epithelial tissue. 5. A sequence of snapshots show-
ing the necessity of switching from symmetrical to asymmetrical cell divisions in 
order to grow a normal regular epithelial duct. 6. A sequence of snapshots showing 
that the disruption of cellular responses to the ECM signals results in tumor cell 
invasion. (D) Schematic of model domain with its key cell types. The basal cells 
produce TGF-β and help maintain homeostasis. Luminal cells consume TGF-β 
and can become tumorigenic. The stromal cells occupy locations outside the acini 
and produce TGF-β in response to TGF-β once it reaches a certain concentration 
(left). The initial simulation domain configuration is made of three glands, equally 
spaced and surrounded by stromal cells (right). 1. Simulation in which the tumors 
break out from the glands and start growing in the mesenchyme. The domain con-
tained 40% of motile and 40% of nonmotile stroma. After about 3 months, each of 
the glands is entirely occupied by a tumor. After 43 years, two of the tumors have 
managed to break out from the gland. At the end of the simulation (after about 54 
years), the three tumors have merged into a single mass, although its pattern of 
growth seems to be channeled by the stroma. 2. Simulation in which the tumor 
takes over the entire prostate. In this simulation, the production of TGF-β is rela-
tively low compared to other simulations, and the proportion of motile stroma is 
the same as that of nonmotile stroma: 10%. After about 3 months, each one of the 
glands is occupied by a tumor, and MDE production is already visible. After about 
22 years, the tumor in the upper gland breaks out and expands in the mesenchyme. 
After about 43 years, the tumor has taken over the entire prostate, degraded almost 
entirely all the membrane, and TGF-β and MDEs can be found everywhere in high 
quantities. 3. Simulation in which the three tumors are initiated, grow, and die 
out before they manage to break out from the glands. In this simulation, the pro-
portion of stroma is the same as nonmotilestroma: 10%. The tumor cells produce 
MDEs at a significantly higher rate than in most of the other simulations. After 60 
days, the central gland has almost been taken over by the tumor. After 1 month, 
the central tumor has produced enough MDEs to degrade the basal membrane, 
leading to both tumor cells and TGF-β spilling out of the membrane and into the 
surrounding stroma. After 900 time steps, the simulation shows a situation similar 
to that at initiation.
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microarchitecture and subsequently to malignant changes in the whole 
organism.

The epithelial glands and cysts are especially interesting examples of tis-
sues maintaining a homeostatic balance due to their finely defined archi-
tecture and abundance in many different organs, including the bronchi 
and alveoli of the lungs, breast ducts and lobules, gastrointestinal crypts, 
reproductive urinary tracts, and the endocrine glands. In their mature 
form, these epithelial structures are composed of one layer of tightly 
packed polarized cells. Critical decisions regulating epithelial tissue integ-
rity, such as cell growth, orientation of cell division, or the induction of cell 
death, are directed by actions of neighboring cells and interactions with 
a dynamically evolving ECM milieu. Normal epithelial cells can adapt to 
certain perturbations in biochemical, genetic, and physical cues sensed 
from their immediate microenvironment. However, when cell responses 
are compromised, they may induce a malignant character, filling the hol-
low lumen of the ducts and breaking through the basement membrane, 
resulting in loss of tissue homeostasis.

Model

The IBCell was introduced in Reference [17] to model early tumor devel-
opment, and subsequently applied to investigate the sufficient and neces-
sary conditions for the formation and stability of hollow epithelial acini, 
three-dimensional cellular culture systems that recapitulate the structure 
and function of epithelial cysts [18,19]. In this model, the eukaryotic cell 
is represented as a two-dimensional fully deformable body (Figure 1.4C1), 
and its structure includes an elastic plasma membrane modeled as a net-
work of linear springs that define cell shape and encloses the viscous 
incompressible fluid representing the cytoplasm and providing cell mass. 
These individual cells can interact with other cells and with the environ-
ment via a set of discrete membrane receptors located on the cell bound-
ary, and can undergo several life processes, such as cell growth, division, 
apoptotic death, or epithelial polarization. In particular, each boundary 
point can be engaged in adhesion either with one of the neighboring cells 
or with the extracellular matrix, and cell membrane receptors can be used 
to sense the presence of other cells or extracellular matrix in the local cell 
vicinity. The host cell can initiate certain cell life processes, such as pro-
liferation, division, apoptotic death, or epithelial polarization, based on 
its membrane receptors signature (a distribution of growth, death, apical, 
cell–cell, and cell–ECM adhesion receptors; Figure 1.4C). More precisely, 
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cell growth is modeled by placing point sources and sinks around the cell 
boundary to model transport of fluid through the cell membrane and, 
once the cell area is doubled, the contractile ring is formed by introducing 
springs between opposite points on the cell boundary that upon contrac-
tion split the cell into two daughters. Cell epithelial polarity is acquired 
by developing three distinct cell membrane domains: basal, defined by 
cell membrane receptors contacting the external media; lateral, defined 
by cell receptors being in contact with other cells; and apical, facing the 
hollow lumen. Cell apoptotic death is modeled by placing point sinks 
and sources along the membrane of the whole cell to release fluid from 
the cell interior to the extracellular space. The IBCell model is based on 
the immersed boundary framework and governed by the following set of 
equations:

ρ µ∂
∂

+ •∇) = −∇ + ∆





u x t
t

u x t u x t p x t( , ) ( ( , ) ( , ) ( , ) uu x t s x t f x t( , ) ( , ) ( , )+ ∇ +µ
ρ3 	

		  (1.3)
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∂
∂

= = −X l t
t

u X l t t u x t x X l t dx( , ) ( ( , ), ) ( , )  ( ( , )) ,δ
ΩΩ
∫ 	 (1.7)

In this system, Equation 1.3 is the Navier–Stokes equation of a viscous 
incompressible fluid defined on the Cartesian grid x = (x1,x2), where p 
is the fluid pressure, μ is the fluid viscosity, ρ is the fluid density, s is the 
local fluid expansion, and f is the external force density. Equation 1.4 is 
the law of mass balance. Interactions between the fluid and the mate-
rial points X(l,t), on cell boundaries Γ and at point sources Yk and sinks 
Zm placed in the cell local microenvironment are defined in Equations 
1.5–1.7. Here, the force density F(l,t) defined on cell boundaries, and the 
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sources S+(Yk,t) and sinks S−(Zm,t) defined in the cell microenvironment, 
are applied to the fluid using the two dimensional Dirac delta function δ, 
while all material boundary points X(l,t) are carried along with the fluid. 
The boundary forces F(l,t) arise from elastic properties of cell boundar-
ies, from cell-to-cell adhesion, and from contractile forces splitting a cell 
during its division. The sources S+(Yk,t) and sinks S−(Zm,t) are chosen 
such that they balance around each cell separately. More details on the 
mathematical formulation of IBCell and the implementation of cell life 
processes can be found in [17,19].

Results

We will illustrate here how changes in cellular responses to microenvironmental 
cues sensed by host cells via their membrane receptors may result in the disrup-
tion of epithelial tissue morphology. Specifically, we will use the biomechani-
cal model, the IBCell, discussed earlier, to develop normal epithelial cysts and 
examine how these structures change as a result of disrupting cellular responses 
to three different signals: (1) death, (2) mitotic, and (3) ECM.

Normal Development of Epithelial Cysts
Our model can recapitulate all stages of the development of mammary 
acini that are the in vitro experimental systems derived from nontu-
morigenic mammary breast cell line MCF10A and resemble the struc-
ture and behavior of breast epithelial cysts [20]. The acinar structure is 
formed from a single cell that upon consecutive divisions gives rise to 
an aggregate of randomly oriented cells consisting of two cell popula-
tions: outer cells having contact with the extracellular matrix and inner 
cells surrounded entirely by other cells. Subsequently, cells in the outer 
layer develop an apico-basal polarity and form a monolayer of epithelial 
cells. This is followed by apoptotic death of inner cells, resulting in the 
formation of the hollow lumen and stabilization of the acinar structure 
(Figure 1.4C2).

Disruption of Cellular Responses to the Death 
Signals Results in Lumen Repopulation
Normal development of epithelial cysts requires clearance of lumi-
nal space via removal of all inner cells. Different processes could be 
responsible for this inner cell removal; however, it has been shown 
experimentally that cell apoptotic death is the necessary contributor 
to the formation and maintenance of the luminal space [22]. This form 
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of cell death is induced on purpose, and often called programmed cell 
death. However, it is not known how this process is triggered. We used 
the IBCell model to test the hypothesis that cell–cell adhesion regu-
lates cell apoptotic death [18]. We showed that during normal acinar 
development (Figure 1.4C2), cell apoptotic death is triggered by accu-
mulation of death receptors due to the disassembly of adhesive links 
with either the emerging polarized cells (along their newly formed 
apical membrane domains), or with the neighboring inner cells that 
have started dying. However, when the cell response to death signals 
sensed from their microenvironment is disrupted, the cells are able to 
sense free space in their vicinity and reinitiate growth, resulting in the 
repopulation of the acinar lumen. This escape from tissue homeostatic 
balance leads to the formation of acinar mutants resembling ductal 
carcinoma in situ, a noninvasive form of ductal tumors characterized 
by filled ductal space (Figure 1.4C3).

Disruption of Cellular Responses to the Mitotic 
Signals Results in Dysfunctional Acini
Structural integrity of epithelial tissues requires both spatial and temporal 
control of proliferative events to maintain tissue homeostasis and prevent 
tissue hyperplastic growth. In particular, it also requires a coordination 
of cell mitotic and cytokinetic events, such as the orientation of mitotic 
spindle poles that determine the axis of cell division and location of the 
contractile ring that determines whether or not both daughter cells have 
equal volumes. It has been observed when examining human breast tis-
sues using electron microscopy [21] that normal epithelial cells acquire 
two different orientations of cell division: either orthogonal or parallel to 
the lumen. The orthogonal division results in two luminally positioned 
daughter cells (symmetric cell division), whereas the parallel division 
gives rise to one luminally and one basally positioned daughter cell (asym-
metric cell division), and culminates in basal cell differentiation or its 
apoptosis. We used the IBCell to investigate the hypothesis that structural 
integrity of an expanding epithelial duct requires a switch between sym-
metric and asymmetric cell divisions [18]. The symmetric cell divisions are 
necessary to increase the number of epithelial cells in the layer; however, 
when only symmetric divisions are executed, the created tension will force 
the duct to bend (Figure 1.4C4) because an excess of epithelial cells is not 
accompanied by an expansion of duct lumen. The expansion of the inner 
lumen can be achieved by executing asymmetric divisions, with the basal 
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cells forming the outer epithelium and the inner cells dying by apoptosis 
(Figure 1.4C5). We have used a simple geometrical rule to switch between 
symmetric and asymmetric cell divisions, and compared the length of the 
cell’s longest axis with its radius, but other rules, such as the tension from 
neighboring epithelial cells or the ratio of the lengths of lateral to basal 
membrane domains, can be also considered.

Disruption of Cellular Responses to the ECM 
Signals Results in Tumor Cell Invasion
Development of an epithelial acinus from a single cell to a shell of tightly 
packed cells enclosing the hollow lumen is accompanied by the secretion 
of various proteins, such as collagens and laminins, that accumulate in the 
form of a stiff supportive basement membrane surrounding the epithe-
lial structure [22]. Epithelial cells are capable of attaching to the basement 
membrane through the special cell–ECM transmembrane receptors, such 
as integrins. We have hypothesized [19,23] that these cell–ECM adhesions, 
together with cell–cell adhesions, contribute to the growth arrest of a host 
cell, and showed that the disruption of responses to the ECM adhesion 
signals may result in the loss of tissue homeostatic balance and initiation 
of cell hyperplastic growth, leading to luminal filling and invasion of the 
surrounding tissue (Figure 1.4C6).

Discussion

Maintaining the structural homeostatic balance in tissues is a prerequisite 
for their proper function. The word balance should be stressed here, as 
certain changes in the tissue architecture do take place even in an adult 
healthy organism. For instance, it has been determined based on morpho-
logical identification of both mitotic and apoptotic events [24], that cell 
turnover in lobules of the “resting” human breast undergoes significant 
cyclical changes during the menstrual cycle, with the peak for apoptosis 
occurring 3 days after the peak for mitosis, at days 25 and 28, respectively. 
An even more pronounced example of an immense but controlled change 
in tissue structure is the process of involution: a programmed destruction 
and removal of the secretory epithelium that developed during pregnancy 
to enable milk production. This postlactational breast gland regression 
involves a massive death of epithelial cells, and their replacement by adi-
pocytes and epithelial ducts remodeling to their prepregnant state and 
function [25].
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Loss of such homeostatic balance may lead to nonreversible changes in 
tissue microarchitecture and subsequently to its malignancy. Using the 
biomechanical model of epithelial ducts, we showed that the disruption 
in cell intrinsic responses to extrinsic signals may result in the loss of tis-
sue integrity if such microenvironmental perturbations are exerted in a 
persistent and prolonged way. In each case of the abnormal acini develop-
ment considered in this section (Figures 1.4C3, 1.4C4, 1.4C6), the devia-
tions in epithelial duct morphology can be reversed at the early stages. 
For instance, if the disruption in responses to death signals (Figure 1.4C3) 
has not been passed from a mother cell to the subsequent generations, the 
lumen would be cleared eventually as the apoptotic events are continuously 
executed (red nuclei); however, they are overwhelmed by the proliferative 
events (green nuclei). The structural integrity of an expanding epithelial 
duct could be preserved even in the absence of asymmetric division, if 
proliferative events were limited (round regular duct; Figure 1.4C4, sec-
ond image); however, increased proliferation accompanied by persistent 
symmetric cell division results in abnormal tissue geometry. The expan-
sion of an invasive clone in Figure 1.4C6 can be prevented if the disruption 
in cell responses to ECM signals was not passed to daughter cells, because 
normal epithelial cells will die when not attached to the basement mem-
brane (inner cells) and will remain in growth arrest when in contact with 
the basement membrane (outer cells). In each case, however, the disrup-
tion of cellular responses either to the death, growth, or ECM signals that 
are inherited by all daughter cells result in the interruption of the epithe-
lial structure of the duct and in tumor-like tissue outgrowth.

The epithelial ducts are not only exposed to environmental signals (such 
as those discussed earlier), but can also actively recruit various stromal cells, 
and be influenced by the secretion of numerous paracrine factors. These 
microenvironmental and tissue-wide devices, can potentially, counter the 
actions of initiated tumor cells reestablishing a homeostatic state. Next, we 
consider a model of the prostate glandular architecture surrounded by a 
basal membrane as well as paracrine signals such as TGF-β and investigate 
the role they could play in constraining tumor progression after initiation.

The Roles of TGF-β and Stroma in 
Homeostatic Escape in Prostate Cancer
The prostate is a glandular sexual organ composed of ducts lined with 
luminal secretory epithelium surrounded by a layer of basal epithelial 
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cells. These epithelial acini are encompassed by a stromal compartment. 
During embryonic development, urogenital epithelial and mesenchymal 
tissues interact to coordinate the spatial arrangement and eventual dif-
ferentiation of these tissues into the glandular structure required for pro-
static function [26]. In the developed organ, communication between the 
epithelia and the surrounding stroma maintains homeostasis via para-
crine signaling [27,28]. The stroma is separated from the glandular acini 
by a basement membrane that provides positional information contribut-
ing to the maintenance of tissue [29].

The loss of homeostatic interactions between organ tissues in disease 
has partially been attributed to the loss of the basement membrane [30,31] 
and an alteration of the type of extracellular matrix [32]. Furthermore, 
the transformation of prostate epithelial cells by carcinoma-associated 
fibroblasts was correlated with increased MMP-9 expression [33]. While 
these results strongly implicate the roles of the basement membrane and 
the stromal microenvironment in tumor progression, the conflicting data 
and the vast number of factors involved limit our understanding of the 
multiple steps by which prostate tumors grow and invade surrounding 
tissues. TGF-β normally inhibits the proliferation of epithelia through 
induction of the cell cycle inhibitors p15 and p21 [34]. The determination 
of whether TGF-β will induce cytostasis or apoptosis in normal epithelia 
depends on the intensity of their proliferative activity in addition to poorly 
understood microenvironmental determinants [35,36]. There is therefore 
a need for further analysis of TGF-β’s multiple roles. The TGF-β family of 
cytokines has many functions, some of which have been accurately mod-
eled computationally, including TGF-β’s role in vascular remodeling and 
hyperplasia and wound repair [37]. Models considering cell–stroma inter-
actions via TGF-β as well as other factors in wound healing and tumor 
growth were shown to have good qualitative agreement with experimental 
results [38,39].

Recently [39], we proposed a model of prostate tumorigenesis using a 
HCA model that integrates five different cellular species (discrete) with 
three different microenvironmental chemical species (continuous), all of 
which are thought to play key roles in prostate cancer. Using this HCA 
model, we will investigate the importance of TGF-β in prostate homeostatic 
disruption and, in particular, how it regulates tumor–stroma interactions 
by considering tumors with different degrees of malignancy (in terms of 
TGF-β and MDE production).
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Model

In the HCA model, cells are the discrete entities represented as points 
in a 2D grid (200 × 200 points representing a 2 × 2 mm slice of pros-
tate; see Figure  1.4D, top right, for the initial conditions). This grid 
also hosts three microenvironmental variables, which are treated as 
continuous concentrations: TGF-β, matrix-degrading enzyme (MDE) 
expression, and Membrane/ECM. Cells can belong to one of five dif-
ferent types: basal epithelial, luminal epithelial, motile stroma, static 
stroma, and tumor cells. The simulated section of prostate contains 
three glands arranged along the off-diagonal axis. Each gland has an 
outside diameter of 19 grid points formed by an inner layer of luminal 
epithelial cells and an outer one made with basal epithelial cells. The 
space outside the glands can be occupied by static (muscle or fibro-
blastic lineages) and motile (monocytes or macrophages) stromal cells 
(Figure 1.4D, top left).

TGF-β plays a very important role in the model as it is produced, con-
sumed, or utilized in one way or the other by all cell types. Basal cells 
produce TGF-β and membrane/ECM and also divide to replace basal and 
luminal epithelial cells that die due to normal attrition [40]. Luminal epi-
thelial cells consume TGF-β and die when surrounded by tumor cells. 
Static stroma cells consume TGF-β but, over a set threshold, are pro-
grammed to produce more, effectively amplifying the TGF-β signal [41]. 
Motile stroma moves in the direction of the TGF-β gradient and produces 
extracellular matrix in direct proportion to its concentration. The abil-
ity of TGF-β to stimulate myofibroblasts to produce extracellular matrix 
is well established [42]. Finally, tumor cells appear as mutants of lumi-
nal epithelial cells after 10 days in six different positions of the simulated 
prostate. They require TGF-β to survive, and they proliferate as long as 
there is sufficient space. They also produce TGF-β and matrix degrading 
enzymes (MDEs). TGF-β is a well-known promoter of tumor cell prolif-
eration [43] and is elevated in prostate cancer [44]. Alterations in response 
to TGF-β favor a protumorigenic response, and elevated MDEs have also 
been observed [45].

The three microenvironmental variables of the model are TGF-β (Tβ), 
MDE (E), and Membrane/ECM (M) concentrations. It is worth noting 
that the membrane/ECM variable represents both the ECM (a mix-
ture of elements such as collagen, fibronectin, laminin, and vitronec-
tin), which is assumed to be present everywhere outside the glands, and 
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the basement membrane subadjacent to the basal epithelial cells. The 
dynamics of TGF-β (Tβ):
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which shows that TGF-β diffuses at a rate D modulated by the maximum 
tissue density, m0. Production by basal and cancer cells as well as by motile 
stromal cells is assumed to be in proportion to the local TGF-β concentra-
tion at the rates αB, αC, and αS, respectively. It also shows that TGF-β is con-
sumed by luminal and motile stroma cells at the rates γL and γF. TGF-β also 
binds to the ECM at a rate γS, which depends on the local concentration of 
TGF-β; also, there is some natural decay of the ligand with rate σ.

MDEs (E) are produced by tumor cells (at rate λ), diffuse (at rate DE), and 
are depleted as they degrade the ECM and the basement membrane (μ):
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Basement membrane/ECM (M) is produced by basal cells (depending 
on the current local concentration of ECM ensuring the density never 
exceeds the maximum m0) and motile stroma (depending on rate αF, scaled 
by the local concentration of TGF-β). Finally, the ECM gets degraded by 
the MDEs at a rate µ:

	 ∂
∂

= −M x y t
t

B m Mi j
( , , ) ( ),ρ 0

Production by Basal Cellls
Provided Membrane is Not

Complete, i.e., = 0M m   
− +µ αME FF i

Degradation by
Enzyme

, jjTβ

Production by Motile
Stromal Cells Scaled by TGGF-β   	 (1.10)

The model is defined such that the initial state of the system is a homeo-
static one with birth/death and TGF-β production/consumption being 
balanced such that no abnormal growth occurs.
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Results and Discussion

In order to study the role of stroma in maintaining homeostasis after 
tumor initiation, we performed a number of simulations with the model, 
each lasting about 55 years in simulation time (1 time step = 24 h). After 10 
time steps, 6 basal epithelial cells, 4 in the central acinus and 1 on each of 
the two remaining acini, become abnormal epithelial cells initiating tum-
origenesis. The simulations tested different configurations in which the 
proportion of stroma could range from 20% to 40% of the total available 
space as well as different tumor cell phenotypes (characterized by differ-
ent rates of TGF-β and MDE production). The configurations considered 
were a high proportion of motile and nonmotile stroma (40% motile, 40% 
nonmotile), a high proportion of motile stroma (40% motile, 10% nonmo-
tile), a high proportion of nonmotile stroma (10% motile, 40% nonmotile), 
and a low proportion of motile and nonmotile stroma (10% motile, 10% 
nonmotile). The tumor cell phenotypes that were tested produced values 
of TGF-β and MDE that were lower, equal, or higher to a given nondimen-
sional value by an order of magnitude.

Figure 1.4D1–3 shows an example of simulations that illustrate the 
three main model outcomes of (1) control, (2) breakout, and (3) dies 
out. Figure 1.4D1 shows a simulation in which the tumor breaks out 
from the acini and grows in the surrounding media after a long period 
of control. Initially, the tumor cells fill the inner space inside the gland 
(t = 0.3). Eventually, the concentration of TGF-β and MDEs is suf-
ficiently high that the basal membrane starts to degrade and TGF-β 
begins to leak from the gland and attract motile stroma (t = 43.8). At 
the end of the simulation (t = 54.8), the tumor has taken a significant 
portion of the domain, but its growth is constrained by the motile 
stroma responding to the TGF-β field. Figure 1.4D2 shows a simulation 
in which tumor cells quickly break from the gland and grow invad-
ing, unopposed by the stroma. Finally, Figure 1.4D3 shows tumor cells 
producing excessive quantities of MDE, which leads to early breakout 
of the basal membrane and leakage of the TGF-β, without which tumor 
cells die.

Contrary to our expectations given its centrality in the model, cancer 
cell TGF-β production does not seem to modify the outcome significantly, 
whereas stromal configuration has a much clearer effect. These results show 
that a prostate with a high proportion of stromal cells is more capable of 
restoring disrupted homeostasis. The role of stroma comes into effect only 
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after the tumor has escaped from the gland, and it is at this point that 
the role of TGF-β, which mediates the interactions between stroma and 
tumor, is likely to become dominant.

It is important to remark, once again, that what makes the results par-
ticularly relevant is that tumor initiation and progression are performed 
on a domain that reproduces a prostatic tissue in homeostasis and that 
the tumors that manage to break from the prostatic gland and progress 
from PIN are those that manage to decisively disrupt this homeostasis by 
producing the right amounts of TGF-β and MDEs.

Conclusions
The models described in this chapter illustrate various aspects of the 
biological mechanisms that maintain the architecture and function of 
a homeostatic tissue as well as the consequences of homeostatic disrup-
tion. Homeostasis is a crucial feature of living organisms and needs to 
be underpinned by robust mechanisms capable of coping with genetic 
and environmental perturbations. Our work shows that homeostasis can 
evolve using different strategies (e.g., very dynamic characterized by high 
proliferation balanced by high apoptosis or more static via proliferation 
induced only by dying cells) and that many of these strategies become 
increasingly robust as the homeostatic individuals evolve over time. This 
diversity of homeostatic strategies relates well to different homeostatic tis-
sue types found in multicellular organisms. For example, the epithelial 
cells lining the colon in humans are shed at a considerable rate. These 
cells are exposed to a hostile environment where the rate of spontaneous 
mutation probably is elevated, and in order to avoid harmful mutations 
accumulating in these cells they are continually removed. A similar tissue 
architecture is found in the outer layers of the skin, where cells also have 
a short lifespan. In other tissue types, which are not as exposed, the oppo-
site type of homeostatic mechanism is normally found, that is, only when 
cells die spontaneously are they replaced.

These homeostatic mechanisms are built using the cells’ existing molecu-
lar and signaling machinery as well as the architecture of the tissue and 
other physical constraints. Despite their general robustness against the most 
common perturbations, some genetic mutations and certain changes in tis-
sue architecture could disrupt homeostasis. There is increasing experimen-
tal evidence showing that the restoration of tissue organization is able to 
repress the malignant phenotype of genetically aberrant cells. For example, 
when mouse embryonal carcinoma cells (which form malignant tumors 
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upon subcutaneous injection) were fused with normal blastocysts, they 
were able to give rise to phenotypically normal cancer-free mice [46]. Also, 
malignant T4-2 cells forming disorganized continuously proliferating colo-
nies can be reverted to near-normal phenotype when grown in the pres-
ence of integrin-blocking antibodies [47]. These reverted T4-2 cells formed 
regular growth-arrested acinar structures with restored apico-basal polar-
ity, reorganized actin cytoskeleton, and were able to remain quiescent for 
up to 1 month in culture. Chen and co-workers showed that disruption of 
cytostructure activates the angiogenic switch even in the absence of prolif-
eration and hypoxia, and that restored organization of malignant clusters 
reduces expression of vascular endothelia growth factor (VEGF) and activa-
tion of endothelial cells to levels found in quiescent nonmalignant epithe-
lium [48]. Our own results show that once carcinogenesis has taken place 
and homeostasis has been disrupted, there is a window of opportunity in 
which this disruption can be reversed (e.g., in the TGF-β HCA model, an 
increase in stromal cells could compensate and block tumor progression; 
in the IBCell model, early disruptive cell outgrowth can be compensated by 
apoptosis if the erroneous cell response is not passed on to daughter cells) or 
at least transformed into a different type of homeostasis (e.g., one in which 
the tumor is not destroyed but permanently contained [49]).

The research we have presented in this chapter, as well as others focused 
on tissue homeostasis, should lead to a greater knowledge of the mech-
anisms that underpin it and highlight its limitations. Ultimately, this 
information will improve our understanding of the types of homeostatic 
disruptions that could lead to cancer initiation, the likely sequence of phe-
notypical transformations that would be acquired by tumor cells in those 
tumors that irreversibly alter the homeostatic balance, and the possible 
steps that could be taken to reverse them.
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Introduction
The cancer phenotype may be viewed as a pathological dysregulation 
of cellular signals that control growth, survival, motility, cell–cell con-
nectivity, and DNA synthesis and repair (Hanahan and Weinberg 2000). 
Generally speaking, the sources of dysregulation are an accumulated set 
of mutations that produce altered gene products. The interaction of these 
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mutant oncoproteins with normal host signaling mechanisms perturbs 
proper signaling and confers the oncogenic behavior. For example, muta-
tions affecting the catalytic activity, binding specificity, translation effi-
ciency, or rate of degradation of an enzyme involved in DNA repair can 
predispose a cell to genomic instability by allowing replication of dam-
aged genomic sequence (Zhivotovsky and Kroemer 2004). The specific 
identities and combinations of these cancer-causing mutations are known 
to vary considerably according to tissue and cell type and are strongly 
interdependent on the cellular/tumor microenvironment (Sjoblom, Jones, 
et al. 2006). In light of these complexities, mathematical models of cel-
lular signaling networks have become indispensable tools for explaining 
oncogenic behaviors, predicting resistance mechanisms, and designing 
molecular therapies to attenuate defective signaling.

How can the altered activities of mutant oncoproteins be represented 
in a mathematical model? In many cases, wild-type and oncogenic 
signaling pathways share similar network structures but differ in the 
kinetic behavior and interaction topologies of only a few oncoproteins 
(Sharma and Settleman 2007). Unless these differences are resolved 
quantitatively, one cannot distinguish between normal and cancerous 
signaling networks in a mathematical model. Moreover, when attempt-
ing to resolve such crucial but subtle differences, it may be necessary to 
switch from a systems perspective of protein interaction networks to a 
molecular perspective of enzyme activation and protein–protein inter-
action. This chapter describes an approach for constructing models of 
intracellular signaling networks in which the oncogenic behavior of the 
network is encoded through calculations of altered kinetic and struc-
tural properties of mutant oncoproteins. Using molecular dynamics and 
docking simulations, atomistic models are exploited to quantify altered 
topologies of interactions as well as to provide the missing parameters 
for network models of both wild-type and oncogenic signaling. The 
global behavior of these networks may then be compared and functional 
roles may be assigned to the mutant oncoproteins. An application of 
this multiscale, multiresolution approach is presented in which struc-
tural alterations found in a mutant form of the epidermal growth factor 
receptor are represented as kinetic perturbations in a model of growth 
factor signaling. Based on network parameters estimated from molec-
ular-level simulations, simulations at the network level show how small 
perturbations in molecular structure can lead to a profoundly altered 
cellular phenotype.
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Model
A multiscale, multiresolution approach can be devised by encompassing 
four distinct length/time scales:

•	 Molecular modeling using Newton’s equations: Based on a Hamilto­
nian H(r1,r2,…) = K + U; ri = atomic coordinates, K = kinetic energy, 
and U = Potential energy, we solve the system of equations (where 
Fi = Force, mi = mass, t = time),

	 Fi = −∇U = mid2ri/dt2	 (2.1)

•	 Electronic structure using mixed quantum mechanics molecular 
mechanics simulations: We variationally minimize the energy func-
tion E,

	 E = 〈φ|H|φ〉 and 〈φ|φ〉 = 1	 (2.2)

	 where, the bra-ket (Dirac) notation 〈φ|φ〉 represents vector dot product 
and 〈φ|H|φ〉 represents the expectation value (Szabo and Ostlund 1996). 
In Equation 2.2, φ is the electronic wave function satisfying the Pauli’s 
exclusion principle and H = Helectronic, that is, the electronic Hamiltonian. 
We then solve Newton’s equations given by Equation 2.1 for the nuclear 
degrees of freedom with some forces derived from Helectronic.

•	 Coarse-grained models: Using a coarse-grained Hamiltonian, H[λ(r1, 
r2)] = F[λ(r1, r2)], where F = free energy, λ = generalized/collective 
coordinate, we solve the generalized Langevin equation (Agrawal, 
Weinstein, et al. 2008),

	 dλ/dt = −MδF/δλ+ξ	 (2.3)

	 In Equation 2.3, M represents the mobility term, ξ represents random 
thermal force satisfying 〈ξ〉 = 0, and 〈ξ(0)ξ(t)〉 = 2kBTMδ(t), where 〈〉 
represents an ensemble average in the equilibrium ensemble, kB = 
Boltzmann’s constant, and T = temperature.
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•	 Deterministic network models: As an average solution to the 
Langevin dynamics using F(λ = reaction coordinate) for transitions 
between reactant and product states of chemical species, we solve 
deterministic network models for signal transduction using rate laws 
based on mass-action kinetics.

Based on the aforementioned formulations, the linking of oncogenic sig-
naling to molecular structure in a mathematical model can be achieved in 
three separate but interconnected modeling steps:

•	 Deterministic ordinary differential equations (ODE) models are 
used to represent both wild-type and oncogenic signaling networks 
that differ in a defined set of molecular species. The pair of networks 
must both contain the mutant or overexpressed oncoproteins as well 
as one or more “output” components that can be monitored to evalu-
ate the oncogenic behavior of the system (e.g., a master transcrip-
tional regulator controlling cell survival).

•	 Molecular docking is used to predict ligand binding in the absence 
of a ligand-bound crystal structure and functional affinity data. 
These free energy-based simulations are used to calculate a new set 
of mutant kinetic parameters based on altered molecular structure.

•	 Molecular dynamics simulations are used to characterize the struc-
tural properties of mutant gene products from an altered polypep-
tide sequence. These calculations rely on the availability of solved 
crystal structures and may involve homology modeling.

By integrating these three modeling regimes, the phenotypic differences 
that define mutant systems at the network level are encoded through fine-
scale calculations of the structural and kinetic properties of mutant onco-
proteins (Figure 2.1).

The multiscale strategy portrayed in Figure 2.1 is illustrated through 
a model of dysregulated growth signaling caused by a single amino acid 
substitution in the epidermal growth factor receptor (EGFR). EGFR is 
a receptor tyrosine kinase (RTK) that is commonly mutated or overex-
pressed in human cancers (Mendelsohn and Baselga 2000). A mutant 
form of the receptor, L834R, exhibits an altered pattern of autophospho-
rylation caused by differences in its physical structure, binding affinities, 
and catalytic behavior. These perturbed phosphorylation patterns lead to 
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constitutive activation of certain survival pathways that predispose L834R 
mutants to uncontrolled growth (Choi, Mendrola, et al. 2007). Thus, the 
goal of this multiscale model will be to track changes in the cellular 
growth pathways as a result of structural alterations in the mutant recep-
tor. Accomplishing this goal will require a consideration of the receptor’s 
biophysical properties on an atomic scale as well as its interaction with 
various binding partners and adaptor proteins.

Constructing Mechanistic Models of Oncogenic Signaling

Kinetic models of cellular signaling pathways represent the highest level 
of modeling in this approach and are used to monitor the global behavior 
of both wild-type and mutant systems (Figure 2.1). Ordinary differential 

Network Model
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Coupled ODEs
Length scale ~ μm
Time scale ~ μs

Molecular Model
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Time scale ~ ns
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Figure 2.1  Overview of multiscale modeling method for linking molecular 
structure to oncogenic signaling. The aberrant signaling behavior of oncogenic 
networks is captured by monitoring the behavior of altered network models, typ-
ically ODE reaction networks. Alternate parameterization for the models is pro-
vided by docking simulations of mutant oncoproteins, which relies on structural 
models of the mutant proteins. Structural information is ultimately connected 
to mutations in genomic sequence. An example of oncogenic signaling behavior 
caused by altered structural and kinetic properties in a mutant of the epidermal 
growth factor receptor is presented in the text.
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equations (ODEs) are used to represent coupled kinetic reactions that 
describe the rates of production and consumption of species in the model 
(Aldridge, Burke, et al. 2006). For large networks that contain species with 
posttranslational modifications or multiple binding partners, rules-based 
modeling (Hlavacek, Faeder, et al. 2006) provides the best method of gen-
erating ODEs that encode these kinetic differences.

In the signaling network presented here (Figure  2.2), EGF-induced 
activation of EGFR occurs through two parallel phosphorylation path-
ways corresponding to tyrosine 1068 (Y1068) and tyrosine 1173 (Y1173). 
Phosphorylated Y1068 (pY1068) binds only to the adaptor proteins Gab-1 
and Grb2, while phosphorylated Y1173 (pY1173) binds only to the adaptor 
Shc. The major downstream pathways include EGF-ERK via the Ras-Raf 
MAP-kinase cascade (Citri and Yarden 2006), and the PI3K-AKT path-
way, which results in the activation of the downstream protein—serine/

EGFR

RTK

Y1068p

Y1173p

Shc

Ras Raf MEK ERK

Akt

PI3K

GAB-1
Grb2

Figure 2.2  Network model of EGFR-mediated signaling used in this study. 
Phosphorylation of the EGFR dimer occurs at either Y1068, which can bind 
GAB-1 or Grb2, or at Y1173, which binds Shc. Activation of downstream proteins 
AKT and ERK was used as indicators of cell survival signaling. Multiscale mod-
eling is achieved by calculating changes in dimerization, peptide binding affinity, 
and phosphorylation in structural mutants of the receptor.
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threonine kinase AKT. In choosing the scope of a network, it is important 
to include one or more species that serve as indicators of the oncogenic 
potential of the system. Here, we include both AKT and ERK because they 
are well-studied indicators of EGFR-mediated growth and survival behav-
iors (Citri and Yarden 2006).

The critical step in distinguishing wild-type and mutant signaling 
models is defining kinetic differences between the systems. Differences 
between the wild-type EGFR and L834R models are marked in Table 2.1 
and include reactions affecting receptor dimerization, phosphoryla-
tion, and peptide binding. Rather than write each reaction equation 

Table 2.1  Reaction rules for two-site phosphorylation model of the EGF 
receptor

Event Reaction rule Forward Reverse

Ligand/receptor binding egfr(l) + egf(r) ↔ egfr(l!1).
egf(r!1)

k1 k−1

Ligand-induced receptor 
dimerization

egfr(l!1,r) + egfr(l!2,r) ↔ 
egfr(l!1,r!3).egfr(l!2,r!3)

k2* k−2

Spontaneous receptor 
dimerization

egfr(r) + egfr(r) ↔ egfr(r!1).
egfr(r!1)

k3* k−3
†

Receptor/ATP binding egfr(r!+,k) + ATP(r) ↔ 
egfr(r!+,k!1).ATP(r!1)

k4 k−4
†

Y1068 entering active 
site

egfr(y1068~u) ↔ 
egfr(y1068~b)

k5 k−5
†

Y1173 entering active 
site

egfr(y1173~u) ↔ 
egfr(y1173~b)

k6 k−6
†

Autophosphorylation of 
Y1068

egfr(r!1,y1068~b).ADP → 
egfr(r!1,y1068~p) + ADP

k7
†

Autophosphorylation of 
Y1173

egfr(r!1,y1173~b).ADP → 
egfr(r!1,y1173~p) + ADP

k8
†

Dephosphorylation of 
Y1068

egfr(y1068~p) + phos → 
egfr(y1068~u)

V9 K9

Dephosphorylation of 
Y1173

egfr(y1173~p) + phos → 
egfr(y1173~u)

V10 K10

Note:	 The 10 rules generate 328 species and 3324 half-reactions representing all pos-
sible molecular intermediates and reaction steps. For simplicity, reaction rules 
for adaptor protein binding, MAP kinase cascade, and ERK/AKT activation are 
not shown.

*	 Denotes k2 = k3 because the on-rate of dimerization is diffusion limited.
†	 Denotes rate constants k−3, k−4, k−5, k−6, k7, and k8 are each affected by mutation 

L858R.
!	 Denotes the site of association for two molecules. For example, egfr(l!1).egf(r!1) are 

bound through “l” and “r” sites on egfr and egf, respectively.
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separately, “reaction rules” (Hlavacek, Faeder, et al. 2006) are used to 
define general types of interactions between functional domains among 
the species in the model. For example, the rate constant k7 in Table 2.1 
that describes the catalytic turnover of Y1068 phosphorylation is applied 
to all forms of the receptor that participate in this phosphorylation reac-
tion (e.g., monomer, dimer, ATP-bound). In this way, rules-based model-
ing ensures efficient and accurate construction of ODE-based signaling 
models.

Providing Alternate Parameterization 
through Docking Simulations

Once the network has been defined and the mutant oncoproteins identi-
fied, molecular docking is used to predict ligand binding in the absence 
of a ligand-bound crystal structure and functional affinity data. Thus, 
docking simulations provide the missing parameters that characterize 
the mutant system. Automated docking tools such as AutoDock (Morris, 
Goodsell, et al. 1998) in combination with more accurate approaches such 
as free-energy perturbation may be used to predict how small molecules, 
such as substrates or drug candidates, bind to a receptor of known three-
dimensional structure. The binding free energy is calculated based on the 
intermolecular energy between protein and ligands and changes to the 
solvation environment. For the EGFR/L834R model, binding modes were 
determined for ATP as well the C-terminal peptides Y1068 and Y1173 to 
the catalytic site. A global conformational search was performed using a 
multiple conformation docking strategy, in which the protein flexibility is 
taken into account implicitly. Note that rules-based modeling (Hlavacek, 
Faeder et al. 2006) facilitates the reuse of kinetic parameters calculating 
through docking simulations.

Resolving the Structure of Mutant Oncoproteins 
through Molecular Dynamics

In order to perform docking simulations, it is necessary to acquire accurate 
structural information about the molecules involved. In the EGFR/L834R 
model, we model the receptor activation characteristics (whether active as 
a monomer or requires dimerization) of the EGFR receptor tyrosine kinase 
using molecular dynamics simulations. 10–30 ns trajectories of atomis-
tic and explicitly solvated systems of wild-type and mutant EGFR kinase 
monomers and dimers are obtained and analyzed for specific stabilizing 

© 2011 by Taylor and Francis Group, LLC



Cancer Cell    ◾    39

interactions such as hydrogen bonds and salt bridges, hydrophobic inter-
actions, and conformational changes.

Results
Modeling the EGFR at the network, molecular, and structural levels allows 
one to determine how point mutations in the EGFR receptor can alter sig-
naling characteristics leading to the onset of oncogenic transformations. 
The model was constructed in “top-down” fashion, beginning with identi-
cal signaling networks that were differentiated by a defined set of mutant 
oncoproteins. We now examine the effects of these differences in reverse 
order, beginning with structural alterations in the tyrosine kinase domain 
and proceeding to observe how these perturbations affect both receptor 
kinetics and network behavior.

Activation of Wild-Type EGFRTK and L834R Mutant RTK

Crystal structures of the EGFRTK suggest that the conformational switch-
ing from an inactive to an active conformation involves a rotation of the 
αC-helix and the shifting of the activation loop (A-loop) to make way for 
substrate peptide (harboring the tyrosine residue) and ATP binding. To 
assess the structural requirements for such a conformational shift, analy-
ses of bond patterns and hydrophobic interactions were performed to 
identify specific interactions (H-bonds and salt bridges) between residues 
of the αC-helix, and those of the A-loop needed to reorganize the enzyme 
and allow conformational switching from inactive to active states. Most of 
the stabilizing interactions holding the kinase in the inactive conforma-
tion are influenced by the dimer-interface residues, supporting an allos-
teric activation mechanism proposed for the wild-type (Zhang, Gureasko, 
et al. 2006). Many of these interactions overlap with the residues associated 
with several clinically relevant mutations, including L834R. The R substi-
tution of L at 834 destabilizes the specific (external H-bonds) interactions 
associated with A-loop and αC-helix in the inactive but not the active 
conformations. Thus, our analysis of stabilizing interactions presented in 
Figures 2.3a and 2.3b serves as a platform for unifying the effects of these 
mutations at a structural level. An important outcome of these simula-
tions is the notion that the mutant receptor can be active (and thus medi-
ate signaling) even as a monomer, that is, in the absence of any growth 
factor binding. This establishes a small but crucial variation in network 
topology between the wild-type and the mutant systems.
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Ligand and Substrate Binding Affinities for EGFRTK

The structural basis for the context-specific kinetics of the C-terminal 
tyrosine substrates is provided by our computational docking calculations 
(Liu, Purvis, et al. 2007). Substrate peptides derived from tyrosine sites of 
the EGFR C-terminal tail—Y1068 (VPEYINQ) and Y1173 (NAEYLRV)—
bound to the wild-type and the L834R mutant EGFR kinase revealed how 
the structure of the bound peptide–protein complex is altered at the cata-
lytic site due to the arginine substitution of leucine in L834R (Figure 2.3c). 
By employing this method, we computed the binding affinities for wild-
type and L834R mutant RTK binding to two peptide sequences consisting 

Figure 2.3  (See color insert following page 40) Structural, kinetic, and network 
analysis of the effect of L834R mutation in the EGFRTK. Visualization of the stabi-
lizing residues external to A-loop and αC-helix (blue), dimer interface residues (red), 
and clinical mutations (green) of both the active (a) and inactive (b) EGFR tyrosine 
kinases. (c) Binding modes for ATP (cyan) and the optimal peptide sequence (yel-
low) in the EGFRTK domain. (d) Calculated ERK and AKT phosphorylation lev-
els in units of nM (peak-levels over an 1800 s time course) under serum-starved 
(EGF−) and serum-cultured (EGF+) conditions for cell types with normal EGFR 
expression and EGFR overexpression. The x- and y-axes represent log changes in 
the binding affinity (KD) of the peptide relative to the wild type.
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of Y1068 and Y1173. These calculations, reported in Table 2.1, are used 
to parameterize the reactions involving inhibitor binding and substrate 
phosphorylation in the systems model.

Differential Signaling through EGFRTK

To examine the effects of signaling through Y1068 and Y1173 on the down-
stream response, a series of 15 min simulations were performed for wild type 
and mutants under different initial conditions (varying [EGF] and [EGFR]) 
and monitoring the resulting total phosphorylated ERK and AKT responses 
(Figure 2.3d). A two-dimensional scan over KD values associated with Y1068 
and Y1173 phosphorylation in which the respective KD values are allowed to 
deviate from their default (wild-type) value over a logarithmic range of 5 log 
units. This was achieved by adjusting k−5 and k–6 from Table 2.1. The result is 
a two-dimensional matrix in which each element represents the total ERK 
or AKT levels from a single simulation involving a unique pair of param-
eters. In Figures 2.3d and 2.3e each output state is quantified according to 
the peak level of phosphorylation over the simulated time of 1800 s.

As indicated by the color maps in these scans, the effect of altered affin-
ities of the Y1068 and Y1173 sites to the catalytic domain of the EGFR is 
that the L834R under normal EGFR expression exhibits differential down-
stream response, that is, a pronounced decrease in ERK activation (5-fold) 
and relatively much smaller decrease AKT activation (15% decrease). 
Our calculated responses for ERK short-term signaling for normal EGFR 
expression (Figures 2.3d and 2.3e) agree with the experimental observa-
tions of Sordella et al. (Sordella, Bell, et al. 2004) and Tracy et al. (Tracy, 
Mukohara, et al. 2004), who have also reported a pronounced decrease 
in activated ERK to AKT ratio for the L834R mutant. These results sug-
gest that preferential activation of AKT in L834R could be one of the fac-
tors leading to enhanced AKT activation observed in non-small-cell lung 
cancer cell lines.

Discussion
While the genetic basis of cancer is well appreciated, the resulting com-
plexity in intracellular signaling mechanisms relevant for the conquest of 
this disease resides at multiple levels of organization, ranging from the 
subatomic realm involving mutations in individual protein domains to 
the cellular level of macromolecular assemblies and membrane processes. 
Relating cancer genotypes to disease phenotypes will be aided by the devel-
opment of specialized modeling tools to treat the hierarchy of interactions 
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ranging from molecular (nm, ns) to signaling (μm, ms) length and time 
scales. By introducing increased resolution in phosphorylation kinetics 
at the receptor level, the network model of EGFR-mediated signaling in 
wild-type and mutant cells showed how mutant forms of the receptor use 
an irregular pattern of tyrosine phosphorylation that preferentially acti-
vates the survival oncoprotein, AKT.

Recently, this type of multiscale analysis was used to explain why cer-
tain networks respond to antitumor tyrosine kinase inhibitors (TKIs) such 
as erlotinib and gefitinib (Purvis, Ilango, et al. 2008; Shih, Purvis, et al. 
2008). Specifically, the branched signaling model was employed to analyze 
the inhibitory effects of the TKI erlotinib on EGFR phosphorylation and 
downstream ERK and AKT activation. The results provided a mechanistic 
basis for the enhanced inhibitor efficacy in mutant cell lines.

Thus, collectively, our results suggest that the clinically identified muta-
tions of the EGFR kinase induce fragility in the stabilizing interactions 
of the inactive kinase conformation, providing a persistent stimulus for 
kinase activation even in the absence of any growth factor. At a cellu-
lar level, perturbations driving network hypersensitivity through the 
enhancement of phosphorylated ERK and AKT levels show a striking cor-
relation with observed mutations of specific proteins in oncogenic cell lines 
as well as the observed mechanisms of drug resistance to EGFR inhibition. 
Therefore, we suggest that cascading mechanisms of network hypersen-
sitivity/fragility at multiple scales enable molecular-level perturbations 
(clinical mutations) to induce oncogenic signaling. Moreover, our results 
describe a possible mechanism for preferential AKT activation in non-
small-cell lung cancer lines harboring EGFR activating mutations. This 
preferential activation of a survival factor makes theses cell lines condu-
cive to pathway addiction, that is, reliance on the L834R EGFR-mediated 
generation phosphorylated AKT for survival signals. The survival path-
way addiction also results in a remarkable sensitivity to TKIs targeting 
the EGFR kinase.

The computational tools described here are ideal for assessing the likely 
effect of novel EGFR and HER2 mutations and determining whether the 
drug-sensitizing mutations implicated in non-small-cell lung cancer also 
occur in other cancers. Such approaches can also be employed effectively 
to address the issue of drug resistance to TKI therapy, which in the case 
of non-small-cell lung cancers is either mediated by point mutations in 
EGFR kinase (T790M) or the overexpression of HER3 and Met receptors 
and to investigate other molecular therapeutics targeting for (e.g., VEGF 
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and c-Met). Ultimately, these approaches could be used to optimize the 
development of small molecule inhibitor therapies.

The multiscale modeling approach illustrated in this chapter enables the 
incorporation of the molecular context and variability and their impact 
on intracellular signaling pathways of oncogenic relevance and subse-
quent cell-fate decisions. This approach also enables the rationalization 
and prediction of the role and nature of molecular variability in malignant 
transformed cells as well as drug-sensitive/drug-resistant cells by bridging 
the gap between molecular resolution/context and intracellular signaling. 
The approach employed here can be seamlessly integrated with subcellular 
resolution modeling in agent-based models emphasized in other chapters 
(see Chapter 9).
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Introduction
The evolutionary transition from unicellular organisms to multicellular 
organisms with differentiated tissues included a transition in the level 
of organization at which natural selection acts (Maynard  Smith and 
Szathmary 1995; Buss 1987). Mutations that cause an increase in the repro-
duction and survival rates in unicellular organisms give those organisms 
an advantage over their competitors. However, mutations that increase 
reproduction and survival rates in somatic cells of a multicellular organ-
ism can lead to a fatal cancer. Natural selection on multicellular organ-
isms has led to mechanisms for suppressing somatic evolution on multiple 
levels, including tumor suppressor genes that regulate the growth of cells 
and the architecture of proliferative epithelia that limits the number of 
cells that are vulnerable to neoplastic evolution (Cairns 2002, 1975).

It is also possible that selective pressure against cancer may have modi-
fied genome architecture. For example, most human cancers appear to 
arise by chromosomal instability (Cahill et al. 1998) and linkage of tumor 
suppressor genes (TSGs) with critical genes (CGs) necessary for cell sur-
vival could provide an additional mechanism for suppression of somatic 
cell evolution. Deletion and loss of heterozygosity (LOH) can affect large 
regions of a chromosome (Nishimura et al. 2002; Lai et al. 2007). Tumor 
suppressor genes are commonly inactivated by LOH (Meltzer et al. 1991; 
Cavenee et al. 1983; Pekarsky et al. 2002; Deocampo, Huang, and Tindall 
2003) and loss of a single allele of a TSG can lead to a proliferative advan-
tage for the cell and eventually cancer (Wong et al. 2001; Cook and McCaw 
2000; Fero et al. 1998). One potential mechanism to suppress such vulner-
ability would be genetic linkage of a critical gene with the TSG as a result 
of natural selection against cancer. If the CG is haploinsufficient for cell 
survival, then LOH in the TSG would be likely to cause LOH in the CG 
and to lead to cell death rather than progression to cancer. Linkage of CGs 
with TSGs would then act as a site-specific DNA damage checkpoint.

Tetraploidy is frequently observed in a variety of cancers and precancer-
ous conditions (Haapala et al. 2001; Whang-Peng et al. 1984; Lastowska 
et al. 1997; Abe et al. 1985; Slaton et al. 1997; Cunningham et al. 1996; 
Robinson et al. 1996; Shackney et al. 1995; Giaretti 1994; Eskelinen et al. 
1992; Dutrillaux et al. 1991; Tachibana et al. 1991). A common pathway 
to cancer seems to proceed from diploid cells, through a tetraploid inter-
mediate, followed by progression to hypotetraploid aneuploid populations 
prior to malignancy (Barrett et al. 1999; Giaretti 1994; Merlo et al. 2008). 
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The mechanism by which the tetraploid population predisposes to cancer is 
not well understood, although most models postulate that it somehow cre-
ates a condition that is permissive for the subsequent evolution of chromo-
some abnormalities, including LOH (Shackney et al. 1989; Duesberg et al. 
1998; Matzke et al. 2003; Li et al. 1997; Galitski et al. 1999; Rajagopalan et 
al. 2003; Jallepalli and Lengauer 2001). We hypothesized that tetraploidy 
may be selectively advantageous to neoplastic cells because some tumor 
suppressor genes are linked in the genome to critical genes necessary for 
cell survival, and by doubling the genome in a tetraploid cell, precancerous 
cells are more likely to preserve enough copies of the CG alleles to survive 
while deleting or inactivating the TSG alleles. Thus, cancers would tend 
to come from tetraploid cells that happened to duplicate their genomes, 
either by chance or due to a lesion in a gene involved in mitosis. Here, we 
consider two types of critical genes. In the first case, inactivation of the CG 
is recessively lethal for the cell. In the second case, the wild-type CG allele 
is haploinsufficient for survival, so that a cell with only one active CG allele 
has some nonzero probability of dying. We call a cell carcinogenic if it has 
lost all of its TSG alleles but preserved at least one CG allele.

We evaluate the hypothesis that tetraploidy develops during neoplastic 
progression as an adaptation that allows a neoplastic cell to inactivate a TSG 
while preserving a linked CG. We also address three questions correspond-
ing to three levels of evolution. First, at the level of the cell, is a tetraploid 
cell more likely than a diploid cell to inactivate a TSG while preserving a 
linked CG? Second, at the level of a mosaic population of evolving precan-
cerous cells in a neoplasm, are carcinogenic cells more likely to arise from 
a tetraploid precursor than a diploid precursor? Third, at the level of the 
population of organisms, how would selective pressure have sculpted the 
genomes of multicellular organisms with respect to linkage of critical genes 
and tumor suppressor genes, assuming that cancer has played an impor-
tant selective role in the evolution of the genome? A set of mathematical 
and computational models were used to answer each of these questions.

Models

Model of a Single Cell

We first designed a probability model for the evolution of cells in a neo-
plasm. It is based on four assumptions. (1) Alleles of a TSG or a linked 
CG can be inactivated individually at some rate s. Sequence mutations, 
small deletions or insertions, and promoter hypermethylation may all 
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play a part in inactivating an allele of a single gene. (2) One allele of 
both the TSG and the linked CG may be inactivated by a single event 
such as a large deletion. We will call this “double-gene inactivation.” 
The rate of double-gene inactivation is encoded as a parameter d. We 
will initially assume that the single-gene inactivation of the TSG and 
the CG happen at the same rate s, though this assumption can be easily 
relaxed. The single-gene inactivation rate s is a combination of the rates 
of the three mechanisms for inactivating an allele of a gene: point muta-
tions, promoter hypermethylation, and small deletions. Time is updated 
in the model by allele inactivation events. Because the next inactivation 
event will either inactivate an allele of one gene, or alleles of both genes 
at once, 2s + d = 1. Linkage is thus represented in the magnitude of d, 
with d = 0 being unlinked and d increasing with linkage. (3) If a cell 
loses all of its CG alleles, it dies. We also introduced a parameter h for 
the haploinsufficiency of the CG defined as the probability that a cell 
dies if it only has one intact CG allele. If h = 1, then cells with only one 
CG allele also die. If h = 0, then only cells with no active CG alleles die. 
If 0 < h < 1, then the cell has a probability h of dying when the first CG 
allele is inactivated. Thus, h scales the penetrance of a single intact allele 
of the CG for cellular lethality. (4) Loss of all TSG alleles is a rate lim-
iting step in carcinogenesis. Since malignant tumors generally derive 
from a single ancestral progenitor cell (Nowell 1976; Sidransky et al. 
1992), generation of a cell that has lost its TSG is likely to be a clinically 
relevant event. For convenience, we will define a cell in this state as car-
cinogenic. The probability model for a single diploid cell is represented 
in Figure 3.1. The representation of the possible changes in a tetraploid 
cell is even more complex and has not been shown.

All the possible sequences of inactivation events that may develop in a 
diploid or tetraploid cell were enumerated computationally. The probabil-
ity for each sequence was then computed, as

	 p d s h m n k d s h
m n

k, , , , ,( ) = 









−( )
4 8

1

for m double-gene inactivation events, n single allele inactivation events, 
ending in either zero active CG alleles or zero active TSG alleles, and 
passing through k states with a single active CG allele, which may lead to 
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Diploid Probability Model

Critical gene inactivation
Tumor suppressor gene inactivation
Single gene inactivation (s)
Double gene inactivation (d)

Dead state Cancer state

Haploinsufficient state

Figure 3.1  A probability model of the evolution of a diploid cell. Tumor sup-
pressor gene (TSG) lesions (in black) and a critical gene (CG) lesions (in white) as 
well as double-gene inactivation are illustrated. Over time, transitions caused by 
single-gene inactivation (point mutations, small deletions, or promoter methy-
lation) are indicated by dashed arrows, and transitions caused by double-gene 
inactivation (large deletions) are indicated by solid arrows. The four states inside 
a bold, dashed circle are dead because both of the CG alleles have been lost. The 
three states inside the thick grey circles are carcinogenic states because both of 
the TSG alleles have been lost. There is an asymmetry between the carcinogenic 
and death outcomes because a cell that has lost both alleles of the CG will die 
regardless of how many TSG alleles are intact. The five states inside the thin dash-
dotted circles are states that may die due to haploinsufficiency of the CG gene 
because they have only one intact allele at that locus. Even for this diploid model, 
the sequence of possible events is complicated, necessitating the computational 
enumeration of the tetraploid cell model.
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cell death due to haploinsufficiency. There are eight possible single-allele 
inactivation events and four possible double-gene inactivation events cor-
responding to the four alleles of the CG and four alleles of the TSG in a tet-
raploid cell. We calculated the probability of events based on a tetraploid 
genome. Thus, in order to make diploid and tetraploid cells comparable, 
half of the events have no effect on a diploid cell because they “happen” in 
the missing chromosomes. The possible sequences include multiple inac-
tivation events of the same allele, though only the first such event would 
change the state of the cell.

The model calculated the total probability that a cell inactivates all of 
its TSG alleles before inactivating all, or all but one, of its CG alleles by 
summing across all sequences xm,n,k, which include m double-gene inacti-
vation events, n single-gene inactivation events, passing through k states 
with one active CG allele, and end with zero active TSG alleles and at least 
one active CG:

	
P s d h ploidy p

xm n

inactivation of TSG| , , ,
, ,

[ ]=
kk

d s h m n k∑ ( ), , , , ,

Since an event can happen in an already inactivated allele (with probabil-
ity X), we use the expected number of hits in inactivated alleles before 
the next event in an active allele (1 1/( )−X ) to calculate the probability of 
making a state change.

Most cancers require the inactivation of more than one TSG (Renan 
1993; Hanahan and Weinberg 2000; Vogelstein and Kinzler 1993). 
However, our hypothesis applies equally to multiple TSGs and so, for sim-
plicity, we focus on a single TSG. The relative risk of tetraploidy was cal-
culated for each parameter setting by dividing the probability a tetraploid 
cell becomes carcinogenic by the probability that a diploid cell becomes 
carcinogenic:

	 RR P s d h P= [ ]inactivation of TSG inactivat| , , ,4 iion of TSG| , , ,s d h 2[ ] .

Model of a Neoplasm

We incorporated a stochastic simulation of the single-cell model into 
a simulation of an evolving population of cells in a neoplasm with one 
additional parameter. Diploid cells duplicated their genomes to become 
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tetraploid cells at some rate t per time interval between mutational events. 
A population of n (n = 103, 104, or 105) cells was represented in a three-
dimensional mass. The state of each chromosome in a cell was explicitly 
represented such that if a double-gene inactivation event occurred in a 
chromosome that had already incurred inactivation of a single gene, the 
net effect of the double-gene inactivation was to inactivate the remaining 
gene on that chromosome. Initially, all cells were diploid with two active 
alleles in both their TSG and CG loci.

Time was represented in discrete steps denoting the amount of time 
until the next potential inactivation event in the population. At each 
time step, the simulation selected a random cell with equal probability. 
If the cell was diploid, with probability t, the cell’s genome was doubled 
by copying the state of its two chromosomes into two new chromo-
somes. Next, a random integer between 1 and 4 was generated to specify 
which copy of the chromosome incurred the inactivation, regardless of 
the ploidy of the cell. If that number was 3 or 4 in a diploid cell, noth-
ing happened. This guaranteed that every chromosome mutated at the 
same rate per allele; thus, tetraploid cells incurred twice as many muta-
tions as diploid cells per unit of time. Finally, the simulation inactivated 
a single allele of the TSG with probability s, a single allele of the CG 
with probability s, or both the TSG and CG with probability d. If the 
inactivation reduced the cell to a single CG allele, the cell had probabil-
ity h of dying. A cell with no intact CG alleles automatically died. The 
dead cell was then replaced by a neighboring cell that divided to produce 
two daughter cells with the same chromosomal state of the parental cell. 
This neighbor was selected through competition between c (usually 4) 
of the adjacent cells in the three-dimensional grid of cells (Blickle and 
Thiele 1995). Competition was based on the number of intact TSG alleles 
(Fodde and Smits 2002). If any of the c neighbors had a single intact TSG 
allele, one of those neighbors divided to replace the dead cell. Otherwise, 
a randomly chosen neighbor divided to replace the dead cell. In this way, 
the TSG was haploinsufficient because the presence of only one intact 
allele resulted in a phenotype with a competitive advantage over cells 
with more than one intact allele of the TSG. The parameter c scales the 
degree of competition. With c = 1, there is no competition. As c becomes 
larger, it becomes easier for a cell with a single TSG allele to spread in 
the neoplasm.

If a cell became carcinogenic (lost all, 2 or 4, of its TSG alleles), the sim-
ulation was stopped and the ploidy of the carcinogenic cell was recorded 
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along with the time (number of inactivation events simulated until a 
carcinogenic cell was generated). The simulation of the entire neoplastic 
population was repeated 1000 times to calculate the frequency of carcino-
genic cells arising from tetraploid cells rather than diploid cells. This was 
replicated 50 times for each parameter setting. We ran the model under 
all combinations of parameters n = 103, 104, and 105; h = 0, 0.5, and 1; 
d = 0.25, 0.5, and 0.75; and t = 0.2, 0.5, and 0.8.

Model of Organismal Evolution

We used a genetic algorithm (Mitchell 1998; Goldberg 1989) to simulate 
the evolution of a population of organisms under selection from death 
by cancer. Each organism had “genetic” traits encoding parameters d, t, 
and h. All traits had minimal values of 0 and maximal values of 1. The 
traits of the initial population were set randomly from uniform distri-
butions between 0 and 1. There were m organisms in the population, 
and each organism had a three-dimensional neoplasm of n cells. The 
population of organisms was simulated for 40 generations, by which 
time the population genetic traits had generally stabilized. For each 
generation, we first calculated the fitness of every organism. The fitness 
of an organism was determined by running the above simulation of a 
neoplasm to determine the number of mutational events (amount of 
time) until the organism developed a carcinogenic cell. Thus, organisms 
with parameters that resulted in a longer time before carcinogenesis had 
higher fitness scores than those that developed a carcinogenic cell rela-
tively rapidly. After we calculated the fitness scores of the organisms, 
we generated the population for the next generation by tournament 
selection, similar to the tournament selection in the competition of cells 
within the neoplasm. This involved randomly choosing two organisms 
from the population with uniform probability. The organism with the 
higher fitness score was chosen to be a parent, and the other organism 
was returned to the pool of potential parents. This was repeated to select 
the mate of the first parent from another two random organisms. The 
result of tournament selection is that the organisms with higher fitness 
scores produce more offspring than the organisms with lower fitness 
scores (Blickle and Thiele 1995). The parameters (traits) of the offspring 
were determined by generating a random number from a Gaussian dis-
tribution with mean equal to the average of the parental traits, and stan-
dard deviation equal to half the difference between the parental traits. 
This represents the possible recombinants and mutations in a multigene 
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trait. The standard deviation for the Gaussian distribution had a mini-
mum value of 0.0025 to prevent evolution from stopping altogether. At 
the end of 40 generations, the average population values for the traits 
parameters d, t, and h were measured.

Results

Are Tetraploid Cells More Likely to Become 
Carcinogenic Than Diploid Cells?

Yes, if the TSG and the CG are linked. The relative risk of developing carci-
nogenic cells in tetraploid cells (Pr[carcinogenesis |4N]/ Pr[carcinogenesis 
|2N]) is a function of the relative probability (d) that a lesion inactivates 
both the CG and the TSG on a chromosome as well the degree of haplo-
insufficiency (h) of the CG (Figure 3.2). The probability that a tetraploid 
cell (and a diploid cell) becomes carcinogenic decreases with both increas-
ing linkage (d) of the CG to the TSG and increasing haploinsufficiency 

Critical Gene Haploinsufficiency and Close Linkage
Increase Tetraploidy’s Relative Risk of Carcinogenesis
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Figure 3.2  The relative risk of carcinogenesis in a single cell due to tetraploidy. 
Risk is plotted as a function of the relative probability that a lesion deletes both 
the CG and the TSG (d) as well as the probability that a cell with only one func-
tional CG allele dies (h). Relative risk is calculated as Pr[carcinogenesis | tetra-
ploidy] / Pr[carcinogenesis | diploidy]. Carcinogenesis is defined as a cell losing 
all of its TSG alleles before dying due to loss of CG alleles.
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(h) of the CG (Figure 3.3). However, the relative risk that a tetraploid cell 
becomes carcinogenic increases with both d and h (Figure 3.2). On average 
tetraploid cells require more hits per chromosome (Figure 3.4A) than dip-
loid cells (Figure 3.4B) to become carcinogenic, and thus more time before 
they become cancerous. The time to the emergence of a carcinogenic cell 
decreases slightly with increasing haploinsufficiency of the CG.

Is a Carcinogenic Cell More Likely to Arise from a Tetraploid 
Cell Than a Diploid Precursor in a Neoplasm?

Not necessarily. The more closely the TSG and CG are linked, and the 
higher the degree of haploinsufficiency at the CG locus, the more likely 
that a carcinogenic cell will derive from a tetraploid cell (Figure  3.5). 
In addition, the greater the probability that a diploid cell duplicated its 
genome (t), the longer it takes before a cell evolves that has inactivated all 
of its TSG alleles (Figure 3.6).
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Figure 3.3  The probability that a single tetraploid cell becomes carcinogenic, that 
is, loses all of its TSG alleles before it dies, is due to the loss of CG alleles. The prob-
ability of carcinogenesis is plotted as a function of the probability that a lesion inac-
tivates both the CG and the TSG (d) relative to inactivating an allele of a single gene, 
as well as the probability that a cell with only one functional CG allele dies (h). The 
direction of the x and y axes has been reversed relative to Figure 3.2 for a better view 
of the surface.
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(A) Tetraploid Cell
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(B) Diploid Cell
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Figure 3.4  A tetraploid cell (A) takes longer to become carcinogenic than a 
diploid cell (B). Tetraploid cells delay carcinogenesis regardless of the linkage 
between the TSG and CG as represented by the relative probability d that both 
are lost in a double-gene inactivation event as well as the probability that a cell 
with only one functional CG allele dies (h). Time is measured by the expected 
number of inactivation events until a cell has inactivated all of its TSG alleles 
while preserving some of its CG alleles. Time until carcinogenesis may be greater 
than the total number of alleles because inactivation events may occur at the 
same locus multiple times, to no effect.
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How Would Evolution at the Organismal Level 
Change the Parameters of the System?

The genetic algorithm was run with a population of m = 1024 organ-
isms in which each organism had a three-dimensional neoplasm with 
n = 1000 cells. Natural selection was based on the age at which an organ-
ism developed a carcinogenic cell in their neoplasm. The longer an 
organism survived without generating a carcinogenic cell, the higher the 
probability it would produce more offspring. Over 118 runs of the model, 
the genetic algorithm maximized linkage between the CG and the TSG 

Carcinogenesis in a Tetraploid Clone 

Relative probability a lesion will Inactivate both the TSG and the CG

Pr
ob

ab
ili

ty
 C

ar
ci

no
ge

ni
c C

el
l D

er
iv

es
 fr

om
 a 

Te
tr

ap
lo

id
 C

el
l

0.0
0.2
0.4
0.6
0.8
1.0

0.3 0.4 0.5 0.6 0.7

CG Haploinsufficiency : 0
Transition to Tetraploidy : 0.2

CG Haploinsufficiency : 0.5
Transition to Tetraploidy : 0.2

0.3 0.4 0.5 0.6 0.7

CG Haploinsufficiency : 1
Transition to Tetraploidy : 0.2

CG Haploinsufficiency : 0
Transition to Tetraploidy : 0.5

CG Haploinsufficiency : 0.5
Transition to Tetraploidy : 0.5

0.0
0.2
0.4
0.6
0.8
1.0

CG Haploinsufficiency : 1
Transition to Tetraploidy : 0.50.0

0.2
0.4
0.6
0.8
1.0 CG Haploinsufficiency : 0

Transition to Tetraploidy : 0.8
CG Haploinsufficiency : 0.5

Transition to Tetraploidy : 0.8

0.3 0.4 0.5 0.6 0.7

CG Haploinsufficiency : 1
Transition to Tetraploidy : 0.8

Figure 3.5  The probability that a carcinogenic cell evolves from a tetraploid 
cell in a neoplasm. The probability depends on the linkage (d) between the TSG 
and the CG (x axis) as well as the penetrance of haploinsufficiency in the CG (h) 
and the relative probability that a diploid cell becomes tetraploid (t). For each 
parameter setting, 1000 neoplasm simulations were run to calculate the prob-
ability, and that was repeated 50 times to estimate statistical error for those prob-
abilities. In all cases, the simulation involved neoplasms of 105 cells. Standard 
error bars are plotted but are < 0.01 in all cases.
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(mean d  =  0.9873, standard deviation = 0.0002). It also maximized the 
penetrance of cellular lethality due to the loss of a single CG allele (h = 
0.9903, standard deviation = 0.0019). Furthermore, the chance of a cell 
making a transition from a diploid state to a tetraploid state was raised, 
but not maximized (t = 0.774, standard deviation = 0.019). The results were 
the same for a two-dimensional tumor with 1024 cells.

Tetraploidy Delays Carcinogenesis

Relative probability a lesion will Inactivate both the TSG and the CG
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Figure 3.6  Time until carcinogenesis in a neoplasm. This shows the aver-
age number of mutational events (because time is scaled by mutational events) 
per cell in a neoplasm before one of the cells evolved with all of its TSG alleles 
inactivated (carcinogenesis). The emergence of a carcinogenic cell is delayed by 
increased linkage between the CG and TSG (d), increased haploinsufficiency in 
the CG (h), and by increased probability that a cell duplicates its genome (t). 50 
replicates of 1000 neoplasm simulations were run for each parameter setting. In 
all cases the simulation involved neoplasms of 105 cells. Standard error bars are 
plotted but are < 0.001 in all cases. The scale of the y axis is much smaller than in 
Figure 3.5 because time is averaged across all the cells, and many of the 105 cells 
in the neoplasm had not suffered any inactivation events by the time the first 
carcinogenic cell evolved.
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Discussion
This model addresses three questions regarding the hypothesis that tetra-
ploidy in neoplastic progression is an adaptation that allows a neoplastic 
cell to inactivate a TSG while preserving a linked CG. Our results suggest: 
(1) tetraploid cells are more likely than diploid cells to inactivate a TSG while 
preserving a linked CG; (2) carcinogenic cells are more likely to evolve from 
a tetraploid precursor when a TSG is linked to a CG than when the TSG and 
CG are not linked; (3) carcinogenic cells are more likely to evolve from a tet-
raploid precursor when a TSG is linked to a haploinsufficient CG than when 
it is linked to a recessively lethal CG; and (4) if cancer has been an impor-
tant selective pressure in the evolution of multicellular organisms, then TSGs 
should be tightly linked to CGs that are haploinsufficient for cell survival, and 
somatic cells should have retained the capacity for genome reduplication.

In our model, tetraploidy increases the chance that a cell will eventually 
become carcinogenic, but also delays the inactivation of the TSG alleles. 
The evolution of neoplastic genome duplication is constrained by two 
opposing forces: an organism would evolve higher fitness if it reduced the 
chance of genome duplications in its cells because tetraploid cells are more 
likely to develop cancer than diploid cells, but tetraploid cells take longer 
than diploid cells to become carcinogenic, and so the organism should 
evolve higher rates of genome duplication to delay the onset of cancer. 
The tendency to achieve equilibrium between these two opposing forces 
results in the evolution of high but not maximal rates of genome duplica-
tion in the model. Genome duplication may be an adaptation to buffer the 
cells against the loss of p53 (TP53) or other lesions that are critical neoplas-
tic events leading to genetic instability.

A priori, we could not be certain whether the results for a single cell 
would generalize to a neoplasm because a clone with a single intact TSG 
allele had a competitive advantage over other cells and might expand rap-
idly throughout the population of neoplastic cells. Does this mean that 
diploid cells would tend to dominate the neoplasm because they are only 
a single TSG hit from gaining this competitive advantage? Or would tet-
raploid cells have an advantage because they are better able to preserve 
their CGs? Figures 3.5 and 3.6 indicate that carcinogenic cells evolve from 
tetraploid cells when the CG and TSG are more closely linked (d) and, 
when the CG is haploinsufficient for cell survival (h), similar to the single-
cell model. Tetraploidy also delays the onset of carcinogenic cells in the 
neoplasm and the loss of all the TSG alleles in a single cell.

© 2011 by Taylor and Francis Group, LLC



Has Cancer Sculpted the Genome?    ◾    59

Haploinsufficiency of the CG affects time to carcinogenesis differ-
ently in the single-cell (Figures 3.4a and 3.4b) and neoplasm (Figure 3.6) 
models. In a single cell, haploinsufficiency of the CG tends to prevent the 
longer sequences of events that lead to carcinogenesis, which involve both 
TSG and CG inactivation events, but does not affect the relatively short 
sequences of single-gene inactivation of the TSG alone. A high degree of 
haploinsufficiency tended to reduce the likelihood that a cell became car-
cinogenic, but if it did, it became carcinogenic through a short sequence 
of single-gene inactivation events in the TSG, such as point mutations, 
methylation, or small deletions. Thus, if only the cells that became car-
cinogenic are considered, a high degree of haploinsufficiency in the CG 
appears to lead to a short time (sequence of events) until the cell becomes 
carcinogenic. Within a neoplasm, the total time until a carcinogenic cell 
emerged in the population of cells, not in a single cell, was measured. 
Haploinsufficiency of the CG causes the clearance of cells with lesions 
from the population. This reduces the probability that a cell becomes car-
cinogenic and delays the time until a carcinogenic cell emerges.

The linkage of a CG to a TSG essentially provides a form of apoptotic 
response to DNA damage that is specific to the TSG locus. We predict 
that if cancer has been an appreciable selective force on the evolution of 
our ancestors, human genomes should have CGs tightly linked to TSGs. 
Such CGs should be haploinsufficient, unable to maintain the viability of 
the cell with a single functional allele. The haploinsufficiency of the CGs 
should only apply to cells in adults, lest they add to the genetic burden of 
the embryo. Furthermore, evolution should have maintained the capacity 
for human cells to duplicate their genomes as an adaptation to delay the 
onset of cancer.

Linkage of TSGs and CGs may explain some of the variability of can-
cer incidence between tissues. For example, cells in the small intestine 
may require the expression of a gene linked to a TSG in order to survive, 
whereas cells in the colon may not require the expression of the same gene. 
The protective effect of linked CGs might be altered if exposures of our 
modern lifestyle are sufficiently different from the selective pressures that 
sculpted the genomes of our multicellular ancestors.

The set of cellular lethal critical genes is unknown and difficult to iden-
tify. One potential example of a TSG linked to a CG is the linkage of the 
TSG p27 to the oncogene KRas2. KRas2 and p27 (CDKN1B) are within 1 cM 
on chromosome 12 (Kemp, Kim, and Philipp 2000). KRas2 may be a criti-
cal gene in that KRas2 knockouts are embryonic lethal in mice, though 
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not cellular lethal in all tissues (Koera et al. 1997). Linking a CG that is 
also an oncogene to a TSG may have the added benefit of creating opposite 
selective pressures that balance amplification of the oncogene against loss 
of the TSG. There are a number of TSGs that are closely linked to onco-
genes, including BRCA1 3Mb from ERBB2, MLH1 4Mb from CTNNB1, 
ERCC2 5Mb from AKT2, MUTYH 5Mb from MYCL1, CEBPA 7Mb from 
AKT2, TCF1 9Mb from PTPN11, and NF1 9Mb from ERBB2.

Our model only considered a single TSG locus in the genome of a cell. 
Carcinogenesis is a multistep process that involves more than one TSG in 
most tissues (Renan 1993; Hanahan and Weinberg 2000; Vogelstein and 
Kinzler 1993). However, the results of our model should be independent 
for each locus and so would apply to every TSG locus in a multistep model 
of cancer progression.

Four different, though not mutually exclusive, hypotheses have been 
advanced in the literature for the observation of tetraploidy in neoplas-
tic progression. (1) Diploid cells duplicate their genomes at some normal 
rate, but the tetraploid cells are inherently unstable and so more likely 
than diploid cells to activate oncogenes and inactivate tumor suppressor 
genes (Shackney et al. 1989; Duesberg et al. 1998; Matzke et al. 2003). (2) 
Disruption of TP53 (p53) or some mitotic gene deregulates chromosome 
segregation and/or mitosis that leads to both tetraploidy and aneuploidy 
(Lengauer, Kinzler, and Vogelstein 1998; Shackney and Shackney 1997; 
Cahill et al. 1999; Fodde and Smits 2002; Nowak et al. 2002). Whether 
chromosomal instability generally comes before or after TSG inactiva-
tion has been hotly debated (Rajagopalan et al. 2003; Sieber, Heininmann, 
and Tomlinson 2003; Moolgavkar and Luebeck 2003). (3) Doubling the 
genome and then losing large portions of chromosomes may be selected 
in a neoplasm because it provides a mechanism by which cells can evolve 
different gene product dosages by changing the number of alleles of the 
different genes (Li et al. 1997; Galitski et al. 1999; Rajagopalan et al. 2003). 
(4) Doubling the genome may provide a genetic buffer that allows the cell 
to survive further chromosome instability (Jallepalli and Lengauer 2001). 
While our hypothesis is similar to the last two hypotheses, the difference 
is that we posit linkage between CGs and TSGs that drives selection for 
tetraploidy.

We did not represent in our model the possibility that tetraploid cells 
are inherently genetically unstable (Shackney et al. 1989; Duesberg et al. 
1998; Matzke et al. 2003), and so might have a higher rate of inactivation 
than a diploid cell. If this rate is sufficiently high, it might eliminate the 
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delay in the onset of cancer caused by genome duplication. However, 
changing just the frequency of inactivation should not affect the rela-
tive risk of tetraploidy because the elevated inactivation rate would 
apply equally to both the TSG and the CG. Similarly, an increase in 
the inactivation rate should not affect the selective pressure to tightly 
link a CG to a TSG. The relative risk of cancer in tetraploid cells would 
only decrease if the ratio of single- to double-gene inactivation shifted 
toward more frequent single-gene inactivation compared to diploid cells. 
Most hypotheses assume the opposite that tetraploid cells would have 
increased chromosomal instability relative to diploid cells (Jallepalli and 
Lengauer 2001; Matzke et al. 2003; Shackney and Shackney 1997) and 
thus an increased proportion of large deletions that would inactivate 
alleles of both linked genes.

Barrett’s esophagus is a model for human neoplastic progression 
(Neshat et al. 1994; Reid and Rabinovitch 1988; Maley 2007) and thus a 
potential test case for hypotheses of neoplastic progression. It is a pre-
cancerous condition of the esophagus in which the normal multilayered 
squamous cells of the esophagus are replaced by hyperproliferative colum-
nar cells. In Barrett’s esophagus, flow cytometric tetraploid cell populations 
predict future progression to aneuploidy (Galipeau et al. 1996). Further, 
tetraploidy also predicts an increased chance of progression to cancer (RR 
= 11.7, 95% CI = 6.2 – 22) (Rabinovitch et al. 2001). Tetraploidy is typically 
observed in cells that have lesions in TP53 (Galipeau et al. 1996). Both 
TP53 and CDKN2A (p16/INK4A) tumor suppressor genes are commonly 
inactivated by loss of heterozygosity in Barrett’s esophagus (Galipeau et 
al. 1999; Reid et al. 2001; Wong et al. 2001), and fluorescent in situ hybrid-
ization analysis shows that LOH in TP53 is often, though not always, 
associated with genome reduplication (Wongsurawat et al. 2006). These 
observations are all consistent with our model of linkage between TSGs 
and CGs driving neoplastic progression through a tetraploid intermedi-
ate. It is unknown if there are CGs closely linked to CDKN2A or TP53.

The importance of multiscale modeling is highlighted by the fact 
that the single-cell model showed that tetraploid cells are more likely to 
inactivate a TSG than diploid cells, suggesting that tetraploidy should 
increase the risk of cancer, but the cell–tissue multiscale model showed 
that the capacity to evolve tetraploidy delays cancer onset, and the 
cell–tissue–population multiscale model suggests that the capacity to 
evolve tetraploidy should have been preserved as a tumor suppression 
mechanism.
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Our results suggest that the effects of natural selection on tumor sup-
pressor genes linked to critical genes can explain the observations of 
somatic genome reduplication during neoplastic progression. This result 
does not require an assumption of greater chromosomal instability in tet-
raploid cells relative to diploid cells. Nor does it require an assumption of 
selective effects of gene dosage alterations due to copy number changes in 
the genome. This is not to say that our model argues against either chromo-
somal instability or gene dosage modulation in progression, both of which 
may be important. We have shown that they are not necessary assump-
tions to explain the phenomenon of tetraploidy in neoplastic progression.
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Catastrophes and Complex 
Networks in Genomically 
Unstable Tumorigenesis

Ricard V. Solé

Introduction
The unstable character of most cancers, as reflected by the high levels of 
genomic, cytogenetic, and epigenetic variation, seems an almost universal 
feature of tumorigenesis. Such cellular disorder is particularly well illus-
trated by the presence of high levels of aneuploidy: multiple losses and 
gains of parts or even entire chromosomes can be seen, together with 
many chromosome rearrangements (Lengauer et al., 1998). It has been 
properly described as a “gallery of horrors” and such a disorder opens 
interesting, and I believe largely unanswered questions concerning the 
nature of cancer itself. The evolutionary dynamics of tumors is thus char-
acterized by selection processes in parallel with unusual levels of genetic 
variation (Loeb, 1991) more consistent with what we would expect from 
unicellular systems (Cairns, 1997). Increased genetic instability has been 
suggested as an adaptive trait of microbial species. When facing high 
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levels of environmental stress, those mechanisms controlling the accurate 
replication of DNA might be overcome and checkpoints ignored. This is 
less reasonable in the tissue context, where cooperation among cells and a 
control of tissue and organ size is an essential part of global homeostasis. 
Failures in properly replicating the genome face multiple internal controls 
that force the system to stop dividing or even to die.

The evolutionary nature of cancer progression was earlier highlighted 
by John Cairns. As he pointed out, although competition and variation 
is the source of improvement and change in nature, when turning to the 
competition between individual cells within a complex organism “we see 
that natural selection has now become a liability” (Cairns, 1975). Looking 
at cancer as a process where Darwinian evolution plays a major role 
(Cairns, 1975; Merlo et al., 2006), we can gain real insight into its origins 
and dynamics. Perhaps not surprisingly, Darwinian evolution has become 
an important issue within medicine (Greaves, 2007).

Genomic instability seems to be a common trait in many types of can-
cer (Cahill et al., 1999) and is a key ingredient in the Darwinian explor-
atory process required to overcome selection barriers. By displaying high 
levels of mutation, cancer cells can generate a progeny of highly diverse 
phenotypes able to escape from such barriers (Loeb, 2001; Merlo et al., 
2006). In this context, as shown by Maley and co-workers for the prema-
lignant condition known as Barret’s esophagus, clonal diversity measures 
(adapted from theoretical works in ecology and evolution) can predict 
tumor progression to adenocarcinoma. As these authors point out, “pro-
gression to cancer through accumulation of clonal diversity, on which 
natural selection acts, may be a fundamental principle of neoplasia with 
important clinical implications” (Maley et al., 2006). In this chapter, we 
consider some recent mathematical and computational models of tumori-
genesis involving genetic instability. These models overlap in several ways, 
incorporating different layers of complexity, spatial context, and ways of 
introducing the unstable behavior of cancer cells. All of them share a com-
mon view of cancer heterogeneity that links it with another type of biolog-
ical system: RNA viruses. These viruses are known to exhibit high levels 
of mutation (Domingo et al., 1995). As a consequence of such high levels 
of mutation, together with high levels of replication, RNA viruses form 
very diverse populations, which have been named quasispecies (Eigen 
et al., 1987; Schuster, 1994). These clouds of mutants have been shown to 
behave as the units of selection and are responsible for the rapid adapta-
tion of viruses to their changing environments, particularly, the immune 
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response in vertebrates. One key prediction of the model is that there is a 
critical mutation rate beyond which viruses are nonviable. Such transition 
is sharp and, thus, small increases in mutation rate beyond this threshold 
would effectively eliminate the virus. This prediction has been tested and 
shown to be correct (Loeb et al., 1991; Coffin, 1995), thus opening a new 
approach to antiviral therapies.

Some of these ideas are summarized in Figure  4.1. Standard models 
(a) consider cancer progression as described by a two-population prob-
lem (see, for example, Gatenby, 1995, 1996). Here, we show cancer cells 
as gray spheres occupying some locations within a healthy tissue (H, not 
shown). In the simplest approximation, all cancer cells are considered as 
having the same kinetic properties, and thus the tumor is described as 
a single, homogeneous population C. A two-dimensional model in the 
(H,C) space can be constructed and compared with predictions from the 
cellular automaton model (CA). An extension of this simple approach is 

{H,C}
Mean field model

{Γ(C(i))}
String model

Digital genome model {H,C(1), ..., C(n); Γ(C(i))}

{H,C(1), ..., C(n)}
Linear model - CA model

Sk

Sk

Sk

EkSr

Sr

Gl

Gl

Gl

Sk SrGl

Sm

Sm

Sm

(a) (b) (c)

Figure 4.1  Different levels of approximation to the dynamics of unstable can-
cer. These models include homogeneous systems (a) where all cancer cells are 
equivalent and (b) heterogeneous models where rates of growth and/or death 
are introduced as continuous numbers and a number of different subpopulations 
are allowed to exist (here, the size of the spheres indicates the presence of vari-
able traits). A more realistic scenario would consider cells as carrying a genome 
(c) where genes involved in growth and stability are included, together with a 
set of essential genes. By incorporating this digital genome description into a 
spatially explicit model, several key components of tumor progression can be 
incorporated.
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to explicitly introduce the variable character of cells due to genetic het-
erogeneity (b). In this case, a better population description is achieved, 
and different effects associated to population noise, bottlenecks, or spa-
tial dynamics are much better represented. This complexity can be made 
explicit by using a multistate CA model (here, the different radius of cells 
just indicates different phenotypic continuous traits) and also using a 
mathematical (mean field) model ignoring spatial interactions but intro-
ducing population structure.

Finally, we can also go into a more detailed description of cell organi-
zation by considering a string picture (c). Here, each cell and its pheno-
typic traits are captured by the mapping between mutation affecting genes 
involved in different locations along the string (Solé, 2003). These digital 
genomes are a very simplified way of introducing genome organization 
and can help understanding how growth and instability affect each other. 
Moreover, by explicitly using the fitness landscape associated with different 
mutational events, we can also track the exact progression paths followed by 
the tumor. This approach reveals an unexpected complexity embedded in 
the presence of a runaway effect, pushing instability levels toward criticality. 
Several common features shared by RNA viruses and unstable cancer popu-
lations can help to better understand some of the counterintuitive patterns 
displayed by unstable tumors.

Mean Field Model
Our first example concerns a very simple characterization of instability 
based on the assumption that all cancer cells can be considered equal. This 
is of course in contradiction with the idea that instability generates het-
erogeneity. In this picture of tumorigenesis, we sacrifice realism in favor of 
well-defined predictions. The basic model involves two differential equa-
tions associated with normal and cancer cell populations. These equations 
read

	

dH
dt

P H H H C

dC
dt

P C C H C

r

r

= −

= −

0

0

Φ

Γ Φ

( , )

( ) ( , )µ

where Pr
0  indicates the basal cell replication rate associated to normal 

cells, whereas Γ( )µ  indicates the effects of the instability rate µ  on the 

© 2011 by Taylor and Francis Group, LLC



Catastrophes, Cancer and Networks    ◾    71

replication of cancer cells. The last term in the right-hand side of both 
equations introduces selection of master replicating strains. It represents 
an outflow from the system, and can be easily computed using some addi-
tional assumptions. In particular, it can be shown that the previous set of 
equations is being reduced to a single equation by assuming that the total 
population size (C + H) is constant. For convenience, we normalize the 
total population to one. If this assumption is introduced, we have

	
dH
dt

dC
dt

d C H
dt

+ = + =( ) 0

which gives Φ Γ( , ) ( ( ) )H C P H Cr= +0 µ . Using this result, we obtain after 
some algebra:

	
dC
dt

P C Cr= − −0 1 1( ( ) ) ( )Γ µ

Such an equation captures the essential dynamics of the model and, in par-
ticular, the presence of two possible equilibrium states, namely, a cancer-
wins phase (C = 1, H = 0) and a host-win (i.e., healthy tissue) (C = 0, H = 1) 
phase. As it happens with other phase transitions in complex systems 
(Solé et al., 1996; Solé and Goodwin, 2001), some important lessons can 
be extracted by understanding the nature and universality of the transi-
tion. The critical boundary of a transition is easily obtained from the con-
ditionΓ( )µ =1. Now we need to include in the mutation-dependent term 
some reasonable link between instability, growth, and deleterious effects. 
This can be done by assuming that instability allows hitting growth-related 
genes, but also essential genes whose loss or mutation are lethal. One pos-
sible choice is

	 Γ( ) ( )( )µ µ δ µ= + −1 1n Gg
nHK

which includes the positive effect associated with growth-related muta-
tions (first term on the right-hand side) and a second component introduc-
ing the adverse effects of hitting essential genes. Here, ng and nHK indicate 
the number of growth-related and essential (housekeeping) genes, respec-
tively, and δG  is the average increase of growth due to the first class of 
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mutations (see next section for a detailed discussion). This choice allows 
us (for each set of parameters) to find the corresponding critical mutation 
rate µc . An example of the phase diagram associated with this model (for 
a given set of parameters) is shown in Figure 4.2. The gray area indicates 
the domain where cancer propagates (here we use α δ=n Gg ). We can see 
that the boundary of this domain is a function of both instability and the 
selective advantage provided by growth-related mutations. An immedi-
ate result from this picture is that small changes in instability (a slight 
increase) can shift the system from normal to cancer. An additional illus-
tration of this result can be obtained by using the potential function φµ ( )C  
associated to the previous equation. Specifically, a potential function fol-
lows the following property:

	
dC
dt

d C
dC

= −
φµ ( )

or, in other words, φµ ( ) ( )C f C dC= − ∫ , where f(C) is the function describ-
ing the growth dynamics of the C population. As defined, this function 
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Figure 4.2  Mean field model of a two-species interaction system involving 
cancer and normal cells. Cancer cells are identical in their replication and muta-
tion rates, and a fixed trade-off between replication and mutation is introduced. 
One prediction from the model is that two possible phases are present: either the 
tumor fails to propagate or wins and occupies all space. The critical line separat-
ing these phases depends both on the efficiency of cancer cells to replicate and 
the amount of instability. As we can see here, we can shift from the cancer phase 
(gray) to the healthy tissue phase by increasing instability rates. The two pictures 
at both sides of the phase diagram are two examples of the associated potential 
function (whose minima correspond to equilibrium states).
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will be such that the minima of it correspond to the stable equilibrium 
points associated to our system, whereas the maxima will indicate unsta-
ble equilibrium. For our system, we have

	
φ µ µµ ( ) ( ( ) ) ( ) ( ( ) )C P C C dC P C

r r= − − − = − −∫0 0
2

1 1 1
2

Γ Γ −−





C3

3

The two examples shown in Figure 4.2 illustrate the point.
It can be shown that the critical instability rate scales as the inverse of 

the number of housekeeping genes. In other words, on a first approxima-
tion, we have µc HKn≈1/ . This is an interesting finding, since it predicts 
a limit (an upper bound) to the maximal amount of genomic instability 
compatible with viable cancer cells. Another important result is that this 
type of model (several variations have been explored) seems robust to 
several relevant modifications, such as the exact functional form of the 
instability-replication relation (Solé and Deisboeck, 2004). The robustness 
of our prediction suggests that this type of error catastrophe might play a 
role in cancer, or might be used in future approaches to cancer treatment, 
since a small increase in genomic instability close to the boundary can 
cause the collapse of the population.

This type of model can be extended in several ways. One of them (Solé 
et al., 2008) included a more accurate description of tissue architecture, in 
particular, the presence of stem cells and cancer stem cells. In this approach, 
we expand our picture of cancer organization by adding one important 
ingredient: cancer stem cells (Reya et al., 2001). In Figure 4.3, we show one 
example of the type of tissue organization that has been analyzed. Here, a 
healthy tissue competes with a cancer cell population involving cancer stem 
cells (Sc) and differentiated cancer cells (C). The CSC population is consid-
ered constant (in this way, we can maintain the model complexity under 
control) and, thus, cancer cells will always be present. Once again, the two-
phase scenario is also present, as indicated in the lower picture of Figure 4.5. 
Here, together with a cancer-wins phase, there is a scenario where both 
cancer and the healthy tissue coexist. This corresponds to a situation where 
cancer would be always present, but its relative impact would be controlled 
by the parameters defining the replicative potential of mutants as well as 
the limits imposed by instability levels. A chronic state is here defined by 
the gray area where once again we can keep the system in a safe state of low 
level, benign configuration provided that instability levels are high enough.
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An additional extension of the previous models involved a multistep 
scenario where genetic instability levels could change (increasing) as fur-
ther mutations accumulate. This was done (Solé et al., 2008) by considering 
a linear arrangement of cell types involving increasing levels of genomic 
instability. One given element of the chain displays a given mutation rate, 
which can affect other genes involved in stability thus further increasing 
mutation levels. As we move through this linear chain, faster clones allow 
tumor progression to proceed, but also increase the likelihood of entering 
inside a dangerous domain of damaging mutation levels. The key result of 
this model was the finding that the cancer cell population self-organizes 
around a narrow domain of high instability levels, thus approaching the 
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Figure 4.3  A model of cancer progression considering the presence of cancer 
stem cells also displays phase transitions. Now, the existence of a stable, constant 
compartment of cancer stem cells allows two basic phases to be present. In one 
the tumor wins, whereas in the second (gray area) coexistence between both can 
be observed.
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critical line. Below this domain, a gap is observed, with virtually no cancer 
cells having intermediate or low levels of instability. This result supports 
our previous conclusion concerning the possible evolution of unstable 
tumors toward a fragile organization where cells replicate and adapt but 
are also likely to experience decline if instability is further increased even 
by a small amount.

The models outlined earlier are all simplifications of the intrinsic rich-
ness associated with genome complexity. Evolution and stochasticity, as 
well as explicit spatial degrees of freedom, have been ignored or oversim-
plified. It seems clear that the assumptions implicitly made in our toy mod-
els should be explicit. The following section shows how this can be done 
using a representation of genome architecture that seems to capture some 
of the evolutionary dynamics that are likely to occur in real tumors.

Digital Genome Model
A different approach that has been taken is to consider the problem of 
cancer quasispecies in terms of sets of strings of bits (Solé, 2003). In this 
model approach, each cell is replaced by a string carrying a set of “genes,” 
whose state will be indicated as 1 or 0. Normal tissue defines a particular 
string ξ that has a given replication rate. Here, we take for convenience 
the sequence where all bits are 1. On the other hand, mutations can affect 
any bit in any string in such a way that replication is not accurate and 
a mutated string appears. In the original formulation of the problem, 
two populations where considered. One is described by one particular 
string, whereas the second class included all possible mutants generated 
from the original sequence. This model did not considered explicit space, 
and all bits in the string (here representing genes) would only affect rep-
lication speed. The model was thus a well-mixed population of strings 
representing the competition between healthy and tumor cell popula-
tions, and confirmed the previous predictions based on the mean field 
model, in particular, the presence of a well-defined phase transition. An 
example of these results is summarized in Figure 4.4. Here, we display 
(a,b) the hypercube of 4-bit strings under two different conditions, cor-
responding to the two phases of the model. In (a), instability levels are 
low and efficient mutants have been generated, creating a quasispecies 
that spreads through part of the landscape. The lower left corner would 
indicate the population of healthy cells, which is small. If instability rates 
increase beyond the threshold, the healthy tissue is capable of outcompet-
ing the cancer quasispecies, as shown in (b). The population distribution 
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is displayed in (c), with both the number of strings for the healthy tissue 
(here indicated as x) and the number of mutant sequences differing in 1, 
2, or 3 bits from the master. Although the healthy tissue is unable to win 
below a critical mutation level, it becomes successful once cancer moves 
beyond criticality.
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Figure 4.4  Phase transitions in the string quasispecies model. Here, a popula-
tion of mixed strings is used to model a single-peak landscape where the 1111 
string has the lower replication rate (the master sequence), whereas all others 
differ from it at least in one bit and have a smaller replication rate. The upper 
diagrams (a,b) display the fitness landscape for this small-size example with only 
n = 4 bits. In (a) a moderate level of genetic instability allows generating strings 
with faster replication rates, whereas for higher levels (b) the deleterious effects 
associated to increased mutations render mutating strings nonviable. A marked 
transition is clearly visible.
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Figure 4.5  (See color insert following page 40) Digital genome model. The upper pictures (a–c) show an example of the growth of 
cancer cells (normal cells not shown) through time. This growth takes place together with a constant increase in both instability and 
replication, as shown in the (d–f) sequence where the formation of a cancer quasispecies can be observed (see text).
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A last step in our increasingly detailed modeling efforts will consider the 
integration of cell-level organization, space, and genome. Each cell is now 
explicitly located in a given point of a three-dimensional spatial domain. In 
this way, we take into account the limitations imposed by spatial constrains, 
in particular, the reduced competition resulting from local interactions. 
In this context, it has been shown that spatial dynamics in cancer seems 
strongly influenced by its spatial organization (González-Garcia et al., 2000). 
In particular, limited dispersal enhances spatial heterogeneity, both at the 
genetic and phenotypic levels. Now every cell includes an internal descrip-
tion of 3-bit strings, associated each with one class of gene. Specifically, we 
consider genes linked to proliferation, stability, and those having essential 
roles in cell survival. Once again, introducing housekeeping genes allows us 
to set some limits to the levels of instability that can be achieved. The three 
compartments define this digital genome, and they are

	 1.	A set G of growth-related genes. Here, G = {Gj} with j = 1, ..., ng 
genes. This set includes genes affecting the rate of replication of a 
given cell. Their loss or mutation increases the replication rate of 
cells. This would include both tumor suppressor genes (such as APC 
or p53) and oncogenes (RAS or SRC). Although they act in differ-
ent ways (are targeted in opposite ways by genetic alterations) here 
me make no explicit distinction (Vogelstein and Kinzler, 2006). This 
assumption simply considers the fact that the impact of both kinds 
of mutation is an effective increase in the number of cancer cells. 
This assumption ignores relevant features of tumorigenesis that are 
not within the scope of our approximation. The exact origins of 
such driving events (alterations in cell division rates or disruption of 
checkpoint controls) are not within the scope of our approximation.

	 2.	A set S of stability-associated genes, S = {Sj} with j = 1, ..., ns. Mutations 
in these genes lead to increased levels of mutagenesis. These stability 
genes (Vogelstein and Kinzler, 2004) are typically genes playing a key 
role in preserving genome integrity, and their failure can have large 
effects. In a nutshell, these genes (including BRCA1, BLM, or ATM) 
keep genetic changes under control. As a consequence, their failure 
or loss triggers further increases in mutations in other genes. If these 
mutations affect growth-related genes, the tumor can gain fitness 
through increased replication. If other stability genes are affected, 
further instability will be observed.
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	 3.	A set H of housekeeping (HK) genes, H = {hj} with j = 1, ..., nh. These 
genes are associated with essential functions whose failure leads to 
cell death. In real cells, HK genes are expressed in a constitutive 
manner in all tissues. Examples would include genes coding for 
ribosomal proteins actin, GAPDH, and ubiquitin (see Eisenberg and 
Levanon (2003)).

The genome of the k-th cell, to be indicated as Γ( )k , is thus defined from 
the three previous subsets and will be essentially a Boolean string, where 
a given gene can be in two possible states, namely, 1 and 0, indicating 
wild-type and mutated loci, respectively. Changes in strings associated to 
growth or stability will have an impact on cell proliferation although their 
nature is very different. These strings are, for the k-th cell,

	 G k G G Gk k nk( ) ( , ,..., )= 1 2

and for growth-related genes and

	 S k S S Sk k nk( ) ( , ,..., )= 1 2

for stability genes. The set of HK genes to be indicated as

	 H k H H Hk k nk( ) ( , ,..., )= 1 2

and thus the digital genome is given by:

	 Γ( ) ( ) ( ) ( )k G k S k H k= ∪ ∪

Finally, an additional pair of strings are included, introducing the impact 
of each mutated gene on the growth or stability (mutation) properties of 
the cell. These strings are given by:

	 δ δ δ δG G G Gn= ( , ,..., )1 2

which is position but not cell dependent, for growth and

	 δµ δµ δµ δµ= ( , ,..., )1 2 n
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for instability effects associated with mutations in each gene. The effects of 
changes are additive, and thus can be calculated, for the k-th cell as follows:

	
P C k P G Gr r jk

j

n

k( ( ))= +
=
∑0

1

δ

for the growth term and

	
P C k Sjk

k

n

kµ µ δµ( ( ))= +
=
∑0

1

for the instability one. Since we assume that any damage affecting HK 
genes is lethal, no probability needs to be introduced for their effect. The 
two previous expressions give the probabilities of replication and muta-
tion of this cell. For simplicity, we take the same number of genes in each 
compartment. This approach allows studying tumorigenesis under a mul-
tiscale perspective: both cells and cell populations are being taken into 
account, and the phenotypic traits characterizing cell kinetic parameters 
are evolvable and implicitly defined by genome structure. We can thus 
follow the changes taking place within the tumor and what drives them. 
Two important problems can be addressed here. One is the emergence 
of unstable clones and genomic heterogeneity under spatial constraints. 
The second is the patterns displayed by progression paths followed by the 
tumor cell population. The first is already known to us from the previous 
model approaches, but now we have little constraints since every property 
of the cell population is ultimately associated with the microscopic contri-
butions of genome-level changes.

As shown in Figure 4.5, the model displays a tendency to increase both 
growth rate and instability. These parallel changes seem to result from a 
coevolution of both instability (which allows to hit growth-related genes) 
and growth. Clones of cells having one or several mutated prolifera-
tion genes will expand, carrying with them those mutations associated 
with instability. Such mutations then can expand also triggering further 
increases of instability and accelerating tumorigenesis. Although in some 
cases instability goes first and in others proliferation, the general trend 
seems to be a parallel coevolution of both phenomena. The upper row in 
Figure 4.5 (a–c) shows three snapshots of the model at three different steps 
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in the simulation. Here, a tumor slowly develops from random mutations, 
which eventually become successful. We can see this evolution under a dif-
ferent perspective by looking at the information provided by how genome 
composition changes over time. This is illustrated in Figure 4.5d–f, where 
we display the evolution of the occupancy of the instability-growth space 
followed by one run of the model. Specifically, we measure how many 
cancer cells (here displayed as the relative fraction) have a given number 
of mutated (or lost) genes associated with either replication or mutation. 
Starting from the lower left corner of this diagram, we can see that a cloud 
(the cancer quasispecies) develops and expands toward the upper right 
corner, thus involving mutations in both stability- and replication-related 
genes. The final outcome of the evolutionary dynamics of these digital 
genomes is variable. Sometimes, the whole tumor moves to the highest 
instability-replication levels and remains at that. Sometimes, the initial 
mutations driving tumorigenesis affect stability genes, afterward followed 
by replication genes. Others, replication genes come first. However, in gen-
eral, the typical scenario involves both types of genes, with a slight initial 
contribution of stability-related mutations. We could say that there is a 
special type of coevolutionary dynamics here. Mutations in stability genes 
will be typically neutral, particularly, while far from criticality. However, 
such mutations will increase the likelihood of hitting growth genes, and 
the clonal amplification of these will facilitate the expansion of unstable 
cells, which in turn are likely to produce offspring displaying higher insta-
bility and so on.

Progression Paths as Complex Networks
When we analyze the abundance of each string (digital genome) in our 
unstable tumors, we find that the resulting probability distribution is highly 
skewed. It is dominated by a few strings having large populations coexisting 
with many others whose population sizes are rather small. If we plot the fre-
quency N(m) of strings present in m cells in the tumor, it decays as a power 
law, that is, it follows a distribution N m Am( )= −β  (here A is a normaliza-
tion constant). It is interesting to notice that such a shape has been reported 
from the analysis of chromosome abnormalities in several types of cancer, 
including breast, colorectal, and renal (Frigyesi et al., 2003). The presence of 
these power laws has important implications, in particular, in terms of the 
meaning of taking small samples from the tumor, since the enormous vari-
ability associated with these distributions makes statistical averages rather 
unreliable.
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A last message is obtained by watching closely the patterns of network 
organization associated with the transitions between different genomes. 
Even at the very small sizes considered in these models (where n = 20 
genes of each class where used), the potential combinatorics are enor-
mous. Although a heterogeneous model with different levels of growth 
rate should favor some genes in relation to others, and perhaps lead to a 
more or less linear chain or gene–gene correlation defining a linear pro-
gression, the analysis of the transitions between different genomes (i.e., 
single-gene mutational events) pictures a rather different, highly nonlin-
ear image (Figure 4.6). Previous work on progression pathways has shown 
that this is far from a trivial problem, but strong evidence suggests that 
parallel paths are expected to occur (Subramanian and Axelrod, 2001; 
Sontag and Axelrod, 2005). However, the general question of what kind 
of global network organization might be at work has only recently been 
considered.

Instead of a roughly linear graph, we obtain a complex network of 
state transitions that describe a scenario where most genomes appearing 

Figure 4.6  Complex pathways of tumorigenesis in the digital genome model. 
Here, we display the complete graph of genome transitions that took place in the 
process shown in Figure 4.5.
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through the progression process have just one or two links with others, 
whereas a few nodes display a large number of connections. These hubs 
are typically linked to successful populations of strings from which many 
other mutants were generated. This network does not follow the standard 
picture of tumor progression as described by early attempts of understand-
ing the steps required for the process to succeed (Fearon and Vogelstein, 
1990). Instead, the pattern of connections follows a rather heterogeneous 
organization, which can be characterized by means of a scale-free distri-
bution of connections (Albert and Barabási, 2002). More precisely, the 
probability P(k) of nodes having k links between a given genome Γ( )k and 
another one Γ( )k′  follows a fat-tailed distribution, namely:

	
P k

Z
k k

K
( ) exp= 





−1 γ

where Z is a normalization constant and K a given cutoff. This distribution 
implies (as we can see from Figure 4.6) that most elements have just one or 
two links, whereas a few of them have many connections. In most complex 
networks (here too), the exponent γ is bound between two and three. One 
important consequence of this architecture is that there will be problems 
in defining the variance associated with the system and thus to properly 
define statistical significance. It is not difficult to show that, for very large 
K values, when a power law dominates the distribution, the second-order 
moment <k2> diverges, since we have

	

< > ≈ =
−

−( )− −∫k k dk M
M

2 2

1

31
3

1γ γ

γ

where M indicates the maximal number of links that a node can achieve. 
As M grows, and given that 2 3< <γ , this average will rapidly diverge and, 
as a consequence, the statistical deviations will diverge too. This result 
gives a rather different picture from a tumor as describable in terms of 
standard average values and supports the view that better predictors must 
consider clonal diversity (Maley et al., 2006).

Discussion
The success of unstable tumors in adapting and growing within their 
hosts creates a paradoxical situation. Aneuploidy is known to be a burden 
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to cell viability and has severe effects on organismal growth and devel-
opment (Torres et al., 2008). Moreover, aneuploidy provides a source of 
enormous variation. As David Pellman puts it, “Aneuploid cancers are like 
Tolstoy’s unhappy families: each aneuploid cancer has its own particular 
abnormal chromosome content, and thus its own abnormal characteris-
tics.” Actually, it is well known that there are many more aberrations in 
solid tumors have been shown to be recurrent (Albertson et al., 2003). The 
typically reduced fitness caused by aneuploidy, and the great variability 
associated with cancer progression require an appropriate explanation. 
Mathematical and computer models explicitly considering the impact of 
such instability can be useful in order to provide tentative answers. As sug-
gested in early papers (Solé and Deisboeck, 2004), the similarities existing 
between viral quasispecies and unstable cancer provide a relevant insight. 
RNA viruses are known to replicate close to the error catastrophe and, 
thus, an important part of their mutants are nonviable. Living at the error 
threshold allows these populations to escape from the constant pressure 
of the immune system (Domingo, 2000). The cost of such elevated muta-
tional load is compensated by the plastic responses that are intrinsic to the 
quasispecies structure. Information is preserved, and selection forces can 
act. Once the threshold is crossed, genetic drift dominates the scene and 
the viruses are no longer able to adapt. Is that the case in unstable tumors? 
Our models suggest that this might be the case since the presence of an 
error catastrophe in cancer-normal competition models seems a generic 
property. On the other hand, the failure of stability-preserving mecha-
nisms that takes place during carcinogenesis, particularly, those associ-
ated with balanced segregation of chromosomes, should be expected to 
trigger multiple cascades of changes. As a consequence, genetic instability 
should be expected to increase through time since the loss of stability-
related genes is irreversible. In other words, if instability can be estimated 
using some average “mutation” rate, this value should grow over time. The 
tumor will thus approach the error catastrophe, and how fast this hap-
pens will determine how close the evolved cancer population will be to the 
critical boundary. All this variability seems to articulate rather well with 
the pattern of pathways emerging from the digital genome model. A scale-
free network gives us an appropriate picture of the complex dynamics fol-
lowed by our in silico tumors. Instead of parallel or even linear pathways, 
we observe the most diverse network of interconnected transitions. As it 
happens with most complex systems displaying this pattern, robustness 
and fragility go together. The multiplicity of paths tells us that therapies 
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addressing progression in terms of simple chains of events might fail. The 
existence of hubs on the other hand is likely to provide new ways of think-
ing of potential Achilles heels of cancer.
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Introduction
The human colon is lined with a single layer of epithelial cells that under-
goes continuous self-renewal by long-lived tissue stem cells compartmen-
talized into basic proliferative units (crypts), each of which is a finger-like 
invagination into the lamina propria connective tissue of the colon. 
Significant progress has been made recently in the molecular identifica-
tion and characterization of intestinal stem cells [1,2], which are located 
at the base of the crypts, where they give rise to transit-amplifying cells 
that are committed to different cell lineages (goblet cells, enterocytes, and 
enteroendocine cells). The transit-amplifying cells and their differenti-
ated progenies migrate up the crypts toward the intestinal lumen into 
which they are shed after apoptosis and detachment from the underlying 
stroma.

It is generally believed that molecular feedback mechanisms among tis-
sue stem cells, their progeny, and interactions with the underlying stroma 
control the stable maintenance of the intestinal epithelium. Understanding 
this control, its potential defects, and how they might affect stem cell 
kinetics during tumorigenesis would clearly provide important input for 
the development of biologically based cancer models [3–5]. For example, 
it has been suggested that the mechanisms that control cell cycle check-
points, DNA repair, and apoptosis are in some ways optimized to delay the 
onset of neoplastic progression, although experimental evidence for this 
hypothesis is still lacking [6]. In this chapter, we step away from the bio-
logical details of the problem and take a broader view to address the basic 
question: how do the mechanisms that contribute to the homeostatic con-
trol of tissue stem cells manifest themselves in the integration of the cell-
level, crypt-level, and tissue-level dynamics? To answer this question, we 
introduce a stochastic multiscale model for intestinal tissue homeostasis 
that spans the cellular and tissue scales. The model incorporates explicitly 
both stem cell and crypt kinetics, including the process of crypt branch-
ing. By assuming that crypt branching results from the budding of a new 
crypt containing one or more stem cells, we identify constraints imposed 
on the model by the requirement of homeostasis, that is, the overall bal-
ance of crypt branching and death while maintaining a constant mean 
number of tissue stem cells and a stationary number and size distribution 
for nonextinct crypts. Mathematical expressions such as the crypt sur-
vival and the first passage time to crypt branching are derived and used 
for simulations of crypt phylogenies that facilitate the validation of the 
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derived constraints. We also explore violations of the constraints and their 
consequences for unconstrained tissue growth. In short, this model rep-
resents an attempt to capture effectively the homeostatic control mecha-
nisms by mathematical constraints formulated in terms of the cell-level 
and crypt-level kinetics.

Colorectal cancer is associated with a number of successive genomic 
changes [7–13]. Among the earliest changes are (epi)genetic defects that 
lead to the abrogation of control mechanisms that free mutant stem cells 
from the crypt constraints that enforce proper cell turnover, allowing 
them to accumulate in the tissue [14,15]. Quantifying these constraints 
in terms of the biological parameters describing the crypt dynamics may 
therefore help us better understand the consequences of defective control 
mechanisms and their role in tumor initiation and progression.

Model Overview

Stem Cell Divisions and Single Crypt Dynamics

Although they make up only a small subset of the overall cell population 
in a crypt, stem cells are primarily responsible for maintaining, repair-
ing, and regenerating the single layer of epithelial cells in the intestine. A 
crypt may be lost due to stem cell death or may bifurcate to produce new 
crypts. Although the exact mechanisms that trigger crypt bifurcation are 
unknown, it is commonly assumed that doubling of the number of stem 
cells in a crypt in response to spontaneous or induced crypt death in its 
neighborhood is a likely cause (e.g., see Reference [16]). Here, we idealize 
this view by assuming that “bud-forming” stem cells give rise to distinctly 
branching crypts and that their formation results from sporadic (asymmet-
ric) stem cell divisions that generate one daughter cell that forms a branch-
ing crypt bud and one daughter cell that remains in the parent crypt.

For the mathematical development of the stochastic framework, we 
focus on the stem cell population within a crypt and ignore transit-
amplifying cells and fully differentiated cells as their role is not essential 
for our arguments. Within the stem cell compartment of the crypt, a bud-
ding crypt is a population of stem cells derived from progenitors that (in 
a prespecified time interval) gave rise to crypt bifurcations. In contrast, 
the parent crypt is the lineage excluding the budding crypts. In general, 
we assume that a parent crypt having ns stem cells at time s contains X(t,s) 
stem cells at time t, s ≤ t, and evolves according to the four fundamental 
cell division processes shown in Figure 5.1. Incidentally, this assumption 
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is consistent with Potten and Loeffler’s concept of functionally equivalent 
stem cells [17–19], which postulates that each stem cell has the same poten-
tial to maintain a crypt. Specifically, a stem cell may divide symmetrically 
to form two stem cells within the parent crypt at a rate of α(t,s) per cell per 
unit time, it may die or undergo a symmetric cell division that gives rise 
to two transit-amplifying cells committed to differentiation with a rate of 
β(t,s) per cell per unit time, or it may undergo an asymmetric cell divi-
sion with rate μ(t,s) per cell per unit time to form one stem cell and one 
transit-amplifying cell within the parent crypt, where Y(t,s) is the number 
of transit-amplifying cells in the parent crypt at time t.

Furthermore, a stem cell may divide with rate ρ(t,s) per cell per unit 
time to produce one stem cell within the parent crypt and nb stem cells 
within a newly formed crypt branch. The reasoning here is that crypt 
bifurcation (albeit triggered by a single stem cell) can be followed by a 
short phase of stem cell multiplication. The effective size of a newly born 

Birth of SC

α(t,s)

μ(t,s)

β(t,s)

ρ(t,s)

Asymmetric SC
division

ns SCs at time s
X(t,s) SCs at time t

Crypt branching
(budding, bifurcation)

Parent crypt

Loss of SC

X(t,s) = number of SCs in parent crypt
Y(t,s) = number of TACs in parent crypt
Z(t,s) = indicator for crypt budding

Stem cell (SC)
Transit-amplifying
cell (TAC)

Figure 5.1  A multiscale modeling framework for crypt stem cell dynamics. 
A stem cell undergoes four cell division processes: birth (symmetric division to 
form two stem cells within the parent crypt), death (apoptosis or symmetric cell 
division to form two transit-amplifying cells), asymmetric cell division (forms 
one stem cell and one transit-amplifying cell), and crypt bifurcation (forms 
1 + nb stem cells, one in the parent crypt and nb stem cells initiate a new budding 
crypt; only nb = 1 is shown). The rates are respectively α(t, s), β(t, s), μ(t, s), and 
ρ(t, s) per stem cell per unit time.
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crypt, nb = 1,2,3, …, is subsequently also referred to as the crypt birth size. 
Let Z(t,s) be the stochastic indicator variable for a branching by time t 
from a parent crypt having ns stem cells at time s:

	 Z t s
t

( )
,
,

, :=
0
1

no crypt branching by time
otherwisee





. 	 (5.1)

Note that both the parent crypt and the budding crypts derived from it 
are described by the same cell kinetics. Within this framework, a budding 
crypt may play the role of a parent by giving rise to further budding crypts 
of its own. We first consider the case where a budding crypt is born with a 
single stem cell (nb = 1), followed by the general case (nb > 1).

Joint and Conditional Generating Functions of Parent Crypt Sizes

For simplicity, we assume that all cell division parameters are constants, 
that is, α(t,s) : = α, β(t,s) : = β, μ(t,s): = μ, and ρ(t,s) : = ρ. Let Ψ(x, y, z; t, s, 
ns) be the joint probability generating function (PGF) of the three processes 
X(t, s), Y(t, s), and Z(t, s) for a parent crypt having ns stem cells at time s ≤ t,

	
Ψ( ) ( )x y z t s n x y z X t s i Ys

i j k

i j k, , ; , , : = , = ,
, ,
∑ Prob (( )

( ) ( ) ( ) ( )

t s j

Z t s k X s s n Y s s Z s ss
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	 (5.2)

Then it satisfies the partial differential equation

	
∂ , , ; , , ∂

= − + − + − +

Ψ( )

( ) ( ) ( )

x y z t s n t

x x x x y

s

α β µ ρ2 1 1 xx z x y z t s n xs( ) ( )−[ ]∂ , , ; , , ∂ ,1 Ψ
	 (5.3)

with the initial condition Ψ(x, y, z; s, s, ns) = xns . A similar expression 
involving one indicator variable has been applied by Jeon et al. [20]. 
Since our present goal is mainly to understand the stem cell population 
dynamics, this formulation makes it convenient to marginalize, and 
thereby ignore, the asymmetric transit-amplifying cell-generating stem 
cell division process by setting y = 1 in Equation 5.3, which produces 
the modified PGF
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Also, we are interested in the number of stem cells in a parent crypt hav-
ing ns stem cells at time s ≤ t and that no crypt branching has occurred by 
time t, whose PGF is obtained by setting z = 0 in Equation 5.4, ψ(x, 0; t, 
s, ns) = [ϕ(x, 0; t, s)]ns, where
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is the joint PGF for the number of stem cells at time t in a parent crypt 
having a single stem cell at time s ≤ t, and crypt branching. ϕ(x, 0; t, s) has 
been shown to satisfy [21,22]

	 φ
α

η η( ) ( ) ( )( ) (
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	 (5.6)

where

	 v := − + + − + + − ,





1
2

42α β ρ α β ρ αβ( ) 	 (5.7)

	 w := − + + + + + − ,





1
2

42α β ρ α β ρ αβ( ) 	 (5.8)

	 η α:= − .( )x 1 	 (5.9)

It is also of interest to marginalize the joint PGF of parent crypt size and 
branching on the parent crypt branching process, which is accomplished 
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by setting z = 1 in Equation 5.4. This produces the PGF for the number of 
stem cells in a parent crypt having ns stem cells at time s ≤ t, regardless of 
whether a budding crypt has formed before time t, ψ(x, 1; t, s, ns) = [ϕ(x, 1; 
t, s)]ns, where ϕ(x, 1; t, s) can be shown to satisfy (see Appendix)

	
φ β α β

α

α β
( ) ( ) ( )

( )

( )( )
x t s x x e

x

t s
, ; , = − − −

− −

− − −
1 1

1 (( ) ( )( )α β α βx e t s−
.

− − −
	 (5.10)

Equation 5.10 was applied by Luebeck and Moolgavkar [23] to initiation-
promotion carcinogenesis models for analyzing the sizes of premalignant 
lesions. Finally, we are interested in the number of stem cells in a parent 
crypt having ns stem cells at time s ≤ t conditioned on no parent crypt 
branching by time t, which has the PGF (Appendix)
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0
1 0

φ
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		  (5.11)

Parent Crypt Extinction Time and First Passage Time to Branching

For a parent crypt containing ns stem cells at time s ≤ t, let Te and Tb be the 
random variables for the time to extinction and the first passage time to 
branching, respectively. It can be shown (Appendix) that the cumulative 
density functions (CDFs) for such a crypt satisfy

	
Prob

Prob

T t

X t s X s s n Z s s

e

s

≤{ }
= , = | , = , , ={ ( ) ( ) ( )0 0}}= , ; ,[ ] ,nst sφ( )0 1

	 (5.12)

and

	
Prob
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T t

Z t s X s s n Z s s

b

s

≤{ }
= , = | , = , , ={ ( ) ( ) ( )1 0}}= − , ; ,[ ] ,1 1 0 nst sφ( )

	 (5.13)

where the latter is equivalent to one minus the probability of the crypt 
having not undergone budding by time t (crypt branching survival). 

© 2011 by Taylor and Francis Group, LLC



94    ◾    Larry W. Jean and E. Georg Luebeck

Similarly, for a parent crypt having ns stem cells at time s ≤ t, the crypt 
extinction time conditioned on no prior occurrences of crypt branching, 
and the first passage time to crypt branching conditioned on nonextinc-
tion, have the respective CDFs

Prob
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and
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	 (5.15)

When the cell death rate exceeds the cell birth rate (β > α), extinction 
is certain for any parent crypt, regardless of its initial size and the num-
ber of prior branchings (Figure 5.2a). Also, depending on the number of 
stem cells (ns) in a parent crypt at time s, branching may never occur, 
since the crypt may suffer extinction before it generates a budding crypt 
(Figure 5.2b). This occurs more frequently for parent crypts having smaller 
initial sizes. In general, increasing the initial number of stem cells in a par-
ent crypt shortens its time to first branching and extends its lifetime, since 
a larger crypt increases the probability of branching and is less suscep-
tible to extinction. Although crypt extinction is certain (assuming β > α), 
parent crypts that have not undergone prior branchings are more suscep-
tible to extinction than those that have generated progeny (i.e., given rise 
to branching crypts) (Figure  5.2c). Again, this can be attributed to the 
dominance of cell death over cell birth, which drives down the sizes of the 
crypts, thereby shortening their time to extinction. Finally, conditioned on 
crypt survival, all parent crypts will eventually generate progeny, regard-
less of their initial sizes (Figure 5.2d).

As we will show in the next section, Equations 5.14 and 5.15 are espe-
cially important for the identification of mathematical constraints on stem 
cell homeostasis.
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Tissue-Level and Crypt-Level 
Constraints for Homeostasis
To derive a constraint for a constant mean number of stem cells in a tis-
sue, regardless of its specific structure, we employ the generalized Luria–
Delbrück model introduced by Dewanji, Luebeck, and Moolgavkar [24]. 
The model was originally developed for quantifying the spontaneity of 
mutations in bacteria prior to their selection, a phenomenon Luria and 
Delbrück demonstrated experimentally in their 1943 Fluctuation Analysis 
[25]. In the current context, the generalized Luria–Delbrück model may 
be applied as follows. Assume that there is a constant number of X stem 
cells in a tissue, which gives rise to budding crypts according to a Poisson 
process with rate ρ per stem cell per unit time, and each crypt contains 
nb ≥ 1 stem cells at the time of birth. The stem cells within a budding crypt 
formed at time u ≤  t undergo a birth–death process {X(t,u), u ≤  t} with 
X(u, u) = nb having birth and death rates α(t, u) and β(t, u) per stem cell 
per unit time, respectively. Under constant parameters, that is, α(t, u): = α 
and β(t, u): = β, it can be shown that the total number of stem cells in the 
tissue at time t, X(t), satisfies (Appendix)
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(a) Crypt extinction time (Prob {Te ≤ t}) (b) First time to crypt branching (Prob {Tb ≤ t})

(c) Crypt extinction time given no prior branching
(Prob {Te ≤ t |Tb > t}) 

(d) First time to crypt branching given non-extinction
(Prob {Tb ≤ t |Te > t}) 

Figure 5.2  Cumulative density functions for the time to extinction and the 
first passage time to branching in a parent crypt having ns = 1, 10, or 20 stem 
cells at time s, α = 0.035, β = 0.042, ρ = 0.002 per stem cell per unit time. (a) Time 
to crypt extinction. (b) First passage time to crypt branching. (c) Time to crypt 
extinction given no prior occurrence of crypt branching. (d) First passage time to 
crypt branching given nonextinction.
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Thus, stationarity of the overall stem cell number in the tissue may be 
obtained by imposing the condition limt→∞ E[X(t)] = X under the assump-
tion β > α, which produces the tissue-level constraint β = α + nb·ρ. The 
simplicity of this tissue-level constraint is a consequence of the assumed 
cell-to-cell independence. Although this constraint will guarantee a model 
tissue with constant mean size (irrespective of the choice of nb), it does not 
control its fluctuations over time, nor its possible extinction. Here, we shall 
not be concerned about this shortcoming as we will consider the tissue to 
be very large (compared with the crypt stem cell niche) and the overall 
fluctuations controllable by other means or model extensions that impose 
additional constraints. For example, the overall stem cell population in a 
tissue could be controlled effectively by a Prendiville process with reflec-
tive boundaries rather than a simple linear birth death process [26,27].

The number of budding crypts in the tissue may be controlled by balanc-
ing the loss and the gain of crypts within the tissue. This can be achieved 
by equating the mean time to crypt extinction conditioned on no prior 
branching and the mean first passage time to crypt branching conditioned 
on nonextinction. This is mathematically equivalent to equating the means 
of these random variables having CDFs given by Equations 5.14 and 5.15. 
For consistency, we will generally assume that ns = nb, that is, equality of 
the arbitrary initial crypt size of the parents at time s with the crypt birth 
size, unless mentioned otherwise. Upon numerical differentiation of the 
CDFs and integration for computing the means, we obtain a relationship 
between α, β, ρ, and nb defined to be Fcrypt(α, β, ρ, nb) = 0. For any nb ≥ 1, 
the tissue-level and crypt-level constraints are combined to obtain Fcrypt(α, 
α + nb·ρ, ρ, nb) = 0, whose solution can be well approximated (via a linear 
regression) by ρ = Lb·α with a dimensionless constant Lb that renders the 
composite constraint scale invariant.

The relationships between α and the other parameters (β and ρ) enforced 
by these constraints are shown in Figure 5.3. For a given α and increasing 
nb, ρ decreases and reaches a minimum at nb = 4, while β exhibits a slight 
increase but remains mostly unchanged up to nb = 4, relative to ρ. This 
suggests that as budding crypts increase their birth size, they become less 
vulnerable to extinction, and the tissue responds with a reduction of the 
branching rate to prevent excessive expansion of the overall tissue. For 
nb > 4, both the death rate and the crypt branching rate increase, the former 
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linearly with nb and the latter approaching a constant close to one, consis-
tent with the observation that β/α has a unit slope as a function of nb.

In the examples provided here, we assume a symmetric cell cycle time 
of 72 h (Totafurno et al. [28]). This yields α = 0.009627/(stemcell·h). β and ρ 
may then be uniquely determined for any nb 1 by the tissue-level and crypt-
level constraints (Table 5.1). To demonstrate that these constraints yield 
the desired homeostatic (stationary) behavior at the crypt and tissue levels 
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Figure 5.3  Crypt birth size versus (a) β/α and (b) ρ/α under the combined 
crypt-level and tissue-level constraint Fcrypt(α, a + nb·ρ, ρ, nb) = 0. For each of 
nb = 1,2,3, …, 10, a linear regression in the form of ρ = Lb·α is performed on the 
combined constraint and β/α is obtained via β = α + nb·ρ = α ·(1 + nb·Lb).

Table 5.1  Death Rate and Budding Rate Per Stem Cell Per 
Hour Under the Constraints for α = 0.009627/(stemcell·h) and 
Crypt Birth Sizes nb = 1,2, …, 10, 15, 20 Stem Cells

Crypt Birth Size nb Death Rate β Branching Rate ρ
  1 0:032685 0:023058
  2 0:031468 0:010924
  3 0:037398 0:009257
  4 0:045290 0:008916
  5 0:054257 0:008926
  6 0:063972 0:009057
  7 0:074416 0:009256
  8 0:085498 0:009484
  9 0:096912 0:009698
10 0:108763 0:009914
15 0:174840 0:011014
20 0:249341 0:011986

Note:	 The values are obtained via linear regressions in the form 
of ρ = Lb α on the combined crypt and tissue level con-
straint, Fcrypt(α, α + nb ·ρ, ρ, nb) = 0.
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and to obtain tissue-level distributions for the number and sizes of crypts, 
we simulate crypt phylogenies as described in the following section.

Crypt Phylogeny Simulations
Define an event for a crypt to be either an extinction or a branching. Then, 
starting with a parent crypt having ns stem cells at time s, we perform a 
straightforward Monte Carlo simulation to obtain the occurrence time 
t1 of the first event and the corresponding (parental) crypt size, n11, if the 
event is a branching. If the event is an extinction, there are c1 = 0 nonex-
tinct crypts at time t1 and further simulation from that branch arrests; 
otherwise, an additional (budding) branch with n12 = nb stem cells is 
created, and the sizes of the c1 = 2 nonextinct crypts at t1, {n11, n12}, are 
recorded. For each of i = 1, 2, the identical simulation scheme is performed 
on the ith branch with t1 and n1i as the initial time and size, respectively, of 
the crypt. The first event time in each of the two crypts is saved, at which 
point the crypt lineage loses (via extinction) or gains (via branching) a 
crypt depending on the nature of the event. The minimum of the two first 
event times from the two branches, t2, and the sizes of the c2 nonextinct 
crypts at t2, { }n n n c21 22 2 2

, ,..., , are recorded. The procedure is repeated until 
the simulation reaches the time of observation, tK, at which point the sizes 
of all cK nonextinct crypts, { }n n nK K KcK1 2, ,..., , are recorded to yield tissue-
level data such as the number and sizes of nonextinct crypts, and the total 
number of stem cells in the tissue. We use simulated crypt phylogenies to 
explore in more detail how the mathematical constraints derived earlier 
affect the tissue at the different levels of organization.

Figure  5.4 shows two illustrations of crypt phylogenies, one starting 
with a crypt containing a single stem cell (Figure  5.4a), the other with 
10 stem cells (Figure 5.4b). Both examples assume nb = 1, α = 0.009627/
(stemcell·h), β = 0.032685/(stemcell·h), and ρ = 0.023058/(stemcell·h). In 
Figure  5.4a, the parent crypt forms six lineages throughout the first 50 
h, three of which remain alive at that time. The parent crypt goes extinct 
after 23.8 h, and the tissue it generates is sustained by the budding crypts, 
none of which contains more than one stem cell at the time of observa-
tion. A tissue generated from a parent crypt staring with 10 stem cells 
gives rise to six budding crypts over the next 20 h (Figure 5.4b). All seven 
lineages remain nonextinct at that time, with the largest crypt (the parent) 
containing six stem cells, while two stem cells occupy the largest budding 
crypt. In comparison, the tissue with ns = 10 produces more crypts over 
the same duration than the one with ns = 1; however, we will show that the 

© 2011 by Taylor and Francis Group, LLC



Colonic Stem Cell Homeostasis    ◾    99

0 10 20 30 40 50
Time (hours)

Event time
Crypt size
Parent crypt
Budding crypt
Crypt extinct

0
1

1
5.6

1
3.4

B

B

B
28.7

23.8
0

0
46.7

1

1

1

1

1

1
37.4B B

50

ns = 1

45.7
50

50

29.1
0

(a)

0 5 10 15 20
Time (hours)

Event time
Crypt size
Parent crypt
Budding crypt
Crypt extinct

0
10

4.1
9

B

B
B

B

14.8
6

20

20

20
19.5

6

18.4
6

B

B

20

ns = 10

1

1

1

6

20

20

20
1

1

2

1
8.7

17.7
2

(b)

Figure 5.4  (See color insert following page 40) Phylogenies of tissues gener-
ated from a single parent crypt with α = 0.009627, β = 0.032685, and ρ = 0.023058 
per stem cell per hour. The parent crypt of the sample tissues initially contain 
(a)  ns = 1 and (b) ns = 10 stem cells, observed after 50 and 20 h, respectively. 
For each tissue, the simulation highlights the parent crypt lineage (orange), the 
extinct lineages (X), and each budding branch is designated by the green letter 
B. The occurrence time of an event (extinction or branching) and the number of 
stem cells (blue) at the event time are also shown.
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mean numbers of stem cells per crypt converge for the two cases, because 
they both assume identical values for the crypt birth size nb.

Exploring Crypt- and Tissue-Level Behavior

Tissues in Homeostasis

First we consider the case where a crypt branch is born with a single stem 
cell (nb = 1). The crypt-level constraint stabilizes the mean number of non-
extinct crypts generated from a parent crypt (Figure 5.5a). For ns = 1 and 
ns = 10, the stationary mean number of nonextinct crypts are approxi-
mately 0.839 and 8.330 per parent crypt, respectively. Stationarity of the 
overall number of stem cells in the tissue imposed by β = α + nb·ρ and a 
stationary mean number of crypts in the tissue guarantee that the mean 
number of stem cells per crypt also reaches stationarity. Figure 5.5b shows 
that the mean crypt size approaches 1.197 stem cells independent of the 
choice for the initial crypt size, ns. We will demonstrate that this indepen-
dence of the mean number and sizes of crypts on ns holds also for nb > 1.

The implemented constraints therefore yield model tissues with sta-
tionary mean crypt numbers and crypt sizes. To validate the effects of the 
constraints in tissues whose budding crypts are effectively born with mul-
tiple stem cells (nb > 1), we simulate tissues with the same total number of 
stem cells but with different initial parent crypt sizes. Let N be the number 
of stem cells in a tissue, then given a parent crypt that initially contains ns 

0

2

4

6

8

10

0 50 100 150 200 250 0 50 100 150 200 250
Time (hours) Time (hours)

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n 
N

um
be

r o
f

N
on

-e
xt

in
ct

 C
ry

pt
s

M
ea

n 
N

um
be

r o
f S

Cs
 p

er
N

on
-e

xt
in

ct
 C

ry
pt

s

ns = 10
ns = 10

ns = 1
ns = 1

(a) (b)

Figure 5.5  Mean number and sizes of nonextinct crypts in a tissue generated 
from a single crypt initially containing ns = 1 or ns = 10 stem cells. (a) Mean num-
ber of nonextinct crypts in the tissue. (b) Mean number of stem cells per non-
extinct crypt in the tissue. For each case, 1000 samples are generated with rates 
α = 0.009627, β = 0.032685, ρ = 0.023058 per stem cell per hour, and observation 
times t = 5, 10, 25, 50, 75, 100, 150, 200, and 250 h.
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stem cells, this is accomplished by simulating N/ns such parent crypts per 
tissue (Figure 5.6). To demonstrate this for ns = 2 and ns = 5, tissues con-
taining 500 stem cells initially (250 and 100 crypts per tissue, respectively) 
are simulated and analyzed.

Assuming that ns = nb, the stationary mean number of crypts is 
approximately 318.880 for nb = 2 and 212.760 for nb = 5 (Figure 5.7a). For 
ns = 10 on the other hand, the stationary mean numbers for nb = 2 and 
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Figure 5.6  Constructing tissues having identical total stem cell number but 
different initial parent crypt sizes. To obtain a tissue containing N stem cells, N/
ns parent crypts each having ns stem cells initially are simulated.
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Figure 5.7  Mean number and sizes of nonextinct crypts in tissues having crypt 
birth sizes nb = 2 and nb = 5 stem cells. (a) Mean number of nonextinct crypts 
in the tissues. (b) Mean number of stem cells per nonextinct crypt in the tissues. 
For each case, 1000 samples are generated with rates α = 0.009627, β = 0.032685, 
and ρ = 0.023058 per stem cell per hour, and observation times t = 5, 10, 25, 50, 
75, 100, 150, 200, and 250 h.
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nb = 5 mostly coincide for the first 25 h before splitting off and converg-
ing with their respective stationary means. Figure  5.7b indicates that 
regardless of ns, nb = 2 generates a tissue having a stationary mean crypt 
size of 1.56 stem cells, while tissues having nb = 5 are sustained by crypts 
having 2.35 stem cells on average. Our simulations clearly show that the 
stationary mean number and size of the crypts in a model tissue of fixed 
size depend on the crypt birth size parameter nb, while they are insensi-
tive to the choice of ns. With the exception of nb = 1, the stationary mean 
crypt size tends to be smaller than nb. Furthermore, stationary distribu-
tions for crypt sizes within the model tissues show that, regardless of the 
crypt birth size nb, crypts containing a single stem cell dominate such 
tissues (Table 5.2). This may be considered a failure of the model, given 
that recent experimental evidence suggests that the stem cell number 
(per crypt) is between four and six in the murine colon [29]. However, 
the stochastic intercrypt variation of this estimate remains uncertain. In 
the formulation presented here, only 13.5% of the crypts contain more 
than one stem cell in a tissue with nb = 1, while such crypts make up 
48.1% and 57.8% of tissues with nb = 2 and nb = 5, respectively.

Neoplastic Tissue

Tumor development in crypt-structured tissues, such as the colon or 
Barrett’s esophagus, may be associated with violations of the biological 
constraints that characterize tissue stem cell homeostasis. Naturally, we 
expect the number of tissue stem cells to increase over time when the 
constraints are violated in favor of increased net cell proliferation. This is 
demonstrated in Figure 5.8, where a tissue with ns = nb = 2 experiences an 
increase in the net cell proliferation rate either through a 20% increase in 
the birth rate α, or a 20% decrease in the death or loss rate β.

Table 5.2  Stationary Distributions of the Number of Stem Cells in Nonextinct 
Crypts in a Tissue with nb = ns = 1, 2, or 5

nb(= ns)

Crypt Size (Number of Stem Cells)

1 2 3 4 5 6 7 8
1 86:5% 11:6% 1:2% 0:6% 0:1% 0:0% 0:0% 0:0%
2 51:9% 37:4% 8:9% 1:5% 0:3% 0:0% 0:0% 0:0%
5 42:2% 20:2% 14:6% 11:2% 10:3% 1:1% 0:2% 0:2%

Note:	 In each case, a tissue initially containing 1000 stem cells is simulated with rates 
α = 0.009627, α = 0.032685, and ρ = 0.023058 per stem cell per hour and observed 
after t = 200 h.
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In either case, the response is such that the mean number of non-
extinct crypts increases over time in a seemingly exponential fashion 
(Figure 5.8a). However, the case where β is decreased exhibits a much more 
drastic increase of the crypt number. On the other hand, the mean crypt 
sizes exhibit only modest increases and interestingly remain mostly con-
stant throughout time for both cases (Figure 5.8b). The former observation 
can be explained by the relative difference in net cell proliferation, that is, 
(( ) ) ( ) ) ( / )1 20 1 20 0 3+ − + − − + = ≈ .% %α β ρ α β ρ α β( , while the latter sug-
gests that crypt sizes are mainly controlled by the crypt branching parameter, 
ρ, which remains constant in these examples. Thus, our results indicate that 
during neoplastic progression (and possibly also during fetal development), 
lesion (or tissue) growth is more likely the result of a downregulation of cell 
differentiation or apoptosis rather than an upregulation of cell division.

Discussion
Both deterministic [30,31] and stochastic [32,33] models for the dynamics of 
normal colonic mucosa exist. Most of these models are designed to describe 
the dynamics at the scale of a single proliferative unit (colonic crypt). A 
more thorough review is presented by van Leeuwen et al. [34]. Although 
these crypt-level models provide valuable information at that organiza-
tional scale, they offer no insight on the effects of coupling dynamics at the 
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Figure 5.8  Mean number and sizes of nonextinct crypts in tissues with vio-
lated constraints having crypt birth size of nb = 2 stem cells. (a) Mean number of 
nonextinct crypts in the tissues. (b) Mean number of stem cells per nonextinct 
crypt in the tissues. For each case, 1000 samples are generated with rates α = 
0.009627, β = 0.032685, and ρ = 0.023058 per stem cell per hour, and observation 
times t = 50, 100, 125, 150, 175, 200, 225, and 250 h. The constraints are violated 
by either increasing the birth rate or decreasing the death rate.
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cellular and tissue scales. Here, we introduce a framework that accounts for 
stem cell dynamics spanning the organizational scales of the stem cells, the 
proliferative units, and the tissue. Stochastic processes such as cell division, 
cell death, and crypt branchings are explicitly incorporated into the model 
framework to describe the relationships among the parameters that yield 
stable population dynamics at the crypt and tissue levels.

By requiring a constant overall stem cell number in the tissue and bal-
ancing the (conditional) times to crypt loss and crypt gain, the model 
yields constraints sufficient to maintain the mean number of nonextinct 
crypts, their mean sizes, and thus the mean overall stem cell number in the 
tissue, although at this level of approximation the fluctuations of the latter 
remain uncontrolled. This may be remedied by imposing constraints that 
involve higher moments of the crypt extinction time and the first passage 
time to crypt branching. We interpret these constraints, which couple the 
rates of cell division, sporadic or induced cell death, and crypt branching, 
to capture effectively the complex feedback mechanisms that govern the 
homeostatic control of stem cells within the normal colonic mucosa.

Our crypt-phylogenic simulations reveal several interesting observa-
tions. First, stable numbers of progeny both on the cellular level and on the 
crypt level are obtained, from which stationarity of the number of nonex-
tinct crypts in the tissue follows. As a function of the crypt birth size (nb), 
the constraints decrease the ratio of the crypt branching rate to the symmet-
ric stem cell division rate before approaching one, while they stipulate an 
increase of the ratio of the death rate to the birth rate with increasing nb.

Finally, the abrogation of feedback mechanisms that normally maintain 
the colonic tissue appears to play an important role in colon tumorigen-
esis. Initiating mutations, that is, mutations that lead to clonal expansions 
by uncompensated increases in crypt bifurcation and/or uncontrolled 
increases in crypt size likely violate (at least locally) the constraints iden-
tified here. We explore the effect of such violations by varying α and β 
independently, in one case increasing α by a fraction, in the other decreas-
ing β by the same fraction. Both scenarios effectively increase the net cell 
proliferation rate, α + ρ – β. However, because the tissue constraint stipu-
lates β > α, decreasing the rate of stem cell loss, β, results in a higher net 
cell proliferation rate compared with increasing α (by the same fraction). 
Thus, our framework predicts that tissue expansions are accompanied 
by crypt proliferation in the tissue while the crypt sizes remain relatively 
unaffected. Alternatively, the spreading of neoplasms via crypt bifurca-
tions may also be driven by direct increases in the crypt branching rate, ρ. 
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The consequences of such a violation, in comparison to the perturbations 
in stem cell kinetics so far tested, remain to be explored.

Appendix

Derivation of Equation 5.10

Let g(t, s) and G(t, s) be defined by
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Derivation of Equation 5.11
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Derivation of Equation 5.14
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Derivation of Equation 5.15
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Derivation of Equation 5.16

Let θ(z; t, u, nb) be the PGF for the number of stem cells at time t in a bud-
ding crypt that is born with nb stem cells at time u ≤ t. It is easy to see that 
θ φ( ) ( ) ( ) (( ) (z t u n z t u z z G t ub; , , = ≡ , ; , = − − − ,1 1 1 1 1 )) ( ))− ,g t u  and satisfies
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for g(t, u) and G(t, u) given by Equations 5.17 and 5.18, respectively, under 
the constant-parameters assumption; that is, α(t, u) = α, β(t, u) = β. Now, 
let Θ(z; t) be the PGF for the overall stem cell number in a tissue having a 
stationary number of X stem cells, where any budding crypt is born with 
nb ≥ 1 stem cells. Then, according to Parzen [35], it satisfies
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where θ(z; t, u, ub)=θ(z; t, u, 1)nb. From this and the trivial fact that θ(1; t, 
u, 1) ≡ Θ(1; t) = 1, the mean of X(t) can be derived as
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Introduction
Colorectal cancer accounts for 13% of all cancers in the United Kingdom, 
with around 35,300 new diagnoses and 16,000 deaths occurring each year 
(http://info.cancerresearchuk.org). Colorectal cancer is predominantly 
a disease associated with old age, with 80% of diagnoses being made in 
patients over the age of 60. As a result of longer life expectancy and declin-
ing fertility rates, the proportion of people in this age group is growing 
faster than any other. In the future, colorectal cancer is therefore sure to 
rise in prevalence (http://www.who.int/topics/ageing/en).

Colorectal cancers originate from the epithelium that covers the luminal 
surface of the intestinal tract. This epithelium renews itself more rapidly 
than any other tissue, being completely replaced every 2–3 days in mice [1] 
and 5–6 days in humans [2]. The renewal process requires a coordinated 
program of cell proliferation, migration, and differentiation, which begins 
in the crypts of Lieberkühn that descend from the epithelium into the 
underlying connective tissue (see Figure 6.1). At the base of each crypt, 
a small number of stem cells proliferate continuously, producing transit 
amplifying cells, which migrate up the crypt axis and divide several times 
before differentiating into the various cell types that constitute the epithe-
lium (enterocytes, goblet cells, and enteroendocrine cells). Upon reaching 
the crypt orifice, cells undergo apoptosis and are shed into the lumen.

Under normal conditions, the foregoing cellular processes are tightly 
regulated by biochemical and biomechanical signals. It is believed that 

Cells shed into lumen

Differentiated cells

Transit cells

Stem cells

Migration and
differentiation

Figure 6.1  Schematic of a colonic crypt. Stem cells at the crypt base proliferate 
continuously, producing transit amplifying cells that migrate up the crypt and 
differentiate. Cells at the top of the crypt undergo apoptosis and are shed into 
the lumen.
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the first stage of colorectal cancer is caused by the accumulation of genetic 
alterations that disrupt normal crypt dynamics and cause cells to increase 
their net proliferation rates. The associated proliferative excess gener-
ates biomechanical stress within the crypt, which may deform in order 
to accommodate the additional cells. The dysplastic cell population may 
expand further by invading neighboring crypts and/or inducing crypt fis-
sion, leading to the formation of an adenoma. Identifying the mechanisms 
that govern the cellular dynamics of normal crypts is therefore funda-
mental to understanding the origins of colorectal cancer.

The Wnt pathway is known to play a key role in stem cell maintenance 
[3,4], cell–cell adhesion [5], cell-fate specification (cell differentiation) [6], 
central nervous system patterning [7], and tissue development [8,9]. Wnt 
is an extracellular factor that, when detected by receptors on the outer 
cell membrane, triggers a cascade of events, culminating in upregulation 
of intracellular β-catenin levels [10]. A cell’s response to Wnt signaling 
is believed to be mediated predominantly through the concentration and 
subcellular localization of β-catenin [11]. At the base of the crypt, high lev-
els of Wnt are believed to encourage “stemness” (lack of differentiation), 
proliferation, and high cell–cell adhesion. By contrast, the low-Wnt envi-
ronment at the top of the crypt stimulates cells to stop proliferating, dif-
ferentiate, and weaken their bonds of cell–cell adhesion, preparing them 
for apoptosis and sloughing into the lumen at the top of the crypt [12].

Most cancers can be initiated by a wide number of different mutations, 
but almost all colorectal cancers carry activating mutations in a single 
pathway, the Wnt pathway, with over 80% carrying a double truncation 
mutation in the gene that encodes the protein APC [13,14]. Thus, the Wnt 
pathway plays a crucial role in the initiation of colorectal cancer.

As in many cases in biology, colorectal cancer emerges from the inter-
action of processes that span many different spatial scales. At the genetic 
level, mutations occur that cause intracellular processes to respond inap-
propriately to homeostatic cues. This, in turn, affects behavior at the tissue 
level due to abnormal apoptotic and mitotic responses. Multiscale math-
ematical modeling can provide insight into how such a complex, highly 
regulated system operates, both normally and pathologically. A multi-
scale model cannot account for everything, and in order for a model to be 
computationally tractable, we must simplify processes at each level. For 
example, we can exploit different timescales, or use Boolean approaches 
to simplify the biochemical/metabolic pathways that operate within 
individual cells. At the tissue level, we need to consider different ways of 
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modeling a collection of cells, ranging from individual cell-based models 
right through to the continuum limit. When constructing a multiscale 
model, which simplifications are appropriate and how processes at each 
level should be combined remain open questions.

In this chapter, we illustrate the challenges inherent in multiscale mod-
eling by taking colorectal cancer as an example. In the next section, we 
describe a multiscale model that incorporates simple subcellular models 
of the Wnt signaling pathway and the cell cycle into a discrete, mechanical 
model of cell movement in a colonic crypt. This model has been used to 
investigate several aspects of crypt behavior and to explore different ways 
of coupling these effects within a fully integrated tissue-level model. The 
results of these investigations are discussed in the following section. We 
then conclude with a discussion of alternative modeling approaches and 
avenues for further work.

Structure of the Multiscale Model
Mathematical modeling of Wnt regulation of cell activity within intesti-
nal crypts presents a formidable challenge as the Wnt pathway plays an 
important role in determining a range of cell-level behaviors (e.g., adhe-
sion, proliferation, cell–cell interaction) via mechanisms that are not yet 
fully understood. In order to investigate how mutations in the Wnt path-
way affect crypt dynamics, we therefore require a multiscale framework 
that takes into account these cell-level behaviors. We now describe a mul-
tiscale model in which simple subcellular models of the Wnt signaling 
pathway and the cell cycle are embedded within a discrete, mechanical 
model of cell movement.

Wnt Signaling Model

Various mathematical models of Wnt signaling have been proposed. Lee 
et al. (2003) [15] model the Wnt pathway by a system of nonlinear ordi-
nary differential equations (ODEs), which describe the evolution through 
time of key cytoplasmic protein concentrations, including β-catenin. 
This model is analyzed by Mirams et al. (2009) [16], who exploit the dif-
ferent timescales involved to reduce the system to a single ODE, which 
determines how β-catenin evolves in response to a Wnt stimulus. In 
addition to providing biological insight into the roles of different pro-
teins on different timescales, this type of systematic model reduction 
is extremely useful in order to achieve tractable computation times for 
multiscale simulations.
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The localization of subcellular β-catenin has been modeled, also as a 
system of nonlinear ODEs in [17]. This model is used to examine vari-
ous hypotheses about underlying biochemical mechanisms; for example, 
whether β-catenin undergoes a conformational change that favors its 
involvement in cell–cell adhesion rather than transcription, or whether its 
fate is determined solely by competition for binding partners.

Wnt-Dependent Cell-Cycle Model

The cell cycle is the orderly sequence of events in which a cell dupli-
cates its contents before dividing into two cells. Since cancer is a disease 
associated with uncontrolled cell proliferation, the cell cycle consti-
tutes a major target for anti-cancer drug development. This has stimu-
lated extensive experimental research and the formulation of detailed 
mathematical models designed to enhance understanding of the reg-
ulatory networks involved and to explore potential therapeutic inter-
ventions. Such models are typically formulated as systems of coupled 
nonlinear ODEs that characterize changes in the levels of key cell-cycle 
proteins [18].

We employ the model for the Wnt pathway developed by van Leeuwen et 
al. (2007) [17] to calculate the associated position-dependent levels of gene 
expression and use these to link the outcome of the Wnt model to the cell-
cycle model developed by Swat et al. (2004) [18], as shown in Figure 6.2. 
As a result, near the bottom of the crypt, where cells are exposed to high 
levels of Wnt, the production of Wnt-dependent cell-cycle control proteins 
is enhanced and cells progress through the cell cycle. In contrast, near the 
crypt orifice where Wnt levels are low, little or no cell division takes place. 
Full details of the subcellular models of Wnt signaling and the cell cycle 
are given in [19].

Mechanical Model

A variety of discrete model frameworks can be used to describe the 
mechanical behavior of tissue, ranging from lattice-based models, cell-
center (“point mass”) models, and vertex-based (“non-point-mass”) mod-
els [20]. We use a tessellation-based, cell-center approach, in which the 
centers of adjacent cells are connected by linear springs [21] and a Delaunay 
triangulation is performed at each time step, in order to determine cell–
cell connectivity.

Following [21], we determine cell movement by balancing the 
forces exerted on an individual cell by its neighbors with a drag force. 
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Specifically, let ri be the position of the center of cell i, and define rij = rj–ri, 
and ˆ / | |r r rij ij ij= . The force exerted on cell i by an adjacent cell j is defined 
to be

	 F r rij ij ij ij ijs= −µ ˆ (| | ), 	 (6.1)

where μij is the spring constant and sij is the prescribed rest length between 
cells i and j (i.e., the distance between them for which the force of interac-
tion vanishes). In order to investigate the effect of variable cell–cell adhe-
sion, in the section titled, “Variable Cell–Cell and Cell–Matrix Adhesion” 
we will consider three choices for the spring constant μij. In the first case, 
μij ≡ μ takes the same constant value for all neighboring cells i, j. In the 
second case, to avoid an unrealistically strong attraction between distant 
neighboring cells, we suppose that μij increases with the cell–cell contact 
length. In this case we take

Swat et al. (2004)
Cell−cycle model

Wnt concentration

Cell adhesion model

Mechanical model

β−catenin level
Membrane−bound

β−catenin level
Cytoplasmic

β−catenin level
Nuclear

Wnt−signaling model
van Leeuwen (2007)

Figure 6.2  Influences of the Wnt-signaling model inside a single cell. Note that 
the Wnt concentration that is experienced depends on the position of the cell 
within the crypt. The cell-adhesion model influences the motion of the cell, and 
the cell-cycle model influences the proliferation (and hence again the dynamics) 
of the cell; thus, the output influences the cell position and changes the input to 
the Wnt-signaling model. Each cell in a multiscale simulation carries its own 
Wnt-signaling model.
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	 µ µij ijt e t L( ) ( ) /= 3 	 (6.2)

where eij(t) is the length of the edge between cells i, j and L is the dis-
tance between neighboring cell centers in an equilibrium, hexagonal 
lattice (in such a regular lattice, e Lij ≡ / 3, so the first case is recov-
ered). In the third case, we assume that the spring constant depends 
on the concentration of β-catenin–E-cadherin complexes on the cell 
membrane, these being determined from the Wnt signaling model (see 
section titled “Wnt Signaling Model”). In particular following [17], we 
use the following expression to determine the spring constant con-
necting cells i and j:

	 µ µij ij i Ai i j Ajt e t B t C t E t B t C( ) ( ) ( ) ( )/ ( ), ( )= min (( )/ ( ) / .t E t Qj A{ } 	 (6.3)

Here, CAi denotes the Wnt-dependent concentration of adhesion com-
plexes on the surface of cell i; Ei and Bi denote its perimeter and sur-
face area, respectively; and QA is a scaling factor that ensures that 
under equilibrium conditions, the first case is recovered (for details 
see [19]).

The total force exerted on cell i by its neighboring cells is

	 F Fi ij
j

=∑ , 	 (6.4)

where the sum is over all cells j that are connected to cell i. An overdamped 
limit is assumed, for which inertial effects are negligible compared to 
dissipative terms, so that the equation of motion of cell i is

	 νi
i

i
d
dt
r F= , 	 (6.5)

where νi is the drag coefficient of cell i. In order to investigate the effect 
of variable cell–substrate adhesion, in the section titled “Variable Cell–
Cell and Cell–Matrix Adhesion” we will consider two different cases for 
the drag coefficient. In the first case, νi ≡ ν takes the same constant value 
for all cells  i. In the second case, we suppose that the drag coefficient 
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is proportional to the surface area of contact between a cell and the 
underlying basement membrane, since a larger cell has more focal adhe-
sions. In this case, we prescribe

	 ν νi it d d B t( ) ( ( )) ,= +0 1 	 (6.6)

where the parameters d0, d1 satisfy d d L1 0
22 1 3= −( )/( ) so that for an 

equilibrium, hexagonal lattice we recover the first case.
The equation of motion is discretized numerically using a forward Euler 

approach, from which it is straightforward to deduce that the position of 
the cell at time t + Δt is related to its position at time t via

	 r r Fi i
i

it t t t t( ) ( ) ( ).+ = +∆ ∆
ν

	 (6.7)

The rest length sij between cells is assumed to be the typical diameter of 
a crypt cell. When a cell divides, as determined by its internal cell-cycle 
model, a new cell is placed at a smaller fixed distance in a random direc-
tion. The rest length sij between the two daughter cells increases linearly 
over the course of an hour to the mature cell rest length (to emulate the 
mitosis phase of the cell cycle). Thus, the nuclear β-catenin influences the 
cell-cycle model (and so indirectly the mechanics as extra cells are added), 
and membrane-bound β-catenin influences the mechanical model. 
Intracellular β-catenin is influenced by cell position due to the imposed 
Wnt gradient along the crypt axis, which feeds back and influences the cell 
cycle and mechanical models.

Methodology and Implementation Using Chaste

For simplicity we focus on an individual crypt, treating the three-
dimensional tubular crypt as a monolayer of cells lying on a cylindrical 
surface. We take a discrete approach, modeling each cell individually. For 
simulation purposes, it is convenient to roll the crypt out onto a flat planar 
domain and impose periodic boundary conditions on the left and right 
sides. The structure of the multiscale model is depicted in Figure 6.3. It 
comprises the three interlinked modules discussed earlier: a model of the 
Wnt signaling pathway [17]; a model of the cell cycle [18], which together 
with the Wnt model determines each cell’s proliferative behavior; and a 
mechanical model of cell movement [21].
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Chaste (Cancer, Heart and Soft Tissue Environment) is a collabora-
tive software development project that is designed to act as a high-quality 
multi purpose library supporting computational simulations for a wide 
range of biological problems. In this context, “high-quality” means that 
the software is extensible, robust, fast, accurate, and maintainable and 
uses state-of-the-art numerical techniques. It is also open-source, and so 
can be adapted by other developers. Chaste has been developed by a multi-
disciplinary team including mathematicians and software engineers. This 
ensures that the code is well structured as a piece of software, while at the 
same time practical and useful as a computational modeling tool. While it 
is a generic extensible library, to date attention has focused on the fields of 
cardiac electrophysiology and tumor growth [22].

Chaste is written using an agile method adapted from a technique 
known as “eXtreme Programming” [23]. This programming methodology 
is characterized by test-driven development, in which a test is written to 
cover any new functionality in the code before it is implemented [24]. This 
enables developers rapidly to discover, diagnose, and fix bugs in the code. 
The main Chaste code has been written in object-oriented C++, which 
leads naturally to more modular code: software that is easier to abstract, 
to modify, and to document. This is especially advantageous for multi-
scale models of the type considered in this chapter, as it allows different 
simulations to be generated in a straightforward manner, by using the 

Extracellular
Wnt

concentration

Cell position

Cell neighbors Mechanical
model

Movement Differentiation

Ready to
differentiate?

Cell size
Cell−cell
adhesion

Wnt
model

Wnt-target 
protein

synthesis rates Cell-cycle
model

Ready to
divide?

Proliferation

Figure 6.3  Diagram illustrating the modular nature of our multiscale crypt 
model. The occurrence of cellular events (proliferation, differentiation, migra-
tion) is monitored at discrete time steps tn. By coupling Wnt signaling, cell cycle, 
and mechanical models, we are able to predict the spatiotemporal behavior of 
every cell at time tn+1, given the state of the system (e.g., intracellular protein lev-
els, cell position, Wnt stimulus, location of neighboring cells) at time tn and the 
model parameters.
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appropriate components, and preventing unnecessary repetition of code. 
Further details on Chaste, including visualization movies and user sup-
port, are available at http://web.comlab.ox.ac.uk/chaste/.

Results
The multiscale model described earlier has been used to study several 
aspects of normal crypt behavior and to investigate coupling of processes 
occurring across a number of spatial scales. We now summarize our 
results to date.

Wnt Signaling in the Crypt

It has been postulated that a Wnt gradient exists in the crypt, stimulating 
proliferation at the base and promoting differentiation toward the top. 
Use of the multiscale model in [19] led us to predict that a Wnt gradient 
along the entire crypt axis is not necessary to provide a β-catenin (and 
hence proliferation) gradient. Indeed, Wnt expression in a neighborhood 
of (approximately) the three cells at the base of the crypt is sufficient to 
establish a proliferation pattern that extends throughout the crypt; this 
is because cells move up the crypt more quickly than their Wnt signal-
ing pathways can adapt to the reduction in the local Wnt stimulus. These 
results are illustrated in Figure  6.4, where the height at which a cell 
divides, and the corresponding cell-cycle duration are recorded in a scat-
ter graph, for a crypt containing stationary cells and another containing 
cells that move.

Van Leeuwen et al. (2009) [19] perform simulations of the multiscale 
model in order to compare the distribution of β-catenin inside each 
cell in the crypt, under the two hypotheses stated earlier (the simpler 
hypothesis states that β-catenin fate is determined by competition for 
binding partners, whereas the second hypothesis proposes that β-catenin 
can undergo a conformational change that favors binding to E-cadherin 
at the cell membrane). The results of such simulations are shown in 
Figure  6.5. The different patterns of β-catenin associated with each 
hypothesis suggest that it should be possible to discriminate between 
them by measuring the distribution of β-catenin within the epithelial 
cells that line a crypt.

Mitotic Labeling

Mitotic labeling experiments are often used to characterize the proli
feration  and cellular dynamics of intestinal crypts (e.g., [25]). These 
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experiments involve injecting laboratory rodents with an agent that is 
incorporated into cells during the S phase of the cell cycle and is passed 
on to their progeny. The distribution of clonal populations can be moni-
tored over time by dissecting the crypts longitudinally and recording the 
positions of labeled cells along the two dissection lines. Given a sample 
containing several crypts, the outcome of the experiment is summarized 
in the form of a labeling-index (LI) curve, which shows the percentage of 
labeled cells per cell position at the time of sacrifice. We have used our 
multiscale model to perform similar in silico LI experiments. At time t = 0, 
we label all cells that are in the S phase. The simulation proceeds under the 
assumption that labeled cells behave in the same manner as their unla-
beled counterparts, except that they transmit labels to their daughters. 
After a fixed time, we stop the simulation and perform a virtual crypt 
dissection. The LI curves obtained from the virtual dissections descend 
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Figure  6.4  The cell-cycle duration response of a coupled Wnt signaling and 
cell-cycle model to varying Wnt stimuli. Simulation performed in a crypt that is 
23 cells high. Top: The Wnt gradient imposed upon the crypt. Middle: Cell-cycle 
durations if cells are held in fixed positions; the predicted Wnt threshold for cell 
division is about 0.66. Bottom: Cell-cycle durations in a dynamic crypt simula-
tion; for each cell in the simulation, the cell-cycle time is plotted as a function of 
the cell’s position at the time of division.

© 2011 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-7&iName=master.img-002.jpg&w=252&h=53
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-7&iName=master.img-003.jpg&w=253&h=53
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-7&iName=master.img-004.jpg&w=252&h=53


122    ◾    Alexander G. Fletcher, et al.

gradually, suggesting a smooth decrease in the percentage of labeled cells 
with increasing distance from the crypt base (Figure 6.6a). However, our 
model shows clearly segregated proliferative and differentiated popula-
tions, with an abrupt boundary between labeled and unlabeled cells in 
the averaged data (Figure 6.6b). This discrepancy is due to dissection and 
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Leeuwen et al. Cell Prolif. 42 doi:10.1111/j.1365–2184.2009.00627.x. 2009.)

© 2011 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-7&iName=master.img-005.jpg&w=120&h=102
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-7&iName=master.img-008.jpg&w=118&h=99


Multiscale Modeling of Colonic Crypts and Early Colorectal Cancer    ◾    123

suggests that data from standard LI experiments may tend to overestimate 
the true position of the labeled cells.

Clonal Expansion and Niche Succession

Over time, the progeny of a single stem cell may dominate an entire crypt 
via a process termed monoclonal conversion, since the resulting crypt con-
sists of a single clonal population [26]. Since mutations occur in single 
cells, the process of monoclonal conversion is important in the context 
of carcinogenesis as a mutant clone descended from this single cell has to 
persist in a crypt, by proliferating and eventually dominating it, in order 
for a mutant clone to gain a foothold in the colonic epithelium. Once a 
crypt has become mutant monoclonal, the mutant population can spread 
to neighboring crypts, either by top-down invasion, or through a process 
called crypt fission whereby a crypt divides into two.

Our multiscale model is ideally suited to study expansion of a clonal 
population in silico, and to predict conditions under which a crypt may 
become monoclonal. The main advantage is the ability to follow a clone’s 
progress in real time, something that is impossible with current experi-
mental techniques. We simulate the experiments of Taylor et al. (2003) 
[27], in which the progeny of cells with mitochondrial DNA (mtDNA) 
mutations that are functionally neutral are tracked. Such cells express a 
phenotype, for example, cytochrome-c oxidase (CcO) deficiency, which 
appear blue in histochemical stainings. In addition to wild-type crypts, 
Taylor et al. (2003) [27] observed crypts either partially or wholly filled 
with blue cells. In the former, “there is a ribbon of CcO-deficient cells 
within an otherwise normal crypt that is entirely compatible with the 
view that there are multiple stem cells in some crypts.”

We investigated clonal expansion for two alternative model assumptions: 
first, following [21], the stem cells were fixed at the crypt base and assumed 
to divide asymmetrically; and second, following [19], the stem cells were 
unpinned and their proliferative behavior determined by the local Wnt stim-
ulus. The results presented in columns I and II of Figure 6.7 reveal that if the 
stem cells are fixed in position, then an initial blue-stained stem cell invari-
ably generates a thin, blue trail that moves upward toward the crypt orifice. 
Discontinuities in the clone can occur, due to waiting times between con-
secutive cell divisions. Importantly, although the trail’s pattern can change 
in time, it does not expand laterally. Thus, under the original model assump-
tions, we are unable to capture the broad, wavy blue ribbons observed by 
Taylor et al. (2003) [27]. In contrast, as columns III and IV of Figure 6.7 show, 
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(I) (II) (III) (IV)

Figure 6.7  (See color insert following page 40) Clonal expansion in the crypt. 
Each column shows six snapshots from two independent in silico experiments 
performed with the model in [21] (columns I and II) and standard (μij ≡ μ and 
νi ≡ ν) model in [19] (columns III and VI), respectively. At time t = 0, a single 
cell is stained with a blue dye. This label is transmitted from generation to gen-
eration, giving rise to a clonal population of labeled cells. Columns II and IV 
highlight how the labeled populations evolve in time, whereas columns I and II 
show the clonal composition of the crypt. In column II, the stem cells, which are 
pinned to the base of the crypt, are highlighted in green. In the DMC simula-
tion (columns III and IV), the population of labeled cells eventually takes over 
the crypt. (Reproduced with permission from van Leeuwen et al. Cell Prolif. 42 
doi:10.1111/j.1365–2184.2009.00627.x. 2009.)
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if the stem cells are free to move and cell fate is determined by local environ-
mental conditions then, over time, clonal populations either expand in size 
or become extinct. In particular, the progeny of a single cell will eventually 
populate the entire crypt, and further, this cell will always eventually leave 
the crypt. These results suggest that cell “stem-ness” may depend on local 
biochemical cues rather than being an intrinsic property of a cell.

Variable Cell–Cell and Cell–Matrix Adhesion

As discussed in the section titled “Mechanical Model,” we have considered 
a number of different cases regarding the dependence of cell–cell and cell–
matrix adhesion on cell shape and Wnt signaling. In order to compare the 
impact of these different model assumptions on cell kinetics, we followed the 
dynamics of a standard crypt simulation (in which μij ≡ μ and νi ≡ ν; denoted 
NN) for 800 h and then repeated this for three other cases: the case of area-
dependent cell–matrix adhesion only (denoted YN); the case of contact-
edge-dependent cell–cell adhesion only (denoted NY); and the case of both 
contact-edge-dependent cell–cell adhesion and area-dependent cell–matrix 
adhesion (denoted YY). Results are shown in Figure 6.8. We find that YN 
cells located near the crypt base are larger than their NN counterparts. This 
is because in the YN case, if two cells of different sizes are attached by a com-
pressed spring, the smaller cell moves apart more rapidly than the larger one. 
Consequently, small newborn cells leave the crypt base quicker than in the 
NN case. We also find that in the NY case, cells are more hexagonal in shape, 
and the crypt is densely populated with closely packed cells. In this case, the 
dependence of spring forces on cell size could eventually lead to a critical 
situation in which migration ceases completely; this can be prevented in the 
YY case, where variable cell–matrix and cell–cell adhesion are considered.

Hypotheses for Crypt Invasion

It is a matter of great debate how a single, mutant cell establishes a mutant 
epithelium within the crypt [28]. Two mechanisms have been suggested: 
top-down and bottom-up morphogenesis. Under top-down morphogen-
esis, a mutant cell at the top of a crypt expands not only laterally and 
downward but also invades (adjacent) crypts containing normal epithe-
lium [29]. Under bottom-up morphogenesis, the mutant cell originates at 
the base of the crypt and increases in number through proliferation, until 
its progeny populate the entire crypt [30].

The model has been used to investigate the behavior of cells with APC 
or β-catenin mutations, the most common in colorectal cancer [31], within 
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the crypt. Mutations in these proteins enable cells to proliferate inde-
pendently of Wnt [10]. Such mutant cells have also been shown to have a 
more rigid cytoskeleton [32], higher levels of cell–stroma [13] and stronger 
cell–cell adhesion [33]. We model these changes by allowing the damp-
ing constant to depend on whether the cell is mutant or not. The model 
was then used to establish the properties a mutant cell would require 
to allow top-down and bottom-up morphogenesis to occur. Numerical 
simulations reveal that mutant cells, which do not proliferate in a Wnt-
dependent manner, can establish themselves within the crypt if they have 
higher levels of cell–substrate adhesion and a more rigid cytoskeleton. 
Top-down morphogenesis requires higher levels of cell–substrate adhe-
sion and cytoskeleton rigidity than bottom-up morphogenesis.

Discussion
In this chapter, we have presented a computational framework that allows 
us to integrate biological processes that act across a broad range of spatial 
scales. We have considered the model in the context of colorectal cancer 
and used it to address issues such as the role of Wnt signaling in the crypt, 
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Figure  6.8  Dependence of cell size and geometry on cell adhesion. Results 
from four crypt simulations in dynamic equilibrium with different mechanical 
assumptions: NN = standard model; YN = area-dependent cell-matrix adhesion 
only; NY = contact-edge-dependent cell–cell adhesion only; YY = contact-edge-
dependent cell–cell adhesion and cell-size-dependent cell–matrix adhesion; and 
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in units of length L. (a) Average cell area as a function of cell position. (b) 
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with  permission from van Leeuwen et al. Cell Prolif. 42 doi:10.1111/j.1365–
2184.2009.00627.x. 2009.)
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the process of monoclonal conversion, and the effects of model assump-
tions regarding cell–cell and cell–stroma adhesion.

In modeling the dependence of cell proliferation on Wnt signaling, we 
have neglected other pathways that are known to play an important role 
in regulating crypt structure.

Bone morphogenetic protein (BMP) signaling, which converges with 
the Wnt pathway to regulate β-catenin, is thought to control the process 
of stem cell self-renewal [34]. Dysregulation of BMP signaling can result 
in crypt fission and excessive quantities of crypt-like structures [35], as 
observed in humans with juvenile polyposis syndrome. The control of the 
Eph/ephrin signaling pathway may also be highly relevant in ensuring the 
proper crypt structure, as demonstrated by the fact that loss of expres-
sion of EphB receptors is correlated with the onset of invasive behavior 
[36]. Lastly, all proliferating cells in the crypt largely depend not only on 
Wnt but also Notch signaling; neither pathway is sufficient on its own to 
maintain proliferation [37]. Future work will involve the construction of 
mathematical models to investigate how these different pathways interact 
to control the proliferation of cells within the crypt, and incorporation of 
these models within the multiscale framework described in this chapter.

Many of the results presented in the section titled “Results” are con-
sistent with independent experimental observations of colonic crypts. 
However, to have confidence in the model, we should account for the 
model assumptions that are implicit in our cell-center model by contrast-
ing our model with other discrete model frameworks. In particular, it 
remains to be established which discrete model is best suited to a given 
biological problem.

Cell-center models, such as that presented in the section titled 
“Mechanical Model,” can efficiently simulate cell proliferation, growth, 
and migration in the crypt. Moreover, it is straightforward to incorporate 
differential cell–cell adhesion [38–41] and to vary cell–substrate adhesion 
by varying the cellular drag coefficients. However, a disadvantage of such 
cell-center models is their reliance on the Delaunay triangulation, mean-
ing that the number of vertices and the shapes of the cells do not change 
smoothly [42]. An alternative approach is cell-vertex modeling, in which 
cells are treated as polygons in 2D or polyhedra in 3D [43]. In cell-vertex 
models, the dynamics of each cell is governed by the movement of its 
vertices, these being determined by explicitly calculating the resultant 
forces or minimizing a global energy function. Cell-vertex models can 
describe changes in cell shape more realistically than cell-center models. 
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This is particularly important in the context of crypt modeling as we may 
wish to couple cell shape and surface areas to subcellular control models, 
as described in the section titled “Mechanical Model.” Cell-vertex models 
are particularly suitable for modeling differential cell–cell adhesion, 
an important feature of cell dynamics in the crypt, as common muta-
tions in colorectal epithelial cells are thought to affect cell–cell adhesion. 
However, the inclusion of differential cell–substrate adhesion is not so 
straightforward, as the drag terms include contributions from cells sur-
rounding a given vertex. While cell-vertex models do not require the 
computation of a Delaunay triangulation at each time step, the higher 
spatial resolution considered in cell-vertex models results in a larger sys-
tem dimension than that of a cell-center model. Osborne et al. (2010) 
[44] have developed a cell-vertex model of the crypt and, using numerical 
simulations, have found that it exhibits qualitatively similar behavior to 
our cell-center model.

A major problem with discrete models, especially those incorporating 
stochastic behavior, is their computational intensity. For example, in the 
case of our multiscale model, a large number of simulations are needed 
to determine how a proliferative advantage bestowed on mutant cells 
translates into an increase in their probability of becoming the dominant 
clonal population within a crypt, and how this increased probability var-
ies with the location of the initial mutation within the crypt. Moreover, as 
the molecular details of subcellular pathways become increasingly more 
complex, systematic and rational model reduction becomes a critically 
important tool, as a modeling approach that simply includes all known 
molecular details quickly becomes intractable. One resolution of this 
problem is to develop a continuum model that replicates the qualitative 
features of the original discrete model. We can then apply mathematical 
techniques to analyze the coarse-grained model and, for instance, estab-
lish quickly the necessary phenotypic traits for mutant cells to take over 
a crypt via the top-down and/or bottom-up morphogenesis. Such con-
tinuum models can be derived either formally [45] or phenomenologi-
cally [44].

By viewing the epithelial cells that line a crypt as a one-dimensional 
chain of connected linear springs, Murray et al. (2009) [45] have for-
mally derived a continuum model for cell number density. This model 
comprises a reaction-diffusion equation with a spatially non-uniform 
proliferation term and a nonlinear diffusive flux term, with diffusion 
coefficient
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	 D q
q

( ) ,= µ
ν 2 	 (6.8)

where q denotes the cell number density and μ and ν denote the spring 
constant (assumed the same for all cell–cell interactions) and damping 
constant (assumed the same for all cells). As Figure  6.9 shows, there is 
generally good qualitative agreement between the cell velocities obtained 
with this coarse-grained model and those obtained from our 2D multi-
scale model. A discrepancy between the two models for smaller values of 
μ arises from the assumption that the crypt is one-dimensional.

Using a phenomenological approach, Osborne et al. (2010) [44] have 
developed a 2D continuum model for a crypt in which cells are treated as 
an incompressible viscous fluid obeying Darcy’s law. As Figure 6.10 shows, 
model simulations compare reasonably well with the multiscale model, 
as well as with a cell-vertex model of the crypt. However, the continuum 
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model does slightly overestimate cell velocities within the crypt, as a result 
of the assumption of cell incompressibility, which in 1D corresponds to 
the limit μ → ∞ in the Murray et al. model [45].

﻿There are now a multitude of such integrative models in the literature 
(see, for example [46–48]). Similar to these, the modeling approach dis-
cussed in this chapter suffers from the problem that we have made simpli-
fications at each scale and, while we can investigate the errors induced at 
each level, we have not developed a theory for how to do this across scales. 
This remains an open question. Therefore, an important future challenge 
for the modeling community is to develop a systematic way of constructing 
such models. As described earlier, one possible way to approach this might 
be in the recent research that aims to develop continuum models of indi-
vidual-based computational schemes (see, for example, [45,49,50]). This 
allows us not only to see precisely where the different modeling assump-
tions at the cell-level affect tissue-level behavior, but may also allow us to, 
in the future, use the well-developed mathematical machinery for partial 
differential equations to address key problems in multiscale modeling.
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Introduction
The transition from normal tissue to invasive cancer is a multistep process 
in which increasingly malignant cellular populations emerge over time 
(1–3), generally coincident with accumulating genomic mutations. This is 
often described as “somatic evolution” (4–5) because it appears formally 
analogous to Darwinian evolution in nature. While this conceptual model 
is well accepted, the interactions with phenotypic properties and envi-
ronmental selection forces that determine individual fitness remain ill 
defined. Furthermore, the language of evolution is often employed in car-
cinogenesis without full explanation. For example, it is often stated that, 
during carcinogenesis, some random mutations “confer a selective growth 
advantage” resulting in clonal expansion and subsequent tumor growth.

However, precisely how a genomic change alters the phenotype and 
how a phenotypic trait interacts with environmental growth constraints 
and selection factors remains vague. Thus, while the conceptual model is 
appealing and well accepted, the dynamics governing the Darwinian inter-
actions of altered cellular genotypes with changing microenvironments 
often remain unclear. Theoretical models of tumor development typically 
include a sequence of genomic mutations and epigenetic changes synchro-
nous with progressive drift of cellular populations from normal through 
premalignant lesions to invasive cancer (6). Line drawings (“Vogelgrams”) 
(6) have been developed to correlate alterations in specific oncogenes and 
tumor suppressor genes with a linear progression from normal tissues 
through premalignant lesions (large and small polyps) to invasive colorec-
tal cancer. This approach, although useful conceptually and pedagogically, 
is overly simplified, ignoring, for example, the stochastic nature of muta-
tions, mitigating intracellular processes such as the chaperone function 
of heat shock proteins, and the critical role of microenvironmental selec-
tion factors that determine the fitness of any given phenotype. The role 
of the mutation rate in driving somatic evolution remains the subject of 
debate. Loeb and others (7) hypothesize an increased mutation rate due to 
defects in chromosomal stability, or DNA repair pathways is necessary as 
a forcing function to produce the number of genomic changes required for 
evolution of invasive cancer. This assumes the background mutation rate 
is insufficient to allow the necessary carcinogenic mutations to accumulate 
in the human life span. The role of the mutator phenotype is supported by 
observation of large numbers of mutations in most cancer cells (8) and 
increased mutation rates in early colon and esophageal cancers (9,10).
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On the other hand, Tomlinson and others cite (11,12) empirical evidence 
and mathematical models to demonstrate that normal mutation rates are 
sufficient for tumor evolution in microenvironments generating strong 
clonal selection. Bissell and colleagues (13–16) have published a number 
of studies showing that microenvironmental factors such as the extracel-
lular matrix (ECM) and admixed normal cell populations alter tumor cell 
proliferation independent of permanent genomic change and find that, 
in some stages of the somatic evolution of the malignant phenotype, the 
environment plays a greater role than mutagenesis. Finally, the muta-
tor hypothesis does not typically incorporate epigenetic phenomenon 
such as DNA methylation and acetylation or intracellular factors such as 
heat shock proteins that can maintain phenotypic robustness in the face 
of genomic heterogeneity. In fact, reversible changes in phenotype are 
observed in Bissell’s studies and are clearly dependent on environmental 
factors. This phenomenon likely plays an important role in carcinogen-
esis and development of metastases [17]. As with any nonlinear process, 
the complex multistep transformation of normal cells to invasive cancer 
will not be fully understood without formal mathematical models (18,19). 
To this end, a number of quantitative models of carcinogenesis have been 
developed based on methods adapted from information theory, cellular 
automaton models, and evolutionary game theory. Insights from these 
models, in conjunction with experimental observations, have yielded a 
number of insights into the Darwinian dynamics of somatic evolution.

Model: Evolutionary Game Theory
Evolutionary Game Theory allows the concept of somatic evolution to be 
formalized and framed mathematically to examine the cellular and intra-
cellular dynamics (20) that lead to the evolution of specific properties of 
the malignant phenotype (17,20). In general, a volume of tissue contains ns 
distinct cellular populations designated xi, i = 1, …, ns and described by a 
phenotype vector ui composed of multiple scalar components. Population 
and mean phenotype vectors are

	 x = [x1 … xns]	 (7.1)

	 u = [u1 … uns]	 (7.2)

where xi is the number of individuals in population i and u is adaptive 
phenotypic properties of each cell population. This could be linked to 
quantitative data by designating each orthogonal axis in u to be the 
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genes in a microarray. Alternatively, they could be specific measur-
able phenotypic properties such as proliferation rate, glucose uptake, 
etc. Note that “mean phenotype” assumes some phenotypic diversity 
within each cellular population as observed in clonal populations of 
both normal and transformed cells (13), and this diversity is typically 
represented through suitable distribution functions. In this somatic 
ecosystem, cellular fitness, defined by proliferative capacity, may be 
determined through a fitness-generating function (G-function) (21–26) 
with a virtual variable, v. Setting the virtual variable equal to the phe-
notype of a population produces its fitness, which is a function of x, u, 
and substrate concentration R. The relationship between fitness Hi and 
the G-function is

	 G(v, u, x, R)v = ui = Hi (u, x, R) i = 1, … , ns.	 (7.3)

The population dynamics may be written as ns fitness functions or one 
fitness-generating function.

	
x x H R x G V Ri i i i v ui
= = =( , , ) ( , , , )|u x u x 	 (7.4)

The G-function simplifies writing the equations of motion and provides 
a conceptual advantage for understanding system evolution as a plot of 
G versus v for fixed u, x, and R is a geometric representation of the adap-
tive landscape upon which evolution takes place. We present later some 
results based on a multiple G-function model describing tumor growth 
and development within somatic ecosystems. For now, we use a single 
G-function model—a simpler approach that, nevertheless, yields identical 
qualitative results to the more comprehensive model.
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It is immediately apparent that the first right-hand term in parenthe-
ses is the Lotka–Voltera equation. K is the carrying capacity, and α is 
the quantitative effects of one population on another. The second term 
represents substrate dynamics, where R is the concentration of a critical 
substrate, substrate uptake obeys Michelis–Menten kinetics (hence, the 
E and R0 terms), and m represents the substrate utilization to maintain 
basic cell function. The overall value of this term must be positive (i.e., 
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substrate uptake must exceed basal demand) for proliferation to occur. 
Thus, in Equation 7.5, cell populations in vivo are subject to several growth 
constraints: (1) “Tissue organizational” controls are included in the first 
right-hand term these include: (a) intracellular factor, that determine 
population density [K(v)] through growth promoters such as oncogenes 
and growth inhibitors, including tumor suppressor genes, senescence, and 
apoptosis pathways, and (b) extracellular controls generated within the 
environment [defined by a(v, u)] through cell–cell interactions or prod-
ucts of other cell phenotypes, such as the ECM, soluble growth promot-
ers, etc., consistent with studies demonstrating that environmental factors 
exert significant control in normal tissue development (31–33). (Note that 
both K(v) and a(v, u) are lumped phenomenological terms.) (2) Substrate 
availability (second right-hand term), that is, cells must obtain substrate 
in excess of basal metabolic demand m to supply energy and macromol-
ecules for proliferation. Bn = dncn, where cn is a constant converting excess 
substrate into new cells, and dn is maximum proliferation rate. We assume 
normal cells under physiologic conditions are not subject to substrate 
limitations, so their proliferation is controlled solely by tissue controls. 
Pathological exceptions include acute or chronic ischemia such as stroke, 
myocardial infarction, or diabetic ulcers.

Results: The Physical Microenvironment 
and Evolution of the Malignant Phenotype

Evolutionary Game Theory

When these evolutionary models are applied to carcinogenesis, several 
interesting conclusions are reached:

	 1.	Initial tumor cell growth is controlled by normal tissue constraints 
generated by cellular interactions with other cell populations, the 
extracellular matrix, and soluble or insoluble growth factors. Thus, 
cellular adaptation in early carcinogenesis will favor phenotypic 
alterations that reduce these constraints, such as loss-of-function 
mutations in tumor suppressor genes and gain-of-function muta-
tions in oncogenes. That is, since proliferation of normal cells under 
physiologic conditions is controlled by the social constraints in 
Equation 7.5 (the first right-hand term) and not substrate limitations 
(the second right-hand term), evolutionary pressures favor muta-
tions that reduce cellular sensitivity to normal growth constraints. 
Thus, the initial evolution of tumor cells requires loss-of-function 
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mutation in tumor suppressor genes and gain-of-function mutations 
in oncogenes similar to the conventional view of carcinogenesis as 
expressed in, for example, the “Vogelgram.”

	 2.	Global evolutionary dynamics that determine the time course of this 
process are governed by:

	
u u x

i i
v u

G v R
v i

= ∂
∂ =

σ2 ( , , , ) 	 (7.6)

		  where σi is the variance of the phenotypic distribution around the 
mean and ∂G/∂v is the slope of the fitness landscape representing the 
change in fitness for a given change in phenotype.

			   There are two points in Equation 7.6 that may provide insight 
into somatic evolution. First, the evolutionary rate is dependent on 
phenotypic and not genotypic diversity or, more broadly, evolution 
selects phenotypes not genotypes. Nevertheless, the dependence of 
evolutionary dynamics on σi reflects the increased rate with which 
phenotypically diverse populations explore the fitness parameter 
space and does support the hypothesis that increased mutation 
rates, by generating multiple phenotypic variants, promotes carcino-
genesis (7). Second, Equation 7.6 demonstrates that evolution is not 
solely dependent on phenotypic diversity (and, therefore, the muta-
tion rate), because cellular populations may evolve even with limited 
phenotypic diversity (i.e., low mutation rates) if microenvironmen-
tal conditions generate strong clonal selection pressures increasing 
∂G/∂v. This is similar to modeling results by Tomlinson (12) and con-
sistent with observations by Bissell et al. (13–17) that tumorigenesis 
of genetically stable populations may be promoted or suppressed by 
wounding, peritumoral stromal cells, ECM alterations, changes in 
growth factor concentrations, etc. (31,32). (3) Even multiple muta-
tions in oncogenes and tumor suppressor genes only led to self-
limited growth (Figure  7.1). This is because growth of tumor cells 
is eventually limited by substrate availability resulting from cellular 
proliferation. This predicted a previously unknown era in carcino-
genesis in which somatic evolution was dominated by microenviron-
mental hypoxia and acidosis.

Evolutionary-model-predicted carcinogenesis proceeds through two 
distinct phases (33–36). The second of these phases, in which cellular 
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growth in premalignant lesions is limited by substrate limitation, had 
not been previously identified in traditional theoretical models of car-
cinogenesis. This led us to reexamine in detail the cellular and environ-
mental dynamics that might result in substrate-limited evolution and the 
role of these interactions in emergence of the glycolytic phenotype dur-
ing carcinogenesis (34–47). How could this occur in typical premalignant 
lesions such as colon polyps or breast ductal carcinoma in situ (DCIS)? 
This requirement for substrate limitation led to the realization that, while 
premalignant lesions are often characterized as highly vascularized, this 
is true only in a macroscopic sense. That is, while a premalignant lesion 
such as a polyp or carcinoma in situ may have a vascular stroma, the 
hyperplastic epithelia are physically separated from their blood supply by 
a basement membrane. This is illustrated in Figure 7.1 as the hyperplas-
tic epithelium of a carcinoma in situ is clearly delimited from the stroma 
by a thin basement membrane. Blood vessels are confined to the stromal 
compartment and, hence, early carcinogenesis and development of the 
malignant phenotype actually occur in an avascular environment. As a 
result, substrates, such as oxygen and glucose, must diffuse from the ves-
sels across the basement membrane and through layers of tumor cells, 
where they are metabolized. The diffusion and consumption of substrate 
was modeled by Krogh (43) as early as 1919 through reaction-diffusion 
equations that demonstrated oxygen concentrations will decrease with 
distance from a capillary such that oxygenated cells were limited to a dis-
tance of less than 150 µm from a blood vessel (38). In the 1950s, empirical 
studies by Thomlinson and Gray showed that viable tumor cells were not 
observed at distances greater than 160 µm from blood vessels, consistent 
with Krogh’s calculations. Subsequent experimental studies in window 
chambers in animal models have demonstrated that near-zero partial 
pressure of oxygen (pO2) is observed at distances of only 100 µm from a 
vessel (39,40).

Thus, premalignant lesions, provided their basement membranes 
remain intact, will inevitably develop hypoxic regions near the oxygen dif-
fusion limit, as persistent proliferation leads to a thickening of the epithe-
lial layer, pushing cells ever more distant from their blood supply, which 
remains on the other side of the basement membrane (Figure 7.1). At this 
penumbral layer, microenvironmental selection forces will favor pheno-
types that adapt to harsh environments (through resistance to hypoxia and 
acid-induced cell toxicity) and successfully compete for scarce resources, 
such as oxygen and glucose.
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This is consistent with the model predictions of an era in carcino-
genesis dominated by substrate limitation. Low oxygen concentrations 
appear to be the first substrate limitation confronting neoplastic cell 
populations as reaction-diffusion models, and empirical studies have 
shown that pO2 decline more rapidly with distance from blood vessels 
than do glucose levels. Although the presence of hypoxia in premalig-
nant in situ lesions has not been measured directly, it can be inferred 
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Figure 7.1  (See color insert following page 40)
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from the frequent observation of necrosis in these lesions and by dem-
onstration of hypoxia-inducible enzymes such as carbonic anhydrases 
IX and XII in late stage DCIS, particularly adjacent to areas of necro-
sis (41). While the upregulation of glycolysis is a successful adaptation 
to hypoxia/anoxia, it also has significant negative consequences due 
to increased acid production, which causes significant decreases in 
local extracellular pH. Prolonged exposure of normal cells to an acidic 
microenvironment typically results in necrosis or apoptosis through p53 
and caspase-3-dependent mechanisms (42). The physiological trigger for 
apoptosis may be the collapse of the transmembrane H+ gradient that 
occurs with intracellular acidosis, but other factors may also play a role. 
Thus, constitutive upregulation of glycolysis requires adaptation to the 
negative effects of extracellular acidosis through resistance to apoptosis 
or upregulation of membrane transporters to maintain normal intra-
cellular pH. Intracellular pH is maintained by multiple families of H+ 
transporters, which are coexpressed and redundant. Na+/H+ exchange 
and vacuolar H−-ATPases have both been observed to be upregulated 
in cancers, and vacuolar H+-ATPase may confer resistance to apoptosis 
(43–45). Additional adaptations may also be required as the increased 
glucose consumption rates further decrease glucose concentrations. 
Cellular competition for this increasingly limited resource will therefore 
increase and favor phenotypes with greater numbers of either high Vmax 
(e.g., GLUT-1) or low Km (e.g., GLUT-3) glucose transporters. Such upreg-

Figure 7.1  (Opposite) From reference 42. The prediction of a substrate-domi-
nated era of carcinogenesis from mathematical models led to recognition of the 
role of the anatomy and physiology of epithelial surfaces in somatic evolution 
The hypothesized substrate and metabolite diffusion-reaction kinetics and their 
effects on tumor cell evolution are shown in (a). As proliferation carries tumor 
cells farther and farther from the basement membrane (and the underlying blood 
vessels), they initially become hypoxic resulting in upregulation of glycolysis. 
This, in turn, results in acidification of the environment creating new environ-
mental selection forces that promote phenotypic changes that reduce acid-medi-
ated cytotoxicity. This cellular population has a profound proliferative advantage 
because it creates an acidic environment that is toxic to other populations. In 
(b) H&E micrograph of DCIS demonstrates tumor cells proliferating into the 
duct remaining separated from the underlying vessels by the intact basement 
membrane.
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ulation of glucose transporters has been observed during carcinogenesis 
in esophageal, gastric, breast, and colon cancers (46–50). 

Modified Cellular Automata Models

The potential boundary conditions imposed by the surface anatomy of 
ducts were tested by Smallbone et al. (51,52) in silico, using a modified cel-
lular automaton approach that followed the history of individual cells to 
examine phenotypic evolution as well as the mutual interactions of cells 
and the changing microenvironment within a duct (Figure 7.2). The two-
dimensional model is composed of an M × N array of automaton elements 
with a specific rule set governing their evolution, as well as glucose (g), 
oxygen (c), and H+ (h) fields, each satisfying reaction-diffusion equations. 
A two-dimensional automaton was used to focus on growth away from the 
basement membrane, rather than along the duct. The avascular geometry 

A B
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Figure 7.2  (See color insert following page 40) 
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of premalignant epithelia by assuming that one edge of the array repre-
sents the basement membrane. Initially, the automaton consists of a layer 
of a normal epithelial tissue, so the initial array consists of normal cells 
at the basement membrane and is vacant elsewhere. As well as prolifera-
tion and death, the cells may randomly undergo three possible heritable 
changes, either through mutations or epigenetic changes such as altera-
tions in the methylation patterns of promoters. The cells may become (1) 
hyperplastic, allowing growth away from the basement membrane; (2) 
glycolytic, increasing their rate of glucose uptake and utilization; or (3) 
acid resistant, requiring a lower extracellular pH to induce toxicity. These 
three changes give rise to eight different phenotype combinations and, 
thus, eight competing cellular populations. Simulations from these models 
are shown in Figure 7.2, which demonstrates the temporal evolution of a 
typical cellular automaton model of tumor arising on the surface of a duct. 

Figure 7.2  (Opposite) From References 51 and 52 showing simulations 
of intraductal evolution  from the mathematical model described in the text 
showing potential pathways in ductal carcinoma in situ. Simulations start with 
a single layer of normal epithelial cells (grey cells) on a basement membrane 
(A). All simulations found that initial growth occurred only when mutations 
produced a hyperproliferative phenotype (pink cells) (B) through mutations 
in oncogenes, tumor suppressor genes, etc. Growth into the lumen eventually 
ceased, however, due to hypoxia and acidosis (B). Without additional cellular 
evolution, this population remains limited. Additional growth occurred fol-
lowing two possible sequences: (1) heritable changes that upregulate glycoly-
sis. This population with constitutive upregulation (green cells) (C) allow this 
new population to replace the hyperplastic cells and to extend further into the 
lumen. However, clonal expansion is eventually limited by acid-mediated tox-
icity. This promotes evolution of a glycolytic, acid-resistant phenotype (yellow 
cells) which rapidly replaces all other extant populations in a highly aggressive, 
infiltrative pattern extending to the basement membrane and farther into the 
lumen (D). (2) A second pathway begins with development of an acid-resistant 
population (blue cells). This population expands and replaces many of the 
hyperplastic population (E) but growth remains limited by hypoxia promot-
ing emergence of a phenotype with upregulated glycolysis and acid resistance 
(yellow cells) identical to the population in (C). However, unlike in (C), this 
phenotype initially grows into the normoxic region forming nodules of vary-
ing size (F). These eventually coalesce into a pattern essentially identical to the 
appearance in (D).
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The top-left image consists of normal epithelial (gray) cells aligned along 
the basement membrane. The top-right image represents 100 generations 
of the model and shows pink hyperplastic cells (i.e., those with mutations 
in oncogenes and tumor suppressor genes) extending into the lumen of 
the duct and away from the basement membrane. The lower-left image is 
after 250 generations and shows replacement of many of the hyperplas-
tic cells by glycolytic cells (green) in hypoxic regions of the premalignant 
lesion. In the lower-right image, following 300 generations, the glycolytic 
cells, hyperplastic cells, and normal cells have been largely replaced by 
cells that are both glycolytic and acid resistant (yellow). This represents 
an evolutionary sequence driven by microenvironmental hypoxia and aci-
dosis that produce sufficient toxicity to force cellular evolution to more 
adapted phenotypes. Note that significant hypoxia and acidosis can be 
expected in the duct only a few cell layers (values shown on the x-axis) 
from the basement membrane. Figure 7.4 shows an increased expression 

Figure 7.3  (See color insert following page 40) Multiple immunohistochem-
istry images from  MCF7 cells grown in spheroids at 1 and 15 days following 
initial seeding. (A) Demonstrates GLUT-1 antibody distribution on day 1 show-
ing upregulation only in the hypoxic core of the spheroid adjacent to areas of 
necrosis. (B) Shows NHE-1 staining diffusely consistent with constitutive upreg-
ulation. (C) Shows and (D) are two different spheroids each showing cluster of 
cells with upregulation of GLUT-1 in the normoxic regions of the spheroids. This 
growth pattern is identical to the nodular morphology predicted in Figure 7.2.
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of GLUT 1, presumably in response to hypoxia 3 or 4 cell layers from the 
basement membrane as predicted by the math models.

In Vitro Studies

Tumor spheroids grown in microgravity are unusually large, reaching 
about 1 cm in diameter and have diffusion-reaction kinetics dominat-
ing their in vivo physical characteristics, similar to those of intraductal 

BA C

ED F

Figure 7.4  (See color insert following page 40) Immunonistochem
istry demonstrating glucose transporter 1 (GLUT-1) distribution in Ductal 
Carcinoma In-Situ (DCIS) and invasive breast cancer. (A) Shows central dis-
tribution of upregulated GLUT-1 with a gradient of intensity that parallels the 
transition from normoxia to hypoxia as predicted in Figure 5B and similar to 
the gradient observed in spheroids at day 1 (Figure 6A). (B) Demonstrates a 
nodule of cells that predominantly demonstrate upregulation of GLUT-1 in 
the periphery of DCIS similar to the nodules seen in spheroids (Figure 5C and 
D). (C) Demonstrates extension of cells with upregulated GLUT-1 from the 
periluminal regions directly into a focus of invasion. (D) Show populations of 
cells with increased GLUT-1 expression in the periphery of DCIS adjacent to 
foci of microinvasion in which the cells also have increased GLUT-1 expres-
sion. Note the diffuse intracellular staining (i.e. membrane, cytoplasmic, and 
nuclear). (E) Demonstrates a region of DCIS in the upper left increased GLUT-1 
expression only in the luminal, hypoxic cells (arrowheads). In the lower right 
are foci of microinvasion with increased GLUT-1 expression (arrows). Note the 
cells with increased GLUT-1 expression adjacent to the basement membrane in 
the adjacent tumor filled duct. (F) Demonstrates GLUT-1-positive cells in an 
invasive cancer.
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tumors (53,54). As a result, they develop hypoxia, necrosis, apoptosis, 
and regional variations in cellular phenotypes. These spheroids have 
been used as an experimental model to reproduce variations in tumor 
microenvironmental and phenotypic adaptation predicted to occur by 
mathematical models. Specific attempts to test model predictions of nod-
ular morphology of some evolving populations led to experiments with 
MCF-7, which exhibit much less aerobic glycolysis than the more aggres-
sive, metastatic cell lines such as MDA-231 or MDA-438 but are resistant 
to acid-mediated toxicity. For this reason, it was anticipated that evolution 
of the MCF-7 cells to a more glycolytic and aggressive phenotype under 
hypoxic, acidic environmental conditions could be observed and that 
the subsequent growth dynamics would at least initially lead to nodular 
morphology. Initial experiments (55) showed that the MCF-7 spheroid 
were similar in size (up to 10 mm in diameter) to DCIS observed clini-
cally. Environmental and cellular heterogeneity similar to those seen in 
DCIS was reproduced in the nodules, which developed zones of hypoxia, 
apoptosis, and necrosis (Figure 7.3). Despite the internal dynamics with 
environmental heterogeneity and cellular proliferation and death, the 
nodules have been maintained in a steady state of size over a period of 
30 days.

All three spheroids harvested on day 1 exhibited evidence of hypoxia 
in the core with necrosis. Immunohistochemistry (IHXC) stains dem-
onstrated upregulation of GLUT-1 in cells about 100–50 mm from the 
edge, representing an adaptation to hypoxia (Figure  7.5). IHC staining 
for NHE-1 was observed throughout all of the cells of the spheroid at all 
time points so that there was no evidence of regional or temporal varia-
tions in NHE-1 (Figure 7.5). In two (of three) spheroids harvested on day 
15 following initiation and two (of three) spheroids harvested on day 30, 
cells exhibiting increased GLUT-1 were observed in the periphery of the 
spheroid (Figure 7.4), which is normoxic based on both the simulations 
and the absence of an increased GLUT 1 expression on the spheroids on 
day 1. In each spheroid, the nodules varied in size—a pattern remarkably 
similar to the model simulations. GLUT-1 and HIF-1a were coexpressed 
(not shown), indicating that increased glycolysis was regulated by stabili-
zation of HIF-1a.

Clinical Observations

Gatenby et al. reviewed (55) 20 clinical specimens with DCIS for evi-
dence of cellular adaptations predicted by the mathematical model and 
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observed in spheroids. In all but one of the samples, tumor cells with 
upregulated GLUT-1 were observed in at least some regions of DCIS. In 
all 19 samples, an increased GLUT-1 expression was present in the central 
regions of intraductal tumors (Figure  7.4). In 17 of 19 specimens, cells 
with upregulated GLUT-1 were also observed in the peripheral (presum-
ably normoxic regions) regions of some of the intraductal tumors. In all 
of these cases, the cells formed clusters similar in pattern to the model 
simulations and spheroids, suggesting that adaptation to acidosis typi-
cally precedes constitutive upregulation of glycolysis. This differs from 
the modeling results in which upregulated glycolysis preceded the devel-
opment of acid resistance in most simulations. The reason for this will be 
the subject of further study.

In four specimens, a focus of microinvasive tumor was observed 
adjacent to a tumor-filled duct. In each of these cases, the cells in the 
invasive tumor demonstrated upregulated GLUT-1, as did the cells in 
the periphery of the DCIS immediately adjacent to the focus of micro-
invasion. Upregulation of GLUT-1 was observed in cells within four of 
five invasive cancers (Figure 7.4). The cellular expression of GLUT-1 
was often both membranous and cytoplasmic—a pattern previously 
observed by Brown et  al. (56). Regions of cells with an increased 
expression of NHE-1 were observed in all eight specimens examined 
(Figure  7.5). In DCIS, the distribution typically showed areas of an 
increased expression both centrally and in the periphery. Distinctive 
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Figure 7.5  (See color insert following page 40) Immunohistochemistry 
showing sodium-hydrogen exchanger 1 (NHE-1) distribution in DCIS. In (A) 
NHE-1 expression is increased in a region of the DCIS extending into the nor-
moxic region where there is a focal bulge into the basement membrane. In (B), 
there is a population of cells exhibiting increased NHE-1 expression in the periph-
ery of DCIS adjacent to a focus of microinvasion which also exhibits increased 
expression of NHE-1. (C) Demonstrates upregulated NHE-1 in cells within an 
invasive breast cancer.
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nodules, such as those seen in GLUT-1 distribution, were not observed. 
In the four cases of microinvasion, an upregulated NHE1 expression 
was observed both in the invasive cells and in the DCIS cells immedi-
ately adjacent to the foci of microinvasion. In all three cases of inva-
sive cancer examined, NHE-1 was upregulated diffusely in the tumor 
cells.

Similar results were recently reported by Lee et al. (57), who demon-
strated a hypoxia–glycolysis–acidosis sequence in cervical cancer and 
by Pinheiro et al., who demonstrated upregulation of monocarboxylate 
transporters 1 and 4 (a presumed adaptation to acidosis) in the transition 
from in situ to invasive gynecological cancers (58).

Discussion

Can Perturbations of the Physical Microenvironment 
Inhibit Carcinogenesis?

Ultimately, the goal of understanding the role of the physical microen-
vironment in carcinogenesis is the translation into potential clinical 
prevention strategies. There have been to date no explicit experimen-
tal or clinical attempts to perturb the physical microenvironment dur-
ing carcinogenesis to determine the effects on transition from in situ to 
invasive cancer. However, it is possible that such experiments have been 
inadvertently performed by individuals who self-induce brief episodes 
of systemic acidosis through exercise. Indeed, there is accumulating evi-
dence that regular physical activity is a potent cancer prevention strategy. 
Friedenreich and Orenstein (59) recently reviewed over 170 observations 
for epidemiological studies and concluded that evidence for decreased 
cancer risk with increased physical activity was convincing for breast and 
colon cancer, probably for prostate cancer, possible for lung cancer, and 
unknown for all other sites. The mechanism by which regular physical 
activity reduces cancer risk is unknown. It is widely speculated that the 
beneficial effects in breast cancer arise from exercise-induced alteration 
of hormone levels, although no specific mechanism has been developed 
experimentally. Furthermore, the benefits of exercise have been demon-
strated in pre- and postmenopausal women and in a number of other 
cancer sites as noted earlier. Smallbone et al. have proposed the hypoth-
esis that the observed protective effects may be mediated by the tran-
sient systemic acidosis associated with exercise. Specifically, studies have 
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shown that even moderate exercise may reduce arterial pH to less than 
7.3 for as much as an hour. This would briefly alter the diffusion-reaction 
kinetics within an in situ cancer, perhaps causing tumor cell necrosis and 
a delay in further somatic evolution. Preliminary in silico studies have 
suggested that brief, transient episodes of systemic acidosis may, in fact, 
delay the transition from in situ to invasive cancers by many years. These 
interesting results suggest a need to further explore the potential clinical 
effects of perturbation of the physical microenvironment in both cancer 
prevention and treatment.

Conclusion
The role of the physical microenvironment in carcinogenesis has not 
been well investigated. However, an iterative research approach in which 
mathematical modeling is integrated into in vitro, in vivo, and clinical 
observations has suggested that oxygen, acid, and glucose concentra-
tions within premalignant tumors strongly affect their subsequent evo-
lution to an invasive cancer. From this work, novel insights have been 
gained into the roles of the unique anatomy and physiology of epithelial 
surfaces in carcinogenesis. Because epithelial tumors grow on an intact 
basement membrane, they remain separated from their blood supply, 
and substrate and metabolites must reach tumor cells through diffusion-
reaction kinetics. As tumor cells proliferate further and further from 
the basement membrane, they will develop regions of hypoxia (which 
is often cyclical) requiring upregulation of glycolysis. The consequent 
increase in acid production and absence of blood vessels to remove excess 
H _results in the development of a potentially toxic, acidic microenvi-
ronment. This, in turn, requires adaptations to reduce acid-induced 
cytotoxicity. This sequence appears critical for subsequent evolution 
of invasive cancer because it confers a profound adaptive advantage. 
Specifically, when tumor cells adapted to the hypoxic, acidic regions of 
in situ cancers move into normoxic regions, they create an acidic envi-
ronment (because of constitutively upregulated glycolysis) that is toxic 
to the local cells but not to themselves. That is, the hypoxia–glycolysis–
acidosis sequence produces a mechanism that allows for transition to 
an invasive phenotype (see Figure 7.5 panel C). If the critical role of the 
physical microenvironment in evolution of the malignant phenotype is 
confirmed, this work will provide opportunities for new cancer preven-
tion strategies.
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Multiscale Modeling of 
Cell Motion in Three-
Dimensional Environments

Dewi Harjanto and Muhammad H. Zaman

Introduction
Both individual and collective cell migration are hallmarks of cancer 
invasion preceding metastasis and the fatal outcome of the disease.1 To 
date, basic paradigms of cell migration, including the migration of can-
cer cells, have been extensively studied in reductionist 2D systems that 
insufficiently reflect the complexity of cancer invasion in vivo.2 These 
reductionist approaches have been extremely powerful in identifying the 
genetic and epigenetic factors involved in various stages of tumor develop-
ment and progression, but are also limited in their capacity to capture the 
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systems-level behavior seen in vivo. Additionally, the artificiality of the 
substrate, dimensionality, and unrealistic geometric constraints can affect 
the observed signaling pathways quantified.3 Migration experiments in 
2D environments are also blind to biochemical and biomechanical effects 
of the surrounding matrix, resulting in an incomplete understanding of 
the tumor cell migration process.

Quantitative imaging and modeling of cellular motion in native-like 
three-dimensional matrices offer a far superior alternative that can cap-
ture a more realistic picture of in vivo cell migration in a controlled 
environment.4–7 Not surprisingly, recent studies have shown marked 
differences between molecular, macromolecular, and cellular events 
in 2D and 3D environments.3 These initial results have also shown 
improved agreement with in vivo observations, highlighting the need 
and necessity of measuring tumor cell migration in native-like 3D 
environments.

The traditional paradigm for migration, developed primarily from 
research on fibroblasts and keratinocytes moving on 2D substrates, con-
sists of a multistep process.8–10 First, the cell polarizes, adopting an elon-
gated morphology via changes in the actin cytoskeleton. The cell then 
forms pseudopodia by extending out actin filaments at the leading edge to 
explore the matrix. Next, the cell interacts with the matrix, with integrins 
binding to extracellular matrix (ECM) components and clustering for sig-
naling. The cell forms focal contacts in response to the integrin clustering, 
as the actin-binding proteins vinculin, paxilin, and alpha-actinin colo-
calize, a process regulated by kinases, including Rho-GTPases. The cell 
then contracts its cytoskeleton via actomyosin, which is regulated through 
the Rho-Rho kinase (ROCK) signaling pathway, pushing the cell forward. 
Finally, the cell detaches at the trailing edge, with the rear focal contacts 
cleaved via proteases such as calpain and sheddases. The integrins at the 
trailing edge surface are either released into the environment or absorbed 
into the cell endocytotically for reuse as new focal contacts are formed 
at the cell’s leading edge, and the cycle repeats. In 3D, a proteolytic step 
is added after the adhesion step, where proteases such as matrix metal-
loproteinases (MMPs) are recruited to the focal contact sites at the cell 
surface to locally degrade the ECM and to cleave latent MMPs, activating 
more proteolytic enzymes for the removal of sterically hindering matrix 
obstacles.11–13 An illustration comparing 2D and 3D migration is presented 
in Figure 8.1.
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Models
Mathematical modeling has greatly contributed to our understanding of 
cell migration.8,14 A major strength of computational approaches is their 
ability to isolate parameters that experimentally may be very difficult 
to extract.15 Simulations also have the added advantages of affordability 
and efficiency over experimental work. Models have been developed that 
not only quantify a wide spectrum of experimental results, but are also 
being used to focus and predict the outcome of future experiments. This 
predictive power of models has allowed for the creation of new knowl-
edge and a deeper understanding in 2D regarding the modes of motility, 
the balance between traction and adhesion, the role of matrix mechan-
ics, and signaling pathways regulating motility. While the bulk of mod-
eling efforts still continue to focus on migration in 2D due to the vast 

2D cell migration

3D cell migration

ECM Adhesions MMPs

Figure 8.1  On 2D substrates, cells form stable focal adhesions with the planar 
ECM. In 3D matrices, cells are capable of forming adhesions in all three dimen-
sions. Proteolysis of the ECM barriers also becomes more crucial.
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amount of literature available to calibrate and validate the models, the 
last few years have seen a significant surge in modeling efforts to study 
cell migration in 3D at both cellular and subcellular levels. It remains a 
challenge to create a unified model that accounts for the multiple levels 
of detail—cellular and molecular—as there is a dearth of good quantita-
tive experimental and computational data to draw on. Nonetheless, the 
power of such a model would be tremendous in not only mathematical 
and computational fields, but also in fundamental and applied clinical 
sciences, ranging from predicting the outcome of a single mutation in a 
given receptor or identifying a specific drug target. At the moment, we 
are far from such an idealistic situation. Yet, there have been significant 
improvements in development and integration of mathematical and com-
putational models that have allowed for an improved understanding of 
the migration process and predicting the outcomes of new experiments. 
In the following sections, we present an overview of a number of model-
ing strategies that are currently employed to probe cell migration at vari-
ous length and timescales.

Force-Based Models

Force-based models account for cellular generation of traction forces to 
calculate motility tracks based on parameters such as receptor–ligand 
interactions. There have been 2D force-based models, including the work 
of DiMilla et al.16 in which the researchers used receptor-ligand binding 
kinetics and implemented a viscoelastic-solid model to account for the cell 
mechanics.1 DiMilla et al. found that cell velocity is biphasically depen-
dent on cell–substrate adhesiveness, intracellular contractile force, and 
cell rheology. The model also predicted the importance of asymmetry in 
the distribution and adhesiveness of receptors. This work is an example of 
computational modeling guiding experimental efforts.

Zaman et al. present a 3D model that calculates traction forces, 
Ftraction, at the front and rear end of the cell based on the receptor adhe-
siveness, characterized by dimensionless parameters βf(t) and βb(t) 
that are functions of the number of receptors, ligand density, and their 
binding constant, and the force per ligand–receptor complex, FR-L, a 
function of matrix stiffness.17 The tractions forces Ftrac-f and Ftrac-b in 
the forward and backward directions, respectively, are given by the 
equations

	 Ftrac-f = FR-L × βf(t).	 (8.1a)
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	 Ftrac-b = FR-L × βb(t).	 (8.1b)

The model also includes the forces due to the cell protruding into the 
matrix, Fprotrusion, modeled with an experimentally defined magnitude and 
randomized direction, and the viscous drag, Fdrag. a function of cell veloc-
ity and geometry and matrix viscosity, due to the resistance of the vis-
coelastic ECM against cell movement. For simplicity, the model assumes a 
spatially uniform distribution of ligands and equal binding constants for 
the integrins at the front and rear of the cell. Cell velocity is then obtained 
from setting the net force acting on the cell to zero (Equation 8.2).

	 Ftotal = Fdrag + Ftraction + Fprotrusion = 0.	 (8.2)

The time step of the model is 600 s, which is too large to account for cell 
dynamics at the edges such as actin waves and lamellipodial contractions.

The model predicts a biphasic response in cell velocity to adhesive-
ness, cell detachment force, matrix stiffness, and ligand concentration, 
with peak velocity achieved at intermediate levels of each parameter. 
Asymmetry in receptor concentrations between the front and rear ends 
increases cell velocity. The results qualitatively agree with what has been 
found in 2D experimental and computational work, but with the addi-
tion of the matrix properties the model provides a more 3D, physiologi-
cal perspective.

However, the model, similar to other force-based algorithms, only 
predicts the movement of a single cell while cells in vivo generally migrate 
as a population. The model also fails to account for changing cell mor-
phology, and the effect of proteolysis and ECM remodeling on matrix 
mechanics is completely neglected. While the simulation outputs velocity 
values, the numbers are not necessarily accurate, and the model is more 
useful when considered qualitatively. The model nonetheless is useful for 
identifying key cell and matrix parameters that are responsible for cell 
motility in vivo.

Stochastic Random Walk Models

Stochastic models of persistent random walk in 3D matrices are extensions 
of 2D migration models such as that of Tranquillo.18–20 The path taken 
by each cell is determined by solving the Langevin equation numerically. 
The model selects a cubic volume element, and cells are distributed uni-
formly within this volume. A random velocity vector is assigned to each 
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cell where each component of the velocity is selected randomly from a 
Gaussian distribution. This Gaussian distribution is directly proportional 
to the size of the time step. Parkhurst et al. used this kind of model to pre-
dict neutrophil motility in a 3D environment using a time step of 0.1 s.21 
After each time step, the velocity and the location of each cell are updated. 
The model defines the root mean square displacement {D2}t of the cell as a 
function of root mean square speed Sn and persistence P as follows:

	 {D2}t = 2 (Sn)2P(t – P + Pe-t/P)	 (8.3)

(This formula is often used to extract speed and persistence from time-
lapse images in experimental studies of cell migration.) Experimentally 
derived random motility coefficient and persistence parameter values 
are available in the literature and can be used in the Parkhurst model. 
After simulation over a period of time, the path taken by each cell in 
three dimensions is generated. By comparing their computer simulations 
to experimental results, Parkhurst et al.21 determined that the 3D paths 
generated by the simulation are similar to the path taken by particles in 
a Brownian motion. By fitting the mean square displacement values for 
a different population of cells to calculate random motility coefficiency 
and persistence, they determined that with small cell populations (around 
10 cells), the variation in random motility coefficiency and persistence is 
high, whereas with larger populations (greater than 50 cells), the estimates 
of random motility coefficiency and persistence approach experimental 
values. Hence, they conclude that a cell population of as few as 100 cells is 
enough to predict population behavior.

The strength of this model lies in the fact that population behavior can 
be predicted. Even though it is the paths of individual cells that are being 
predicted, population effects are still visible. The downside to this model 
is that dynamic effects such as traction and drag are not incorporated into 
the model. Also, the effect of matrix stiffness and porosity are not appar-
ent in the model. Even though the population as a whole is evaluated in 
this model, it still fails to account for the fact that aggregation of cells is a 
possibility. However, this model is quite useful for validating the experi-
mental results of a small population of cells in a 3D environment.

Another generalized stochastic model of 3D cell migration is presented 
by Dickinson.22 Dickinson proposes a generalized random walk model 
in 3D that accounts for migration guided by haptoxtaxis, chemotaxis, 
or contact guidance in an anisotropic environment. The model presents 
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migration on different timescales, accounting for both the short-timescale 
locomotive fluctuations that are well represented with a random walk along 
with the longer-timescale, more diffusive migration observed. However, 
the model only predicts the movement of a single cell.

Reaction-Diffusion-Based Multiple Cell Spheroid Models

Multiple cell spheroid models simulate the movement of cell masses by 
accounting for cell proliferation and necrosis, based on the diffusion of 
nutrients and oxygen. Differential rates of cell proliferation and cell death 
lead to pressure gradients that induce cell locomotion. Growth factors and 
chemokines23 may also be included in such models.

Frieboes et al. propose a model of 3D tumor invasion using diffusion of 
nutrients, oxygen, and growth factors.24,25 Necrosis is induced when nutri-
ent and oxygen levels fall below a defined threshold level. Cell velocity is 
modeled to be proportional to local pressure, calculated using Darcy’s law, 
and the buildup of tumor mass through cell division. Cell adhesion forces 
are represented with surface tension. Growth is calculated by using the 
conservation of mass. The results of the model suggest that there is more 
mitosis occurring at the edges of the tumor mass, where there is more per-
fusion of nutrients and oxygen; in contrast, in the middle of the spheroid, 
there are inadequate levels of nutrients, oxygen, and growth factors, so 
cells there die rather than proliferate. The authors conclude that diffu-
sion gradients drive invasion by changing the tumor morphology, with 
high proliferation rates at the tumor rim resulting in subtumor formation, 
increasing the surface area exposed to free nutrients (i.e., less has to dif-
fuse into the core to support the tumor). The breaking off of clusters is thus 
more conducive to metastasis. The computational results agreed well with 
experimental data.

Stein et al. present a model of a tumor cell population ui(r,t) based on 
a simple reaction-diffusion equation (Equation 8.4) in which cells prolif-
erating at a given rate g are considered to be diffusing with a diffusion 
constant D that correlates with motility.26,27

	
∂
∂

= ∇ − ∇ ⋅ + − + −u
t

D u v u s r R t gu u
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i
i i r i i

i2 1δ( ( ))
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. 	 (8.4)

The spheroid is assumed to be radially symmetric. The authors distin-
guish the cells in the core of the tumor from the invasive cells on the rim 
of the spheroid, with invasive cells further defined by a shedding rate 

© 2011 by Taylor and Francis Group, LLC



164    ◾    Dewi Harjanto and Muhammad H. Zaman

from the core surface, s, and radial velocity, vi. r is the radial coordinate 
from the tumor core, and R(t) is the core radius at time t. Parameter 
values are selected based on data from experiments that were also con-
ducted by the group. They proposed that cells are more directed in their 
motility due to loss of cell–cell adhesion, chemotaxis away from waste or 
toward oxygen and nutrients, or haptotaxis because of MMP-mediated 
ECM breakdown. The model results suggest that the loss of cell–cell 
adhesion (increased shedding) could account for the more directed 
migration observed in the wild-type U87 cells compared to U87∆EGFR 
cells, a glioblastoma model cell line that has a mutation in EGFR that 
increases invasiveness.

A major drawback of reaction-diffusion based models is that they 
neglect matrix properties, such as density, porosity, and stiffness, which 
are significant factors in 3D migration. They also fail to account for sub-
cellular events such as lamellipodial formation and retraction. However, 
reaction-diffusion models are useful for simulating the migration of cell 
populations with chemokines, albeit only qualitatively at this point.

Monte Carlo Models

Monte Carlo methods can also be applied to model 3D migration. They are 
useful for explicitly accounting for the ECM and changing many param-
eters qualitatively.

Rubenstein and Kauffman model a multicellular spheroid (glioma) 
invasion by extending a cellular Q-Potts simulation to assign states to dis-
crete lattice sites that represent cells as well as ECM.28 Initially, a spheroid 
of cells is positioned in the middle of an ECM lattice. The cells are in one 
of three states: proliferative, quiescent, or necrotic, with cells changing 
between the three depending on waste and nutrient levels, and necrosis 
being a terminal state. Proliferating cells result in more cells replacing 
ECM sites. The ECM assumes either collagen fiber or nonfibrous matrix 
states. The authors applied the differential adhesion hypothesis, a ther-
modynamic principle that states that cells move about until they reach 
an arrangement that gives the lowest adhesion energy. Different adhesion 
energies are given between two adjacent sites (cell–cell or cell–ECM), with 
values selected based on experimental data. The lattice evolves to adopt 
the lowest energy state. While the model is actually in 2D, the results may 
be interpreted as cross sections of 3D cell masses, analogous to images 
obtained from confocal microscopy, as the simulation sought to account 
for migration phenomena observed in 3D ECM.
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By running the simulation with increasing collagen concentration, 
the authors found a biphasic response in invasion radius and spheroid 
size with peak values observed at intermediate concentrations and stiff-
ness. At high collagen concentrations, an excess of ECM ligands result 
in increased sterics and higher adhesion forces that have to be overcome, 
whereas at low collagen concentrations, there is inadequate adhesion for 
traction force generation and movement. The model is useful for qualita-
tively determining how modifying ECM parameters such as fiber density, 
diameter, length, and matrix porosity affects migration. Shortcomings of 
the model include the fact that proteolysis is not implemented as the ECM 
is ultimately conserved (once cells move from a site, it reverts to ECM) and 
diffusion of nutrients and waste is not represented.

Zaman et al. pursue a different approach to modeling migration using 
Monte Carlo methods.29,30 They apply a 3D lattice, representing ECM, 
with the lattice spaces occupied by ECM ligands to varying extents. The 
pore size of each lattice space is then a function of the number of ligands, 
the area of the ligand, and the lattice space (ALS) cross section as given by 
the following equation

	

Pore Size

(ALS cross section) 1 (Number of= × − lligands) Area per ligand
ALS cross section

×





		  (8.5)

The pore size is varied such that it ranges from 10% to 90% of the lattice 
space. Cells are allowed to move from one lattice space to another if the 
ratio ψ of the cell cross section and the new lattice space’s pore size falls 
within a certain regime (0.36–1, such that there are adequate ligands 
for adhesion and traction force generation). The model also allows for 
cell deformability so that cells may migrate even to spaces that have 
pore sizes smaller than the cellular cross section, as well as proteoly-
sis when the deformation of cells still does not provide enough space 
for migration. So, three types of migration behavior are allowed for in 
this model: simple migration, when the pore size exceeds the cell size; 
cell-deformability-assisted migration, when cells must squeeze through 
smaller pores; and proteolysis-assisted migration, where sterically 
hindering ECM obstacles are degraded to increase the pore size. The 
Monte Carlo routine is offered in Figure 8.2. The model outputs cellular 
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persistence and velocity. The simulation found a bimodal response in 
velocity and resistance to ligand concentration and pore size, as even 
when cells are capable of deformation and proteolysis, they are unable 
to migrate through very small pore sizes. Deformability and proteoly-
sis contribute most at moderate ligand concentrations and intermediate 
pore sizes, with MMPs being more important in achieving persistent 
migration. The results correlate well with experimental results. However, 
this model fails to account for the deposition of ECM and phenomena on 
the subcellular level such as individual receptor–ligand interactions and 
the formation of pseudopodia.

Fill each ALS with protein

Define/update cell position

Check if any neighbor has Ψ < 1

Yes

Yes

No

No

Yes

Yes

No

No

Deform or MMP

Will any ALS have Ψeff < 1
upon given deformation?

Does the cell have
proteolysis machinery?

Move to the neighbor. If more
than 1, choose randomly.

Calculate Pdeform and calculate random number
Z and use metropolis criterion to decide

whether to deform or use MMP

Is Pdeform > Z

The cell deforms, choose ALS that
requires the least deformation

ECM in the ALS at the leading
edge = 0 and move to the new hole

Figure 8.2  A schematic of the Monte Carlo routine for the discussed model. 
(Image reprinted with permission from Zaman, M.H. et al. Ann. Biomed. Eng. 
35, 91–100, 2007.)
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Integrating Length and Timescales at a Single-Cell Level

As mentioned in the introduction, the process of migration is inherently 
multiscale. Small changes in structure or sequence of adhesion receptors, 
at the molecular level, have significant consequences for the ability of cells 
to migrate, both at a single cell and population level. Similarly, micro-
level changes in the extracellular matrix influence processes at the macro 
level.

Despite the clear connection between length and timescales from nano 
to macro (and microsecond to hours in the case of time), to date true mul-
tiscale models of cell motion, in 2D or 3D, do not exist. There are two major 
reasons for the dearth of robust multiscale models. The first problem is the 
lack of biological data that are necessary to provide high-quality input 
data. For example, efforts to connect length scales through molecular 
dynamics simulations require high-quality three-dimensional structures 
of proteins and macromolecular complexes. Most of the proteins involved 
at the cell–matrix interface are membrane proteins and, hence, notori-
ously hard to crystallize. Coarse-grained models, which assume certain 
structural motifs, end up being largely qualitative or nonspecific, provid-
ing little predictability. Similarly, large-scale systems-level data providing 
kinetic binding constants for subcellular proteins are also scarce. Ab initio 
structure prediction is also not a viable option due to large sizes of the 
proteins involved. In addition, first principle structure prediction is often 
unreliable for transmembrane proteins.

The second problem is rooted in lack of models that are able to bridge 
the timescales. This is, in part, connected to the first problem. However, 
independent of input data, there are very few models that are able to con-
nect events at the molecular level to the macromolecular and cellular level. 
Coarse-graining is often ad hoc and unable to predict anything beyond 
what can be easily predicted through scaling arguments. This problem is 
further amplified due to enormous computational costs associated with 
modeling processes that can scale from microseconds, or picoseconds, to 
minutes or hours. Computational efforts made in this area have largely 
been on single proteins or protein fragments, which provide little infor-
mation at the cellular level. Performing simulations on mutations or vari-
ous homologous domains is computationally prohibitive.

Despite these major challenges, there have been a few efforts in the 
recent past that have shown significant promise. A number of these multi-
scale efforts have tried to connect cellular motion with either cell–matrix 
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or cell–cell interactions. In the majority of these efforts, cellular adhesion 
has been used as a stepping stone for modeling migration, intravasation, 
and extravasation. Chaplain and co-workers31,32 have used cadherin junc-
tions and cell–cell adhesion in their multiscale tumor models to predict 
tumor cell intravasation. The authors have used continuum equations with 
cadherin adhesion pathways to predict transendothelial migration. The 
model developed shows good agreement with experimental findings and 
is able to connect molecular adhesion to cellular outcomes. However, the 
model is blind to cadherin structure and mutations, as well as interactions 
of cells with extracellular matrix through integrins. In another multi-
scale adhesion-migration model, Zaman and co-workers have studied the 
role of integrin in migration.33,34 Their approach is rooted in equilibrium 
statistical mechanics and is focused on adhesion of integrins to extracel-
lular ligands. The focus of these set of studies is more on the molecular 
structure, adhesion, and the free energy landscape to capture the role of 
cell–matrix adhesions. The study of Zaman and co-workers, however, does 
not take into account external nonequilibrium forces, such as shear, and 
does not provide information on cell–cell connectivity.

Discussion
The field of modeling cell migration in 3D is relatively young as compared 
to migration models of 2D cell cultures. The field of multiscale models 
of single-cell motion is even younger. Nonetheless, the merger of these 
two intellectually rich fields is exciting for not only mathematicians and 
modelers but also for cell biologists, cancer biologists, and clinical oncolo-
gists for a wide variety of reasons ranging from fundamental questions to 
drug design and delivery.35–39

Despite recent developments in modeling single-cell processes in 3D, a 
number of key challenges remain before the multiscale migration models 
can be useful in making quantitative predictions. Among these, incor-
poration of matrix mechanical, structural, and chemical components 
ranks at the top. As mentioned earlier, cellular processes do not occur in 
isolation, but are informed and influenced by changes in the surround-
ing matrix. While there are a number of studies focused on developing 
multiscale models of collagen fibers and the extracellular network, they 
ignore cellular motion, matrix remodeling, and general cell–matrix inter-
actions. Similarly, multiscale models of single-cell migration also lack 
the molecular details necessary to make systems-level predictions. While 
coarse-graining is necessary for computational efficiency, it does not have 
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to assume the matrix as a continuum of ligands with uniform mechanical 
properties. Just as the structure, orientation, and organization of cellular 
receptors plays a role in cellular motion and invasion, the organization, 
porosity, structural integrity, and compliance of the matrix also controls 
tumor cell motion. To date, no effort has been made to integrate various 
multiscale models of matrix with those of cell migration. While it may not 
be completely straightforward, a dedicated attempt to develop integrated 
models is definitely worthwhile and may lead to new insights into cellular 
migration and adhesion.

The other key challenge that remains largely unresolved is the integra-
tion of mechanochemical factors regulating migration with the signal-
ing cascades. This is particularly challenging since not only is the kinetic 
information about some of the most important signaling pathways, at 
best, sketchy, but also the spatiotemporal resolution necessary to model is 
completely absent. In the absence of these two critical components, a truly 
multiscale model may be quite challenging. However, the very idea of a 
multiscale model of migration has to involve mechanosensation, inside-
out signaling, and information flow. In this regard, a starting point can 
be integrin signaling, which is fairly well studied and incorporates both 
mechanical and chemical components for its function.

In the end, perhaps the biggest and most immediate challenge is to 
develop and foster close connections with experiments that not only 
validate the predictions, but also provide the necessary input needed at 
various levels and length scales of the model. Experiments in 3D cul-
tures are improving rapidly and are able to provide an unprecedented 
level of simultaneous information about the matrix and the cell that 
was previously unavailable. Modeling a complex and dynamic process 
of cell motion in 3D would require a new level of connection between 
experiments and modeling, not only for validation, but also for build-
ing the bridges that connect the flow of information across orders of 
magnitude of length and timescale. Ultimately, our ability to fully 
understand tumor invasion and migration rests upon building these 
bridges, which will provide quantitative information linking events 
that connect events at the genetic level with outcomes at the cellular 
and multicellular level.
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Introduction
Tumorigenesis, a multistage, multifactorial process originating from 
molecular and genetic cell abnormalities, embraces extremely diverse and 
complex reciprocal dialogues that tumor cells and molecules engage in 
en route to malignancy (Al-Hajj and Clarke 2004; Balmain et al. 2003). 
Despite recent advances in cancer therapies, such as molecular-targeted 
therapy (Sawyers 2008), the clinical outcome of highly malignant tumors 
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(such as gliomas and non-small-cell lung cancer (NSCLC)) remains 
disappointing, with one in four deaths in the United States attributed to 
this disease (Jemal et al. 2009). New discoveries in cancer prevention, early 
detection, and treatment are therefore desperately needed.

Lately, interdisciplinary approaches have garnered much attention, 
with data-driven mathematical and computational modeling gaining 
recognition for its potential to integrate the immense volume of data 
currently available, and to simulate and analyze the behavior of com-
plex biological systems (Deisboeck et al. 2009; Kitano 2002). Of the two 
main types of models currently employed in the cancer modeling com-
munity, those utilizing continuum techniques have been somewhat more 
popular than those employing discrete methods (see Bearer et al. 2009; 
Byrne and Chaplain 1995, 1996; Cristini et al. 2003; Frieboes et al. 2009; 
Gatenby and Gawlinski 1996; Gerisch and Chaplain 2008; Macklin and 
Lowengrub 2007; Silva et al. 2009; Swanson et al. 2003; Szeto et al. 2009; 
Wise et al. 2008 for representative examples). Some of the main rea-
sons for this preference are that (1) continuum descriptions of tumor 
growth benefit from the knowledge gained in fundamental physical 
principles (Tracqui 2009), and (2) continuum models are capable of 
capturing larger-scale volumetric tumor growth dynamics (which are 
also accessible to conventional clinical imaging modalities) at a com-
paratively lesser computational cost (Araujo and McElwain 2004). For 
instance, such models can characterize global properties of the nutri-
ent molecules, the extracellular matrix, and tumor mass growth with 
reaction-diffusion equations rather than by using discrete subunits 
(Schaller and Meyer-Hermann 2006). However, continuum models are 
a lesser choice when exploring heterogeneity in both the tumor and its 
surrounding microenvironment, which is an inherent feature of cancer 
cells (Gatenby et al. 2009). Discrete models can address these short-
comings, since they work on the scale of individual cells (see Alarcon 
et al. 2003; Aubert et al. 2006; Bauer et al. 2007; Drasdo and Hohme 
2003; Gatenby and Gawlinski 2003; Gevertz et al. 2008; Hatzikirou and 
Deutsch 2008; Hogeweg 2000; Kansal et al. 2000a, 2000b; Patel et al. 
2001; Turner and Sherratt 2002 for representative examples). In addi-
tion, discrete models can easily incorporate biological rules (based on 
biomedical data or data-driven assumptions), such as defining cell–cell 
and cell–matrix interactions involved in both chemotaxis and hapto-
taxis. Yet, a major drawback of discrete models is their compute-intense 
nature due to the detail that each cell is modeled in, which limits the 
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model to a relatively small number of cells. As a result, a typical discrete 
model is usually designed with a submillimeter or lower domain size 
(Wang and Deisboeck 2008). Nowadays, in discrete models, extracellu-
lar factors are often modeled as continuous quantities, thereby render-
ing the models hybrid in nature (Anderson and Quaranta 2008; Wang 
and Deisboeck 2008).

An agent-based model (ABM), also referred to as an individual-based 
model (IBM), simulates the interactions of autonomous entities (i.e., the 
agents) with each other and their local environment to predict higher-
level emergent phenomena (Bonabeau 2002). In biomedical research, 
while an agent can represent a part of a cell or a cluster of cells (Casal 
et al. 2005; Robertson et al. 2007), the ideal candidate for a software agent 
is now more commonly recognized to be an individual cell (Walker and 
Southgate 2009), since models can benefit from such a direct one-to-one 
mapping between real and virtual cells in terms of parameter acquisi-
tion from experiments and model validation. As a simulation progresses, 
agents (representing individual cells) interact or communicate with other 
agents and their common microenvironment according to a set of pre-
defined, biomedical data-driven “rules.” Because an ABM’s simulation 
results are highly dependent on these rules, it is necessary to tightly couple 
these algorithms at all stages of model development with iterative in silico 
as well as in vitro and/or in vivo biological experiments in order to vali-
date and calibrate the rules according to relevant data (Thorne et al. 2007). 
To date, agent-based cancer models have produced preliminary results in 
identifying and quantifying the relationship between individual molec-
ular properties, their microenvironmental conditions, and the overall 
tumor morphology (Zhang et al. 2009b).

In this chapter, we briefly introduce this particular modeling technique 
and focus on the design and development of the ABMs contributed by 
our laboratory, most of which span molecular and microscopic scales. 
Other groups are also employing ABMs to simulate different aspects of 
cancer, such as somatic evolution in tumorigenesis (Abbott et al. 2006; 
Spencer et al. 2006), the growth dynamics of multicellular tumor spher-
oids (Pepper et al. 2007; Schaller and Meyer-Hermann 2005), and cancer 
cell invasion (Pearce et al. 2007; Ramis-Conde et al. 2006). Yet unlike these 
models, our ABMs address the role of diversity in cell populations and 
also within each individual cell, and have the capacity to generate related, 
experimentally testable hypotheses and identify biomarkers. We show 
how these models were used to investigate cancer growth and invasion 
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dynamics specifically in the cases of brain and lung cancer. Finally, we 
discuss some of the current challenges but also the future potential of 
agent-based cancer models.

Model
In simulating cancer, a challenge that each modeler first faces is 
in  selecting the appropriate biological scales (both spatially and 
temporally—from genes and proteins to individual biological cells, 
and tissues, up to the entire organism) to be able to capture in suf-
ficient detail the functional aspects that the model aims to examine. 
Focusing on only one scale, as does the vast majority of current cancer 
models (Tracqui 2009), simply neglects the correlative dependence and 
interplay between different scales. On the other hand, examining too 
many scales is likely to introduce more of the uncertainties already 
inherent in the biological mechanisms of each scale, making the final 
model difficult to validate, and may also present complications with 
computational intensity. Thus, it is reasonable to reduce the number 
of (1) explicitly involved biological scales, and (2) model components 
or parameters on each scale, before proceeding to a more refined and 
complex model version.

The multiscale model architecture presented here encompasses 
both molecular (signaling pathway) and microscopic (multicellular) 
scales. We choose the molecular scale because the aberration of signal-
ing pathways responsible for coordinating the regulation of a variety 
of cellular processes (including proliferation, migration, differentia-
tion, and apoptosis (Hlavacek et al. 2006)) contributes to the initiation 
and progression of many solid tumors (Hanahan and Weinberg 2000). 
We choose to incorporate the microscopic scale because even extrinsic 
environmental conditions alone can induce the carcinogenic transfor-
mation of cells (Postovit et al. 2006). That is, tumor cells bidirection-
ally communicate with their microenvironment, not only responding 
to various external cues but also impacting their surroundings for 
instance by producing (auto- and paracrine) signals and degrading the 
neighboring tissue through proteases (Hendrix et al. 2007). In the fol-
lowing, we brief ly show how to implement a signaling pathway model, 
construct a microenvironment for multicellular tumor cell activities, 
and create an explicit link between these two scales by establishing an 
algorithm for determining cell phenotypic transitions upon molecular 
changes.
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Molecular Signaling Pathway

The epidermal growth factor receptor (EGFR) is mutated and overex-
pressed in many cancers and, thus, studying it can provide insights into 
the processes leading up to tumor formation and growth (Oda et al. 2005). 
On the molecular level, epidermal growth factor (EGF) binds EGFR and 
promotes dimerization and subsequent autophosphorylation, resulting 
in the downstream activation of a number of key cell decision-making 
proteins such as phospholipase Cγ (PLCγ), extracellular signal-regulated 
kinase (ERK), and many others (Friedl and Wolf 2003). A number of 
EGFR-related pathway kinetic models have been developed (Hatakeyama 
et al. 2003; Kholodenko et al. 1999; Schoeberl et al. 2002), but regardless 
of differences in their complexity, all of these models use mathematical 
kinetic equations to describe molecular interactions. The change in the 
concentration of a certain protein pathway component (Xi) over time is 
then determined according to the following ordinary differential equation 
(ODE):

	
dX
dt

X Xi
i i= ⋅ − ⋅α β 	 (9.1)

where Xi represents one of the pathway components, and α and β are the 
reaction rates of producing and consuming Xi, respectively. Some pathway 
parameters, including the initial concentrations of pathway components 
and reaction rate constants, are not yet available in the literature, in which 
case they either have to be investigated experimentally or are fitted to pub-
lished time-dependent quantitative or even qualitative observations.

Each cell or agent of a particular clonal cancer population should have 
a self-maintained signaling network since, as a simulation progresses, cells 
in distinct locations are likely to experience different external microenvi-
ronmental conditions. Hence, even though their internal states (including 
cell phenotype and pathway component concentrations) are set to be iden-
tical initially, they will exhibit different phenotypes after a certain lapse of 
time due to their respective molecular changes.

Tumor Growth Environment

Tumor growth dynamics can be investigated in a two-dimensional (2D) 
environment made up of a discrete lattice or in a three-dimensional (3D) 
environment composed of a discrete cube, where each grid point is either 
occupied by a single cell or is empty. Although a 3D model can generate 
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more clinically relevant simulation results, for most cases, modelers like to 
develop a 2D model first to examine the feasibility of the entire modeling 
method in a more computationally tractable setting.

Over the course of a simulation, seed cells and their progeny respond 
to cellular and environmental biochemical cues that determine their phe-
notype at each time step. External diffusive chemical cues, such as glu-
cose, oxygen tension, and growth factors are distributed throughout the 
environment in accordance with the experimental setting, or by means of 
probability distribution methods, such as by means of a normal distribu-
tion. Moreover, taking a 3D model as an example, throughout the simula-
tion, the chemical cues are continuously updated at a fixed rate, using the 
following partial differential equation (PDE) form:

	
∂
∂

= ⋅∇ =
C

t
D C tijk

C ijk
2 , 1,2,3,…, 	 (9.2)

where C represents the concentration of the external cue, DC corresponds 
to the diffusion coefficient of C, t represents the time step, and ijk is the 3D 
integer coordinate of a given grid location.

Cell Phenotype Decision Algorithm

Changes in cell number, location, or environment will influence the 
boundary conditions or sources of molecular components in the signal-
ing pathway model, whereas the spatial distribution or intracellular con-
centration of key molecular or protein species will influence the fate of 
the cell. How does one implement this process? An algorithm to establish 
the link between molecular changes and cell phenotypes is essential. We 
exemplify an intracellular signal-driven method as follows.

PLCγ is known to be involved in directional cell movement in response 
to EGF (Mouneimne et al. 2004) and is activated transiently in cancer cells, 
to a greater extent during migration and more gradually in the prolifera-
tion mode (Dittmar et al. 2002). With this finding, it is straightforward 
to model PLCγ using its rates of change (ROCPLCγ) to determine a cell’s 
migratory phenotype by comparing the current ROCPLCγ to a set threshold; 
that is, if ROCPLCγ exceeds the threshold, the cell then has the potential to 
migrate. However, a cell additionally has to meet other microenvironmen-
tal requirements, such as sufficient local nutrient conditions and available 
adjacent space, in order to process any phenotype transitions. If any of 
these conditions are not sufficient, then the cell will have to remain in 
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its current location, waiting for the next iteration in the simulation when 
conditions will be reevaluated. Figure 9.1 schematically illustrates the cell 
phenotype decision algorithm that has been used in our cancer models. 
In addition to involving PLCγ to determine the cell migration fate, some 
of our recent models, based on experimental evidence (Santos et al. 2007), 
employ ERK to determine whether a cell will proliferate.

Results
We have been working extensively with this modeling method to develop 
ABMs simulating tumor properties across multiple scales in time and 
space, within both brain tumors and non-small-cell lung cancer (NSCLC). 
A key feature of our ABMs is that tumor growth and invasion patterns due 
to cell proliferation and migration are neither predefined nor intuitive, 
but rather, they emerge as a result of intracellular signaling of individual 
cells and the dynamic cellular interactions within the framework of the 
biochemical microenvironment. In the following, we list some of the main 
findings of these models.

Brain Tumor Model

In a set of pilot 2D brain cancer models focusing on the simulation of 
glioma cell proliferation, migration, quiescence, and apoptosis on a 
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Figure 9.1  Schematic of the intracellularly driven cell phenotype decision algo-
rithm. Intracellular signaling profiles for cells Nos. 1–5 are different (indicated 
by different grayscale levels), and thus lead to different cell phenotype output. 
In the next step, as illustrated, cell No. 4 will migrate because the rate of change 
of PLCγ has satisfied the requirements for migration. Similarly, cell No. 5 will 
proliferate because the rate of change of ERK has satisfied the requirements for 
proliferation.
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microscopic scale (Mansury and Deisboeck 2003; Mansury et al. 2002), 
tumor cells were programmed to follow the path of “least resistance, low-
est toxicity, and highest attraction” toward replenished and nonreplen-
ished nutrient sources, avoiding areas of high mechanical confinement 
and detrimental metabolites that are the by-products of overpopulation. 
These models, which examined the effectiveness of treating tumors as a 
self-organizing adaptive biosystem, verified the hypothesis in favor of such 
a representation (Deisboeck et al. 2001). Additionally, to capture tumor 
growth dynamics on the pathway component level, we extended the previ-
ous model by adding a molecular scale in the form of a simplified repre-
sentation of the EGFR signaling pathway (Athale et al. 2005; Athale and 
Deisboeck 2006). Such modeling enabled us to study and describe how 
the molecular profile of each individual glioma cell impacts the cell’s phe-
notypic switch, and how such context-specific single-cell activities poten-
tially affect the dynamics of the entire tumor system. In particular, we 
found that increasing the EGFR density per cell results in an acceleration 
of the entire tumor system’s spatiotemporal expansion dynamics (Athale 
and Deisboeck 2006), a finding that is well supported by experimental 
observations (Lund-Johansen et al. 1990).

We extended our model not only to increase the biological scales of 
interest, but also to implement a more realistic tumor growth microen-
vironment. In a subsequent study, we simulated brain tumor growth in 
a 3D environment (Zhang et al. 2007) and implemented a simplified cell-
cycle description at the subcellular scale from Alarcon et al. (2004). The 
simulation results not only confirmed the impact that regulation of EGFR 
signaling can have on tumor cell behavior, both on the single cell and multi-
cellular level, but also indicated that over time, proliferative and migratory 
cell populations oscillate and have a direct effect on the entire spatiotem-
poral tumor expansion pattern. In a more recent study based on this 3D 
model (Zhang et al. 2009a), we investigated the emergence of heteroge-
neous tumor cell clones by introducing an element of genetic instability 
to analyze how heterogeneity impacts brain tumor progression patterns. 
Figure 9.2 demonstrates the 3D tumor growth over a series of time steps, 
with five cell clones that differ in their EGFR density. We found that cell 
clones with higher EGFR density comprise a larger migratory fraction and 
smaller proliferative and quiescent fractions, which corresponds well with 
reported experimental data (Steinbach et al. 2004). Overall, our group has 
been working extensively on modeling brain tumors across molecular 
and microscopic scales as reviewed in (Deisboeck et al. 2009; Wang and 
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Deisboeck 2008; Zhang et al. 2009b), effectively grounding and fostering 
future models incorporating multiple scales from the molecular up to the 
cellular level and beyond.

Non-Small-Cell Lung Cancer Model

Because the brain tumor models provided a successful computational par-
adigm, we began to apply these methods in parallel to the case of another 
tumor where EGFR plays an important role, NSCLC, with necessary 
modifications and extensions, and ultimately developed the first compu-
tational model of NSCLC across molecular and microscopic scales in the 
cancer modeling field. We first presented a 2D model with a revised EGF-
induced EGFR-mediated signaling pathway that is specific to NSCLC to 
quantitatively understand the relationship between extrinsic chemotactic 
stimuli, the underlying properties of signaling networks, and the cellular 
biological responses they trigger in NSCLC from a systemic view (Wang 
et al. 2007). In addition to confirming the experimentally known fact that 
increasing the amount of available growth factors leads to a spatially more 
aggressive cancer system (Price et al. 1996; Xue et al. 2006), we found that 
in the cancer cell closest to the nutrient source, a minimal increase in 
EGF concentration can temporarily abolish its proliferative phenotype. A 
follow-up 2D simulation study (Wang et al. 2008) introduced a method for 
performing cross-scale sensitivity analysis to identify key model param-
eters that are critical in determining the output behavior of the model. 
While the method operated reliably over relatively large variations of 
most of the parameters, some parameters (three pathway components, 
including, e.g., ERK and eleven reaction steps) had greater impact on the 

A B C

Figure 9.2  (See color insert following page 40) 3D tumor growth over three 
different time points. There are five different cell clones in this simulation, and 
each cell clone is initiated with a distinctive mutation rate and proliferation rate. 
Different colors represent different cell clones. (Adapted from Zhang et al. 2009a. 
Math Comput. Model 49, 307–19. With permission.)
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system’s multicellular performance (i.e., the tumor expansion rate) than 
others. Moreover, a small variation in the reference value (obtained from 
the literature) of any critical parameter appeared to result in a relatively 
large change in the output of the model.

More recently, we presented a 3D model in which both EGF and trans-
forming growth factor β (TGFβ) and their interplay were taken into 
account (Wang et al. 2009). This physiologically and clinically motivated 
extension of the NSCLC modeling platform enabled us to investigate how 
the effects of individual and combinatorial change in EGF and TGFβ con-
centrations at the molecular level alter tumor growth dynamics, specifi-
cally tumor volume and expansion rate, on the multicellular level. We 
discovered a particular region of tumor system stability, generated by 
unique pairs of EGF and TGFβ concentration variations. When the varia-
tion pair of EGF and TGFβ concentrations occurred within this region, 
we observed that changes caused by the two growth factors did not effec-
tively transmit to the downstream activation cascade, potentially explain-
ing the resulting robustness of the tumor system at the multicellular level. 
However, the tumor system becomes sensitive to external variations in 
EGF and/or TGFβ when they occur outside this region, processing a phe-
notypic switch  once the microenvironment becomes more permissive. 
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Figure 9.3  The effects of asynchronous combinatorial change in EGF and TGFβ 
concentrations on (A) tumor volume (cell number) and (B) tumor expansion rate 
([inverse] simulation steps). In (A), the largest tumor volume is reached under 
conditions of high TGFβ and low or standard (with a variation of 1.0-fold) EGF 
concentrations. However, in (B), the most aggressive tumor expansion rate (few-
est simulation steps) occurs under conditions of high EGF, regardless of TGFβ 
concentrations. (Adapted from Wang et al. 2009. Bioinformatics 25, 2389–96. 
With permission.)
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Figure  9.3 shows the simulation results from changing EGF and TGFβ 
concentrations both simultaneously and asynchronously. As can be seen, 
the common stable phenotypic region is generated by 2- to 7-fold varia-
tion of EGF and 0.3- to 3-fold variation of TGFβ. The expansion rate for 
the standard simulation (with all kinetic parameters set to their reference 
values) is 2.07 µm/h, which is in very good agreement with both the mod-
eling (Galle et al. 2005) and experimental studies (Bru et al. 2003).

Taken together, because of their cross-applicability to a variety of tumor 
types—beyond brain tumors and NSCLC—and their ability to integrate 
multiple pathways, these works have demonstrated the flexibility as well as 
the extensibility of our multiscale modeling architecture.

Discussion and Future Directions
The ultimate goal of in silico cancer research is to study the complex-
ity of tumor progression in a reproducible setting in an effort to utilize 
the insights to accelerate diagnosis, to improve prediction, and to assist 
in treatment planning (Sanga et al. 2007). Cancer growth spans multi-
ple spatial scales (from nanometers to centimeters) as well as temporal 
scales (from milliseconds to years) and, as such, developing cancer models 
across different biological scales is as critical (Hunter and Borg 2003) as 
it is daunting. We have reviewed the methods and achievements of our 
multiscale agent-based models—which encompass molecular as well as 
microscopic scales—in investigating brain tumor and NSCLC. Although 
still at an early stage, the models have demonstrated their ability to quan-
tify the relationship between extracellular stimuli, intracellular signaling 
dynamics, and multicellular tumor growth and expansion. In these hybrid 
models, environmental factors such as growth factors, nutrients, and oxy-
gen are represented by PDEs, while growth factor binding and intracel-
lular signaling pathways are represented by ODEs. Simulation results can 
then be partly tested with in vitro or in vivo experiments, or verified with 
other theoretical studies. The method for creating the linkage of molecu-
lar and microscopic scales, first introduced by Athale et al. (2005), is novel 
and has stimulated a series of subsequent studies for both brain tumors 
and NSCLC. On the basis of these works, we argue that ABMs are highly 
suited to modeling complex emergent behaviors of cancerous systems, 
which are generated as an outcome of direct and indirect interactions 
between large numbers of individual cells.

The ABM framework that we have developed not only enables the mon-
itoring of multicellular dynamics in response to molecular changes, but 
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also facilitates the tracking of the fate of molecular components per cell 
and cell cluster as the entire tumor system evolves. It is now possible to 
ascertain the cause of a specific tumor growth pattern at the microscopic 
level by exploring the time-series history of intracellular signaling profiles 
within individual cells. For example, following tumor progression, epithe-
lial cancer cells can transition from pursuing a collective invasion pattern 
toward adopting a detached and disseminated cell migration mechanism 
(Friedl and Wolf 2003). This process, referred to as epithelial–mesenchymal 
transition (EMT), is one of the fundamental mechanisms contributing to 
tumor infiltration and metastasis. EMT involves and requires diverse sig-
nal transduction pathways working together to initiate genetic and epi-
genetic changes that promote cell motility, invasiveness, and metastasis 
(Christiansen and Rajasekaran 2006). Using solely a continuum approach, 
it is difficult to (1) identify which particular cells start to move more inde-
pendently of the collective, and to (2) capture the timing of EMT of those 
cells. However, with our ABM framework (which can track changes in the 
intracellular dynamics and extracellular environment conditions for each 
individual cell), it is straightforward to reveal which cells are undergo-
ing EMT and to determine the cells’ internal and external states at any 
particular time point. These simulation results can then readily be com-
pared with, for example, experimental time-lapse video microscopy stud-
ies (Chambers et al. 2000).

It is gratifying to see that this promising approach continues to gain 
ground, with other cancer modeling groups recently integrating molecu-
lar features into their ABMs and providing their own cell phenotype deci-
sion algorithms. For instance, Gerlee and Anderson (Gerlee and Anderson 
2007; 2009a; 2009b) use an artificial feed-forward neural network in a 2D 
space to investigate cancer cell motility in an evolving tumor population. 
They represent the microenvironmental variables such as local oxygen 
concentration, glucose concentration, and extracellular matrix (ECM) 
gradient using the input layer, regulatory genes with the hidden layer, and 
the response for cell phenotypes using output nodes. The weight matrix 
between the input and the hidden layer represents the signaling strength 
of cell surface receptors and, thus, changing a connection between the two 
layers corresponds to altering a certain receptor’s level of expression. Yet 
this model, similar to those previously mentioned, does not adequately 
incorporate the effects of molecular-level variations on consequent cel-
lular phenotypes and resulting tumor patterns, because it lacks the 
explicit representation of governing signaling pathways. More recently, 
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Ramis-Conde and co-workers integrated molecular pathways involving 
cell adhesion molecules, such as E-cadherin and β-catenin, into a multi-
scale ABM platform to study the effects of different pathways on cancer 
cell invasion patterns (Ramis-Conde et al. 2008; 2009). Such models have 
also implemented a biophysical representation of a single cell and high-
lighted the importance of both biological and biophysical properties in 
cell–cell contact formation and cell deformation.

It is noteworthy that multiscale ABMs incorporating detailed molec-
ular dynamics have additionally been developed to aid in the under-
standing of biological systems other than cancer. For instance, the role 
of biochemical signaling in growing epithelial cell populations has been 
studied with multiscale lattice-free ABMs (Walker et al. 2006; 2008). Such 
models found that the intracellular signaling profile varied when mea-
sured across the entire cell population, and also confirmed that the local 
microenvironment influenced the response of individual cells. These ten-
dencies, as well as the resulting population heterogeneity, are consistent 
with our findings in simulating cancer. In the case of translational sys-
tems biology of inflammation, a series of ABMs were developed to better 
understand acute inflammation by conceptualizing it as the interaction 
between endothelium and inflammatory cells (An 2008; 2009; An and 
Faeder 2009). Such models further highlight the generic promise of ABMs 
in translating the extensive mechanistic knowledge at the basic scientific 
level into an executable, integrated framework.

That said, a number of technical challenges exist in transitioning these 
ABMs to biomedical practice such as in clinics and for the pharmaceuti-
cal industry. These include the more common issues such as obtaining 
access to relevant data to validate simulation results, setting/streamlin-
ing standards for model definitions and, ultimately, sharing the mod-
els in environments that enable Web-based workflows (see Hunter and 
Borg 2003; Sagotsky et al. 2008; Thorne et al. 2007; Walker and Southgate 
2009 for further discussions). Table 9.1 summarizes advantages and dis-
advantages of ABMs from a technical level. Most important, however, is 
the compute intensity associated with these discrete-based hybrid mod-
els. In modeling cancer, it is generally accepted that the higher a model’s 
spatial and temporal resolution, the higher its compute power demand 
and, thus, the longer the run time (Deisboeck et al. 2009). Discrete mod-
els are more seriously affected by these problems because they are gener-
ally too detailed to simulate over a long period of time, particularly in 
large, 3D domains. Parallelizing the code and then running the model on 
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a cluster of supercomputers is a possible but not always practical solution 
that still may not resolve all the difficulties in handling the enormous 
amount of experimental and clinical data, which is why we and others 
have begun to turn to hybrid, multiscale, and multiresolution modeling 
(Anderson and Quaranta 2008; Sanga et al. 2007; Wang and Deisboeck 
2008). In such models, multiresolution means that cells at distinct topo-
graphic regions are treated differently in terms of the modeling approach 
applied, achieving discretely high resolution wherever and whenever nec-
essary to improve the model’s predictive power while at the same time 
reducing compute intensity as much as possible to support scalability of 
the approach to clinically relevant levels. Alternatively, discrete modeling 
can be extended to incorporate different scales, from cell-scale to tissue-
scale. For instance, the equation-free approach developed by Kevrekidis 
and co-workers (Erban et al. 2007; Gear and Kevrekidis 2003; Kolpas 
et al. 2007) leverages the spatiotemporal scale separation to allow for sig-
nificant gains in computational efficiency by alternating short bursts of 
appropriately initialized microscopic simulations with accelerated result 
processing at the macroscopic, continuum scale. Furthermore, methods 
from other modeling communities, such as the Heterogeneous Multiscale 
Method (HMM, e.g., (E et al. 2003; Ren and E 2005)), can provide useful 
insight into efficient numerical methods that may be incorporated into 
the development of multiscale cancer models as well. By drawing on the 
strengths of these methods, such as scalability and multiresolution, and 
integrating them into the next-generation ABM models with a hierarchy 

Table 9.1  Advantages and Disadvantages of Agent-Based Models in Modeling Cancer

Advantages Disadvantages
Well suited to model •	 emergent 
phenomena resulting from the 
interactions of individual agents with 
each other and the local 
microenvironment
Easy incorporation and flexible change •	
of biological rules for each agent in 
correspondence with biomedical data
Capable of investigating tumor growth •	
dynamics at the multicellular, 
microscopic, and molecular level
Can examine •	 heterogeneity per cell, 
tumor, and tumor environment
Allows for •	 cross-scale biomarker 
analysis

Necessity of making •	 simplifying 
assumptions on model components and 
parameters
Currently limited to a relatively small •	
scale due to high computational 
demands
Hence, necessity of coupling with •	
optimization approaches to match 
large-scale 3D tumor growth
Sensitive•	  to the predefined biological 
rules that govern cell properties
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of processes at varying timescales and space scales, we can produce more 
comprehensive, computationally efficient, and effective models to simulate 
tumor progression and predict treatment impact.
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Introduction
Heterogeneous cell proliferation, migration, and death can be caused by 
genetic damage and in response to the local microenvironment. Diffusion 
gradients of oxygen, glucose, metabolites, and drugs, established in the 
microenvironment during solid tumor growth and response to treat-
ment, can create varying local conditions for subpopulations of tumor 
cells. Individual cells possess a broad spectrum of survival and migration 
mechanisms that can be invoked in response to hostile conditions [1], 
such as hypoxia and hypoglycemia. The consequences of this heterogene-
ity and variability can be highly multiscalar. Differential cell proliferation, 
migration, and death along the diffusion gradients affect cell survival and 
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motility properties as a function of these gradients. At the tumor scale, 
this can lead to invasive fingering and branching and even fragmenta-
tion and migration of cell clusters into the surrounding tissue. Thus, these 
diffusion gradients have an important role in the stability of the tumor 
morphology.

Numerous mathematical models have been developed to study the pro-
gression of cancer (e.g., see the reviews [2–26]). Most models fall into two 
broad categories, based on how the tumor tissue is represented: continuum 
models and discrete cell-based models. A third alternative to elucidate the 
complexity of cancer and the interactions among the cell- and tissue-level 
scales is to use a hybrid approach, coupling biological phenomena from 
the molecular and cellular scales to the tumor scale; for example, see the 
work by Kim et al. (2007) [27].

We have presented multiscale models using a continuum approach 
[21,26,28–36] to determine precise functional relationships among quanti
fiable parameters from analyses of specific phenotypic or genetic alterations 
in a tumor, and from in vitro experiments [30] and clinical observations 
[21,32,36] of tumor morphology such as cell arrangement patterns at the 
tumor boundary. Building upon a formulation of classical models [37–40], 
a breakthrough simulation of a continuum tumor model was provided by 
Cristini et al. (2003) [26] to study complex morphologies of solid tumor 
growth in the nonlinear regime using boundary-integral simulations 
in 2D. This work predicted that the shape of highly vascularized tumors 
would remain compact and without invasive fingering, even while grow-
ing unbounded. This suggested that invasive growth of vascularized tumors 
is associated with vascular and elastic anisotropies such as heterogeneity 
in oxygen and cell nutrients, thus identifying for the first time the con-
cept of tumor “diffusional instability” as a potentially universal physical 
mechanism underpinning cancer morphologies. The results further sug-
gested the possibility of tumor shape control by controlling the tumor 
microenvironment.

Expanding on this idea, Cristini et al. (2005) [29] formulated the 
hypothesis that through heterogeneous cell proliferation and migration, 
microenvironmental cell substrate (e.g., oxygen, nutrient, growth factor) 
gradients may drive tumor invasion through morphological instability 
with separation of cell clusters from the tumor edge and infiltration into 
surrounding normal tissue. Tumor morphology would be determined 
by the competition between heterogeneous cell proliferation caused by 
spatial diffusion gradients, driving shape instability and invasive tumor 
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morphologies, and stabilizing mechanical forces, for example, cell–cell 
and cell–matrix adhesion.

To test this hypothesis, Frieboes et al. (2006) [30] obtained parameter-
based statistics for input to the mathematical model from in vitro human 
and rat glioblastoma cultures. Employing a linear stability analysis of 
the model from Cristini et al. (2003) [26], these results predicted that 
glioma spheroid morphology would be marginally stable. In agreement 
with this prediction, for a range of parameter values, unbounded growth 
of the tumor mass and invasion of the environment were observed in 
vitro. The mechanism of tumor invasion was characterized as recursive 
subspheroid component development (i.e., formation of “buds”) at the 
tumor viable rim and separation from the parent spheroid. Cristini et al. 
(2005) [29] further provided evidence that morphological instability 
could be suppressed in vivo by spatially homogeneous oxygen and nutri-
ent supply because normoxic conditions both decrease gradients and 
increase cell adhesion and, therefore, the mechanical forces that main-
tain a well-defined tumor boundary. Taking into account the effect of 
the microenvironment, Macklin and Lowengrub (2007) [31] also found 
that tumor morphological stability could be enhanced by improving the 
oxygen/nutrient supply.

The results of these multiscale models predict that morphologic insta-
bility of a tumor mass, that is, morphology resulting in “roughness” or 
harmonic content [26,33] of the tumor margin, may provide a powerful 
tissue invasion mechanism since it allows tumor cells to escape growth 
limitations imposed by diffusion (even in vitro [30,41]) and invade the host 
independently of the extent of angiogenesis [29,30]. Diffusional instability 
may thus be a universal consideration that applies to invasion observed 
across tumors of different tissues (e.g., [1,42]). Experiments with various 
glioma models in vivo [43–46) also support these findings. For example, 
recently published images of rat glioblastoma in vivo [47] showed that 
while the bulk tumor is perfused by blood, infiltrative cell clusters are 
much less perfused or not at all.

Model
We describe a continuum model of solid tumor growth that refines and 
extends previous developments (e.g., [32,34,35,48–64]). The tissue is mod-
eled as a mixture of various components (tumor and host cell species, water, 
and extracellular matrix), each of which moves under its own velocity field 
and is governed by separate mass, momentum, and energy equations. The 
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transport of key species, such as oxygen and matrix-degrading enzymes 
(MDEs), are also modeled. Each of the model constituents is governed by 
a reaction-diffusion equation of the general form

	 ∂ν/∂t = −∇·J + Γ+ − Γ−,	 (10.1)

where v is the evolving constituent (e.g., the density ρi of cell species i, the 
cell substrate concentration σ, the MDE concentration m, or the nondif-
fusable matrix macromolecule concentration c), J is the flux, and Γ+ and Γ− 
are the sources and sinks of the constituent. Specific forms for J, Γ+, Γ− are 
given in Table 10.1, where the Ds are diffusion constants; ui is the velocity 
and λprolif,i, λapop,i, and λnec,i are the proliferation, apoptosis, and necrosis 
rates of cell species i; uw is the water velocity; λσ,supply and λσ,uptake are the cell 
substrate transfer and uptake rates; λm and λm,degrade are the MDE secre-
tion and degradation rates; and λc and λc,degrade are the production and 
degradation rates for the macromolecule c. An additional equation (not 
shown) is posed for the mass fraction of water [34]. For simplicity, the 
cell substrate represents the combination of oxygen and glucose, but it is 
straightforward to extend the model to treat these separately or include 
growth promoters and inhibitors by introducing additional chemical spe-
cies. The S_

i,j are mass exchange terms, and the fluxes Jmechanics,i account 
for the mechanical interactions between the different cell species and the 
extracellular matrix [34].

Mechanical forces, including cell–cell and cell–matrix adhesion, stress, 
and strain, can be implemented through individual contributions to a 
potential function Emechanics,i [34]. Once the key processes and variables are 
identified, they can be naturally incorporated by modifying the energy 
accordingly, and the associated parameters can be informed by avail-
able experimental data. For example, a thermodynamically consistent 
(e.g., [51,52]) constitutive law for the flux Jmechanics,i is obtained by taking 
the gradient of the variational derivative of the total energy Emechanics,i, that is,

Table 10.1  Specific Forms for the Main Model Constituents

Constituent Flux J Sources Γ+ Sinks Γ−

ρi ρiui + Jmechanics,i ρiλprolif,i + ∑jS+
i,j ρi(λapop,i + λnec,i) + ∑jS−

i,j

σ σuw − Dσ∇σ λσ,supply λσ,uptake

c 0 λc λc,degrade

m muw − Dm∇m λm λm,degrade
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	 Jmechanics,i ∝ ∇(δEmechanics,i/δρi),	 (10.2)

where Emechanics,i is obtained by adding the contributions from each 
mechanism modeled, that is, adhesion, elasticity, etc.

The velocities ui and uw are determined from momentum equations. 
Following previous approaches [26,29–31,33,64,66] that reformulated 
and generalized the models in [2,37,39,67–69] and neglecting viscoelastic 
effects, Darcy’s law is taken as a coarse-scale reformulation of the iner-
tialess momentum equation, that is, instantaneous equilibrium among 
the following forces [32,34,36]: pressure p (isentropic stress), resistance 
to motion, elastic forces, forces exchanged with the extracellular matrix 
that lead to chemo- and haptotaxis, and other mechanical effects within 
Emechanics,i. This leads to

	 ui = Mi(−∇p + γi(δEmechanics,i/δρi)∇ρi)+ χc,i∇c + χσ,i∇σ,	 (10.3)

where Mi, γi, χc,i, and χσ,i are the spatially inhomogeneous mobility, adhe-
sion, hapto- and chemotaxis tensors that also take into account cell–matrix 
adhesion. The interaction forces γi (δE/δρi)∇ρi describe the effects of the 
mechanical interactions (e.g., adhesion) on the movement of the cells. The 
parameter M depends on the extent of cell–cell and cell–matrix adhesion 
in bulk regions. Interactions with rigid physical barriers (e.g., bone) have 
also been modeled [70,71].

The model is closed with functional relationships based on experimen-
tal data, which serve to calibrate the input parameter values, for example, 
rates of cell proliferation and apoptosis [32,34,36].

The tumor model is coupled nonlinearly [32,36] to a hybrid continu-
um-discrete, lattice-free model of tumor-induced angiogenesis that is a 
refinement of previous work [72,73]. This random-walk model generates 
vascular topology based on tumor angiogenic regulators, for example, 
vascular endothelial growth factor (VEGF), represented by a single con-
tinuum variable that reflects the excess of proangiogenic regulators com-
pared to inhibitory factors. Perinecrotic tumor cells and host tissue cells 
close to the tumor boundary are assumed to be a source of angiogenic 
regulators. Endothelial cells near the sprout tips proliferate, and their 
migration is described by chemotaxis and haptotaxis (e.g., motion up gra-
dients of angiogenic regulators and matrix proteins such as fibronectin). 
For simplicity, only leading endothelial cells are modeled and trailing 
cells passively follow. The tumor-induced vasculature does not initially 
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conduct blood, as the vessels need to form loops first (anastomosis) [74]. 
Anastomosed vessels may provide a source of oxygen and nutrient in the 
tissue and may undergo spontaneous shutdown and regression during 
tumor growth [75], thus enhancing the diffusion gradients seen clinically 
and predicted in silico. The vasculature architecture, that is, intercon-
nectedness and anastomoses, is captured via a set of rules, for example, a 
leading endothelial cell has a fixed probability of branching at each time 
step, while anastomosis occurs if a leading endothelial cell crosses a ves-
sel trailing path. Parameters governing the extent of neovascularization 
and oxygen/nutrient supply due to blood flow are estimated in part from 
Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) 
observations in patients [76]. We note that there are other models of tumor 
neovascularization (e.g. [77–82]), which have also been coupled to tumor 
growth (e.g., [70]). In particular, earlier versions of the model presented 
here, using a sharp-interface simplification [28], were coupled with an 
angiogenesis component by Anderson and Chaplain (1998) [83].

Recently developed adaptive numerical techniques [28,31,34,66,70,84–91] 
are employed to obtain numerical results. The range of length and time-
scales governing the tumor evolution is captured by performing local 
refinement in regions of rapid spatiotemporal variation, for example, near 
the tumor and perinecrotic boundaries and near co-opted vessels.

Results
We calibrated a sharp-interface simplification (constant cell–cell adhesion) 
of the mixture model, based on comparing and matching growth curves 
and detailed morphological features predicted numerically to those mea-
sured experimentally in vitro [30]. The parameter estimates were consid-
ered sufficient once the simulation agreed with the experimental growth 
and morphology data, which led to measurements of proliferation rates, 
necrosis and cell adhesion parameters, diffusion constants, and cell sub-
strate uptake rates.

By comparing the slope of the early (log-linear) growth curve for in 
vitro tumors to the analytical spherical solution of the reaction-diffusion 
equation [26,30], the tumor proliferation rate λprolif ≈ 1 day−1. Similarly, 
by comparing the steady-state radius to the analytical spherical solution 
[26], 0.26 ≤ A ≤ 0.38, where A = λdeath / λprolif. The “death” parameter is the 
ratio of the rate of cell mass destruction (apoptosis and necrosis) to tissue 
creation by proliferation and its effect on tumor growth (λdeath combines 
the effects of λapop and λnec in Table 10.1). A range of values to calibrate 
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cell–cell adhesion was determined based on linear stability analysis of the 
nondimensional parameter G = λprolif/λadhesion, which measures the rela-
tive strengths of proliferation and cell–cell adhesion in a tumor [26]. As 
illustrated in Figure 10.1, in the presence of cell substrate gradients, mor-
phology can be “unstable” when cell adhesion is weak (large G), whereas 
for small G, tumor morphology is “stabilized” by cell adhesion [38]. The 
larger a tumor grows, the weaker the stabilizing effect of cell adhesion. 
Each G-curve describes a tumor with specific cell phenotype and divides 
the parameter space into stable (on the left) and unstable regions (on the 
right). The lower the cell adhesion, the more shifted to the left the G-curve 
is, thus reducing the range of sizes of tumors that will be morphologically 
stable. As a tumor grows, this corresponds to moving from left to right 
and thus may lead to eventually crossing the G-curve corresponding to 
that tumor’s phenotype. Based on this analysis and comparing with the 
marginally stable morphology of the in vitro tumors, and using our earlier 
estimates for A, it was determined that 0.6 ≤ G ≤ 0.9.

The calibrated model was consistent with other measurements [26,92]. 
For instance, the model gives an oxygen penetration length scale Loxy = (Doxy/
λoxy,uptake)−1/2. By measuring the distance between the necrotic core and the 
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Figure 10.1  Morphologic stability diagram. “Stationary radius” R (unit = 100 μm) 
decreases as a function of the death parameter A for different values of G. Shaded 
region: calibration of G and A under “stable” in vitro conditions. Tumors from the 
experiments (filled symbols) demonstrate predictivity of tumor morphological 
stability by the model. (Reprinted from Frieboes et al. 2006, Cancer Res 66:1597–
1604. With permission from the American Association for Cancer Research.)
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basement membrane, Loxy ≈ 100–140 μm; using previously published val-
ues λoxy,uptake = 9.41 × 10−2 s−1 [93] and Doxy = 1.45 × 10−5 cm2/s [94] gives Loxy 
= 124 μm. Similar estimates were also in good agreement with the hypoxic 
and acidic gradients and regions of cell viability measured in vitro from 
immunohistochemistry [92] and with clinical histopathology data [35]. 
Analogous calculations were consistent for calculating the glucose pen-
etration length and uptake rate [92,95,96], confirming that hypoxia is the 
limiting factor for tumor cell viability.

Adhesion was correlated with local substrate levels using this cali-
brated model. Adhesion decreases as glucose increases because high glu-
cose reduces oxygen levels in tumors with diameters greater than 1 mm 
[97], leading to hypoxia, which can increase tumor cell motility and 
reduce cell–cell adhesion [1,98–100]. Using a simplified functional rela-
tionship between glucose and oxygen levels and cell adhesion (modeled 
here through the denominator of G), G was made an increasing function 
of glucose (corresponding to lower cell–cell adhesion) and a decreasing 
function of oxygen (corresponding to high cell–cell adhesion in well-
oxygenated tumors). We compared in vitro experiments (filled symbols 
in Figure 10.1) with high glucose (low cell adhesion; G > 0.9), high serum 
(high proliferation, G > 0.9), low serum and glucose (low proliferation 
and high cell–cell adhesion, G < 0.6) with simulations and linear stabil-
ity theory (shaded region in Figure 10.1). As predicted, the in vitro and 
in silico tumors corresponding to G < 0.6 demonstrated stable, compact 
morphologies, while the tumors corresponding to G > 0.9 were highly 
unstable [30]. This showed that the hypothesized functional relationships 
between phenotypic variables (adhesion and proliferation) and substrate 
levels (oxygen, glucose) were capable of correctly predicting morphology 
and growth for these in vitro tumors.

This conceptual framework is a description of tumor morphologic sta-
bility being regulated by diffusion gradients that promote or inhibit cell 
proliferation and migration. Linear stability analyses [26,33] and com-
puter simulations [26,28–30,33] reveal that when promigratory and prolif-
erative factors dominate, collective tumor cell migration and proliferation 
occur. Complex patterns (morphological “instabilities”) are triggered by 
environmental perturbations, leading to the local invasion of the host by 
clusters or “fingers” of tumor cells. The presence of large substrate gradi-
ents (e.g., caused by heterogeneity in the neovasculature [101] combined 
with diffusion) can “destabilize” the morphology through spatially het-
erogeneous and time-dependent cell proliferation and migration. These 
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trends are illustrated in Figure 10.2 in a simulation calibrated to in vitro 
glioblastoma in standard culture conditions [30]. Cells exposed to higher 
substrate concentrations (outer boundary of the tumor) proliferate more 
quickly than those closer to the perinecrotic boundary. Under weak cell–
cell adhesion, local “waves” arise in the outer boundary (also observed in 
[42,102] and develop into protruding clusters of cells that eventually sepa-
rate from the tumor and form invasive “microsatellites” (subspheroids in 
the cell culture). The model results and the linear stability analyses [26] 
predict that stronger cell–cell adhesion would inhibit the development of 
protrusions, as confirmed by the in vitro experiments [30].

This mathematical modeling approach, based on biophysical instabil-
ity mechanisms [26] that are predictive of tumor growth and controlled 
by critical model parameters, can reproduce various morphological pat-
terns of collective cell migration and invasion that are observed in vitro 
and in vivo [1], including slender “finger-like” tumor cell strands and 
roundish, detached clusters (microsatellites). Figure  10.3 shows tumor 
morphologies predicted by the model using spherical initial conditions, 
low cell adhesion, and varied cell proliferation [36]. When the tumor 
evolved by taxis alone (no proliferation) (A), strands of tumor cells were 
produced, as has been observed in vitro after inducing hypoxia in spher-
oids of MLP-29 rat embryo liver cells [41] (B). When proliferation was 
significant, protrusions were formed and sometimes shed as clusters 
(C), suggesting that the tumor relied on vessels in the nearby host tis-
sue [103,104] and proliferated towards them, as confirmed in the brain 
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Figure 10.2  Cell protrusions growing into detached cell clusters and forming 
separate tumors as a result of intratumoral diffusion gradients of oxygen and 
cell nutrients. Top row: model simulation snapshots (time = days). Bottom row: 
in vitro observations. Bar: 130 μm. (Reprinted from Frieboes et al. 2006. Cancer 
Res 66:1597–1604. With permission from the American Association for Cancer 
Research.)
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Figure 10.3  (See color insert following page 40) Variability and persistence of morphologic patterns predicted by the mathematical 
model simulating heterogeneity in vitro (A) (Li et al., 2007. Disc. Dyn. Contin. Dyn. Syst. B 7:581–604) and in vivo (C) (Bearer et al., 
2009. Cancer Res. 69:4493–4501). The tumor species is allowed to acquire a hypoxia-induced migratory phenotype clone. (A), prolifera-
tion is downregulated and the clone migrates up oxygen gradients toward the far-field boundary (computational box not shown; arrow, 
time direction). (C), migratory phenotype of the tumor clone (light red); and the original tumor species (dark red). Proliferation of both 
cell types is regulated by oxygen levels. The gray region of the 3-D graph (C, left) denotes necrosis. Horizontal 2-D slice (C, right) shows 
the distribution of the migratory clone; small circles indicate the cross sections of blood-conducting vessels. Morphologic instability 
occurs in both simulations because this clone’s cell adhesion is low, resulting in cell strands in (A), and fingers and detached clusters in 
(C). Simulations are supported by experimental observations revealing morphologic instability after inducing hypoxia in spheroids in 
vitro (B) [reprinted from Pennacchietti et al. 2003. Cancer Cell 3:347–361. With permission from Elsevier], and in human glioblastoma 
histopathology viewed by fluorescence microscopy (H&E stain) (D) [reprinted from Frieboes et al. 2007. NeuroImage 37:S59–S70. With 
permission from Elsevier.] The tumor (bottom) is invading normal tissue (top) toward new conducting vessels (red). Note the demar-
cated margin between tumor and brain parenchyma (middle top) and the fluorescent green outlines of larger, aged vessels deeper in 
the tumor. Bar, 100 μm.
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histopathology (D). The overall tumor shape depends strongly on the 
vascular patterning, a result supported by animal [43–46] and clinical 
MRI studies (e.g., [36]). In both cases modeled, the complex tumor mor-
phologies developed due to the interactions between cell proliferation, 
migration, and low cell adhesion, as modulated by the diffusion gradi-
ents of oxygen and cell nutrients.

In the work of Cristini et al. (2005) [29], the model was used to predict 
changes in the tumor morphology in response to perturbations in two 
model parameters that govern cell–cell adhesion and the density of the 
microvasculature in the host tissue, leading to the creation of a “morphol-
ogy diagram.” Figure 10.4 shows that if cell–cell adhesion is sufficiently 
strong (case A), then the tumor tends to maintain a compact morphology, 
even following angiogenesis. In contrast, when cell–cell adhesion is low 
(case B), the tumor tends to break into fragments [1] that invade the sur-
rounding tissue due to substrate gradients [26,28]. When adhesion was 
kept low but the host vascular density is increased (case C), the substrate 

Tumor/host tissue interface

Necrosis Capillaries

Anti-angiogenic therapy

Vascular normalization

Density contours of
“free” endothelial cells

Anti-i
nvas

ive
 th

era
py Anti-invasive therapy

A
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Figure 10.4  Tumor “morphology diagram.” Solid line: calculated tumor bound-
ary, black areas: necrosis. While anti-angiogenic therapy may induce tumor mor-
phological instability through heterogeneity in the cellular microenvironment, 
including exacerbation of diffusion gradients of oxygen and cell nutrients, both 
anti-invasive therapy and vascular normalization lead to reduced heterogeneity 
and thus more compact morphologies. (Reprinted from Cristini et al. 2005. Clin. 
Cancer Res. 11:6772–6779. With permission from the American Association for 
Cancer Research.)
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levels became more homogenous (were “normalized”), leading to a more 
compact morphology and reduced invasion.

This study [29] provided a preliminary quantification of the effects of 
three tumor therapy strategies: anti-invasive, where drugs are introduced 
to increase cell–cell adhesion; anti-angiogenic, where drugs target and 
destroy the neovasculature; and vascular-normalizing, where inefficient 
blood vessels are “pruned” to reduce or eliminate hypoxic gradients. The 
model predicts that anti-invasive therapy will lead to a transition from 
either case B or C to case A, while anti-angiogenic therapy causes a transi-
tion from case C to case B, and vascular-normalizing therapy reverses the 
transition.

Discussion
The results presented in this chapter provide evidence that tumor mor-
phogenesis may be a quantifiable function of marginally stable environ-
mental conditions caused by diffusion gradients in cell nutrients, oxygen, 
and growth factors. This concept of tumor “diffusional instability” may 
be relevant during chemotherapy, radiotherapy, and anti-angiogenic 
therapy, all of which could introduce spatial and temporal variations in 
oxygen and cell nutrients [64]. In contrast, tumors may approach a com-
pact, less invasive morphology when cell adhesion or other stabilizing 
mechanical forces (e.g., tumor encapsulation) are maximized. Compact 
tumor morphologies may be achievable by maintaining uniform oxy-
gen/nutrient levels at the cellular scale and homogeneous microenviron-
mental conditions, thus suppressing instability [29]. A properly working 
tumor microvasculature could help maintain compact noninfiltrating 
tumor morphologies by minimizing oxygen and nutrient gradients. Anti-
invasive therapy could increase cell adhesion and lead to more compact 
morphologies. Vascular normalization [48] would have a similar effect by 
making oxygen and nutrient supply more uniform. An additional ben-
efit would be that more benign clones would be maintained, helping to 
keep malignant clones under control by competition for oxygen and cell 
nutrients.

By quantifying the link between the tumor boundary morphology 
and the invasive phenotype, this modeling work provides a quantita-
tive tool for the study of tumor progression and diagnostic/prognos-
tic applications. The results hold promise that applying biologically 
founded, mathematical modeling to quantify the connections between 
the microenvironment, tumor morphology, genotype, and phenotype 
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may direct prognosis beyond the limitations of current methodologies. 
This type of modeling could be used to study system perturbations by 
therapeutic intervention and may aid in the design of novel clinical end-
points in therapeutic trials. By integrating the model with patient data 
for key tumor phenotypic and microenvironmental parameters, it is our 
hope that this work could help enhance clinical outcomes in the not too 
distant future.
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Introduction
Cell migration is fundamental to a number of physiological processes 
such as embryogenesis, organ growth, inflammation, wound healing, and 
tumor-induced angiogenesis. In embryonic development, the blastocyst 
cells migrate to form layers (gastrulation) and later migrate to target des-
tinations in the developing embryo to specialize and become components 
of organs. This process of developmental migration continues in the adult, 
as some cells in our bodies are born, migrate, and die on a daily basis. 
Wound healing is another example of collective cell migration, involving 
the proliferation of existing cells and the migration of cells close to the 
wound towards each other to close the cleft. In the pathological context, 
enhanced cell migration is key to invasive growth of tumor cells, which is 
the basis of metastasis. This invasion involves the detachment of individ-
ual cells from their originating tissue and is followed by their propulsion 
through existing tissue.

A particular aspect of cell migration that has attracted increased 
attention recently is related to the process of angiogenesis as induced 
by tumor cells emitting vascular endothelial growth factors (VEGFs). 
Tumor-induced formation of new blood vessels in the context of sprouting 
angiogenesis is based on the orchestrated migration of clusters or cords 
of endothelial cells. The endothelial cells migrate through the extracel-
lular matrix (ECM) following chemotactic and haptotactic cues. For these 
endothelial cells, the most prominent chemoattractant is VEGF [1]. VEGF 
gradients can be established in a variety of ways; soluble VEGF isoforms 
can be secreted by tumor cells, macrophages, or astrocytes [2]. This secre-
tion can lead to long-range chemotactic signals. At the same time, some 
chemokines can also be sequestered in the ECM, where they represent 
highly localized cues. Another subset can be cleaved by matrix proteinases 
[3] and made soluble, or released as the matrix itself is degraded by hepa-
rinases or plasmin [4,5].

All these processes are characterized by a collective, directed motion 
of the cells in play. In many cases, the migration direction is aligned with 
a chemical gradient, for example, of nutrient or a growth factor: in this 
case, the migration is referred to as chemotaxis. There has been much 
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debate on how cells are able to persistently sense a chemical gradient of 
a chemoattractant. Mathematical models have been used largely as quali-
tative indicators of cell motion. Their predictive value can be traced to 
their capability of differentiating between various mechanisms by which 
a cell might be able to sense a gradient and migrate in response to it, in a 
sustained fashion. A number of mathematical models have been proposed 
for gradient-driven cell motions. These models are predominantly based 
on mechanisms of “Local Excitation-Global Inhibition” (LEGI) [6] and its 
extension to “balanced inactivation” [7] (see Reference [8] for a review of 
chemotaxis models). The effect of noise on the directional sensing ability 
of these models has been studied by Ueda and Shibata [9], and Rappel and 
Levine [10], and may lead to testable predictions.

Morphogenesis In Silico

The simulations of sprouting angiogenesis can be broadly categorized as 
simulations of morphogenetic patterns that in turn correspond to a variety 
of computational models. These models often focus on a particular aspect 
of the patterning process and, in turn, their computational parameters 
are tuned to the process under consideration. For example, a vast body 
of literature exists on the mathematical description of bacterial chemo-
taxis (see the comprehensive review by Tindall et al. [11]). The patterning 
observed in developmental vasculogenesis has been successfully repro-
duced in silico by simulations that independently considered either purely 
chemical signaling [12] or purely mechanical effects [13].

While much of the theoretical work published on chemotactic systems 
focuses on modeling the gradient sensing response, the representation and 
interaction of the cells, or in reproducing final, static patterns, little atten-
tion has been paid to the environment in which the migration takes place. 
Models of vasculogenesis [13–15], either consider the ECM as a homoge-
neous viscoelastic tissue, or do not consider it at all (see review [16] for a 
survey of different vasculogenesis models). Although reported mathemat-
ical models of sprouting angiogenesis continue to achieve a great degree of 
sophistication [17], in these models the ECM plays a mostly secondary role 
and is assumed to be homogeneous. Heterogeneity is introduced through 
random components in the behavioral rules of the cells; for example, cells 
branch with a predefined probability [18,19]. Exceptions include the deter-
ministic model of Sun et al. [20], where the ECM affects the migration 
by deflecting the migration velocity through a random anisotropy. On a 
microscopic scale, the ECM was structurally considered in [21] a Cellular 
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Potts approach. Due to the detailed cell representation, this model is only 
suitable for studying the dynamics of a handful of cells.

A grand majority of the models that describe to some extent the dynam-
ics of collective cellular motion are based on cell-based representations. 
These formulations are appealing because they allow researchers to impose 
behavioral rules in an intuitive, cell-centered fashion. Also, the interpreta-
tion of the results is straightforward, as there is no abstraction layer; for 
example, instead of integrating a mean cell density, one can simply count 
the cells in the plot. A smaller subclass does employ continuum formu-
lations; however, at a coarse macroscopic scale, where the output of the 
simulation has to be interpreted as a probability density function for the 
cell density, and therefore, morphological information is all but completely 
buried in the description. One reason why continuum models that can 
recover detailed morphological features are scarce is because some cellu-
lar interactions are difficult to model at the macroscopic scale. One basic 
problem is the representation of cell–cell adhesion. In cell-based models, 
cell–cell adhesion can conveniently be expressed in the shape of an intercell 
attraction. In mesoscale continuum models, the notion of a single cell does 
not exist, and we have to model the macroscopic effect of cell–cell adhe-
sion. A handful of approaches have been proposed; in the context of tumor 
growth, cell–cell adhesion is often represented by a surface tension term that 
acts on the interface between tissues of different cell types [22,23]. Other 
continuum models have been proposed [24] based on the concept of deduc-
ing collective continuum behavior from an underlying discrete model [25], 
or on medium-range attractive forces [26]. One common drawback of these 
models is that they are computationally expensive. Surface tension calcula-
tions in continuum models require solving a global problem. The approach 
of Armstrong et al. [26] is local; it, however, requires performing a convolu-
tion with a kernel involving O 20d  neighbors.

In a recent work, we introduced the first hybrid model of sprouting 
angiogenesis, which explicitly considers the structure of the ECM [27]. 
In this model, matrix fibers are explicitly represented as a collection of 
fiber bundles that direct cell migration, and can sequester chemical cues 
leading to branching of blood vessels without requiring a priori defined 
branching probabilities. Painter [28] employed a similar approach to study 
cell organization and the incipience of fingering patterns. In the present 
article, we focus on the continuum formulation of a computationally effi-
cient cell–cell adhesion model, and the interaction of in silico cells with 
the underlying artificial ECM.

© 2011 by Taylor and Francis Group, LLC



Continuum Models of Mesenchymal Cell Migration    ◾    217

Sprouting Angiogenesis

Sprouting angiogenesis, the process of new capillaries forming from exist-
ing vessels, can be observed in the human body under various conditions. 
Apart from angiogenesis in a physiological context, which mainly takes 
place during embryogenesis and fetal development, angiogenesis can be 
observed under pathological conditions, such as wound healing, thrombo-
sis, and tumor growth [29]. In the case of wound healing and thrombosis, 
newly formed capillaries grow in a controlled manner and stop growing 
once the pathological condition has been alleviated; this is, however, not 
the case for tumor-induced angiogenesis [29].

Tumor-induced angiogenesis can persist for years, involving a disor-
ganized, inefficient, and leaky vasculature [29]. Nonetheless, this vascula-
ture supplies the tumor with nutrients and growth factors, which enable 
increased tumor cell proliferation and thus enhanced tumor growth. 
Furthermore, angiogenesis enables hematogenous spread of cancer: sin-
gle cancer cells or cell clusters that detach from the primary tumor may 
enter the leaky vessels and use the vasculature to metastasize to remote 
organs. Regulating, or even inhibiting tumor-induced angiogenesis, can 
affect tumor growth. Inhibition of angiogenesis restrains nutrient supply, 
reducing the growth rate of the tumor and hindering migrating cell clus-
ters from entering the vasculature, thus reducing the risk of metastasis 
[2]. However, a complete inhibition-promoting hypoxia (state of oxygen 
shortage) within the tumor could increase the occurrence of aggressive 
migrating tumor cell phenotypes [30,31]. Regulating capillary growth 
may help in establishing a more efficient pathway for drug delivery, as 
the leaky vessels and the high interstitial pressure in the proximity of the 
tumor prevent effective supply of drugs through the blood vessels into the 
core of the tumor [32]. Although anti-angiogenic therapy is comparatively 
young, it has already been established as a novel form of chemotherapy 
in cancer treatment [2] (next to surgery, radiation, and conventional 
chemotherapy).

Tumor-Induced Sprouting Angiogenesis

The maximal size a tumor can assume without relying on a vasculature for 
nutrient supply is restricted to 1 mm3 [2]. In this case—which is referred 
to as avascular growth—nutrients reach the tumor by the sole means of 
diffusion through the surrounding tissue. If the tumor grows beyond 
this size of about 1 mm3, cells in the core of the tumor cannot obtain 
enough oxygen to survive. These cells become hypoxic and eventually 
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starve, forming a necrotic region at the core of the tumor. Tumors can 
reside in this avascular state for a long time [2]. However, one of the many 
responses of tumor cells to hypoxia is that they start to secrete angiogenic 
growth factors that are responsible for initiating sprouting angiogenesis. 
Several growth factors are involved in the process of angiogenesis. VEGFs 
have been identified to be one of the main driving forces [1]. VEGFs, upon 
release by hypoxic tumor cells, diffuse through the ECM occupying the 
space between tumor and existing vasculature in the proximity of the 
tumor and establish a chemical gradient between the tumor and nearby 
vessels. Once VEGF has reached a vessel, it binds to receptors located on 
endothelial cells (EC), which line the blood vessel walls. This binding sets 
off a cascade of events.

In the early phase of angiogenesis, ECs stimulated by VEGF start releas-
ing proteases that degrade the basal lamina, a fibril structure building the 
outermost layer of the vessel wall. This enables ECs to leave the vessel wall 
and enter the ECM. Further signaling pathways downstream of VEGF lead 
to an increase in EC proliferation and coordinate the selection of migrating 
ECs located at the tip of outgrowing sprouts. Migrating sprout tip cells 
probe their environment by extending filopodia and migrate along the 
VEGF gradient toward regions of higher concentration, a directed motion 
referred to as chemotaxis. ECs located initially behind the migrating tip 
cells proliferate, thus extending the sprouting blood vessel. Fibronectin, 
which is distributed in the ECM and at the same time released by the 
migrating tip cells, establishes an adhesive gradient that serves as another 
cue for the ECs following behind. Fibronectin released by the ECs binds to 
integrins located on collagens and other fibers, which occupy roughly 30% 
of the ECM. Matrix-bound fibronectin in turn can bind to transmembrane 
receptors located on the EC membrane. This autocrine signaling pathway, 
promoting cell–cell and cell–matrix adhesion, accounts for a movement 
referred to as haptotaxis. In addition to chemotactic and haptotactic cues, 
the fibrous structures itself present in the ECM also influence cell migra-
tion by facilitating movement in fiber directions.

After the initial sprouts have extended into the ECM for some distance, 
repeated branching of the tips can be observed. Sprout tips approaching 
others may fuse and form loops, a process called anastomosis. Anastomosis 
can be observed to occur in two ways, either sprout tips fusing with other 
sprout tips, stopping their migration completely, or sprout tips fusing with 
already established sprouts at some distance behind the tip. Along with 
anastomosis, the formation of lumen within the strands of endothelial cells 
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establishes a network that allows the circulation of blood. Maturation, the 
final stage of angiogenesis, incorporates the rebuilding of a basal lamina 
and the recruitment of pericytes and smooth muscle cells to stabilize the 
vessel walls.

In tumor-induced angiogenesis, the newly built vasculature is often 
disorganized and leaky, leading to high interstitial pressure and inefficient 
blood supply. Together with a growing tumor, which exerts pressure on 
the fragile capillaries and thus suppresses temporal and local blood deliv-
ery, ever-new regions of acute hypoxia arise, releasing VEGF, which sets 
off the process of angiogenesis anew. The process therefore never comes to 
a stop, and full maturation is impaired.

Vascular Endothelial Growth Factors (VEGFs)
In addition to the soluble isoform of VEGF, the presence of other VEGF 
isoforms has been identified to significantly influence morphology of cap-
illary network formation [3,33]. Some VEGF isoforms express a binding 
site for heparan sulfate proteoglycans that is found on cell surfaces, in the 
ECM, and in body fluids; thus, such isoforms can be bound by the ECM. 
These “matrix-bound” VEGF isoforms can be cleaved from the ECM 
by matrix metalloproteinases (MMPs) [3], establishing very localized 
chemotactic cues. MMPs are expressed both by tumors and migrating 
ECs. Inflammatory cells stimulated by the tumor can also release VEGF 
and contribute to the chemotactic cues ECs react to.

Extracellular Matrix (ECM)
The ECM describes any material that occupies the space between cells in 
metazoans, including the space between the initial vasculature and the 
tumor. It plays an important role in cell migration. Fibers such as col-
lagen, laminin, and fibrillin are distributed throughout the ECM, occu-
pying roughly 30% of it. These fibers form bundles that serve as guiding 
structures for migrating cells [34,35]. The structures have been shown to 
be subject to remodeling by endothelial tip cells [36], facilitating migra-
tion through the matrix and playing a crucial role in lumen formation. 
The ECM further presents binding sites for fibronectin and matrix-bound 
VEGF isoforms that can be cleaved by MMPs.

Computational Modeling of Angiogenesis
Computational models of tumor-induced angiogenesis address a limited 
number of the involved biological processes. The choice of the modeled 
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processes is dictated by the availability of biological data and by the under-
standing of the key processes for the phenomena under investigation. In the 
present model, we consider the motion of the ECs as affected by chemical gra-
dients induced by VEGF, cell–cell adhesion, and the structure of the ECM.

In the present model, VEGF appears in soluble and matrix-bound iso-
forms. The soluble VEGF is released from an implicit tumor source, and 
diffuses freely through the ECM. The matrix-bound VEGF isoform can 
be cleaved by MMPs released at the sprout tips (section titled, “Vascular 
Endothelial Growth Factors”), and contributes to the migration cues of the 
ECs (see Figure 11.1). As an extension to the explicit modeling of matrix-
bound growth factors, we present a subgrid-scale approach to account for 
the influence of matrix-bound VEGF on cell migration. Existing models 
of sprouting angiogenesis account for chemotaxis induced by the soluble 
isoform of VEGF [18,20,21,37], and a matrix-bound isoform of VEGF has 
been implicitly accounted for in a recent work by Bauer et al. [21], in which 
the ECM consists of fiber bundles, structural cells, and interstitial fluid, 
influencing EC migration through adhesive forces. In [20], the matrix is 
represented by a random anisotropic conductivity field that affects the 

endothelial
tip cells

secrete
MMPs

ECM

soluble
VEGF

matrix-bound
VEGF

cleaved
VEGF

sprout

Figure  11.1  Conceptual sketch of the different VEGF isoforms present in 
the ECM. Soluble and cleaved VEGF isoforms freely diffuse through the ECM. 
Matrix-bound VEGF isoforms stick to the fibrous structures comprising the 
ECM and can be cleaved by MMPs secreted by the sprouting tips.
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migration velocity of the sprout tips. Models of angiogenesis can be classi-
fied in three broad categories:

	 1.	Discrete, cell-based models that aim to capture the behavior of indi-
vidual biological cells [21]

	 2.	Continuum models that describe the large-scale, averaged behavior 
of cell populations [37,38]

	 3.	Discrete models that model explicitly vascular networks determined 
by the migration of tip cells [18,20].

Bauer et al. [21] developed a two-dimensional, Cellular-Potts-based model 
to simulate migration, division, and adhesion of endothelial cells estab-
lishing an interconnected network. They distinguished two types of ECs: 
migrating tip cells that degrade the matrix fibers, and proliferating stalk 
cells located behind the tip cells. This allows for branching and anasto-
mosis of blood vessels without explicitly defined rules. Anderson and 
Chaplain [37] presented two-dimensional, continuum models of angio-
genesis, with a probabilistic modeling of capillaries and a discrete exten-
sion to this model, with capillaries as masked points on a grid. Capillary 
branching is modeled through a branching probability, depending on 
the sprout age, the tumor angiogenic growth factor (TAF) level, and the 
endothelial cell density. The model was later extended to three dimensions 
[18]. Sun et al. [20] presented a deterministic, discrete two-dimensional 
model of sprouting angiogenesis. They used a capillary indicator function 
to describe the network structure and formulated branching as a function 
of the sprout age and the anisotropy of the ECM. In summary, cell-based 
models aim to describe angiogenesis at cell-level resolution, but they are 
difficult to extend to macroscopic systems due to their computational cost. 
Continuum-based models bypass these limitations by modeling the evo-
lution of cell densities at the expense of detailed cell–cell interactions.

In the present paper, we report our investigations of angiogenesis-like 
growth using a continuum model, which does not rely on any heuristic 
rules (e.g., branching rules) to obtain blood vessel morphologies. This 
experiment might provide some hints on the relative significance of the 
forces at the core of angiogenesis and mesenchymal motion in general. 
The following presentation considers 2D systems. These systems are rel-
evant as many in vitro experiments of angiogenesis are essentially 2D. We 
note that all the techniques described herein have been extended to 3D.
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A Continuum Representation of Cell Migration

There are two basic choices to represent the endothelial cells: similar to the 
representation of multiphase flow, we can chose to represent the cells by a 
density function (diffuse interface approach), or by a level set that repre-
sents the boundary to the extracellular domain (sharp interface approach). 
In the case of cell migration, we need to be able to represent agglomer-
ates of cells that are highly elongated. Therefore, the level set approach is 
less favorable as we always require a narrow band of several grid spacings 
around the level set, and the requirements for the resolution are much 
more demanding than for a corresponding diffuse interface approach.

A single cell population is represented by a density ρ. This density 
evolves in time according to

	 ∂
∂

+ ⋅ =ρ ρ ρ
t

d∇ ∆( ) ,a 	 (11.1)

where a denotes the cumulative effect of cell–cell adhesion (ac/c), pressure 
(ap), and migration cues ( ),aecm φ  as defined in the following sections. The 
term on the right-hand side accounts for random fluctuations on the cell 
population modeled at a macroscopic scale by a diffusion term with diffu-
sion coefficient d.

If more then one cell type is present, one density is used per type, that 

is, ρi i
CellTypes{ } =1

# .

Cell–Cell Adhesion

Cell–cell adhesion is a fundamental biophysical mechanism. It is respon-
sible for tissue formation, stability, and breakdown. It is involved in tis-
sue invasion and metastasis of tumor cells. It is a crucial mechanism in 
embryogenesis, as it is the driving force of cell-sorting processes.

Cell adhesion to another cell or the ECM is established by specific adhe-
sion receptors on the cell membrane, such as integrins, which may bind to 
collagens and fibronectin (in the ECM), and intercellular adhesion mol-
ecules such as cadherins. This reaction is very local, as it happens upon 
contact. In order to model cell adhesion, we state a set of requirements that 
reflect the main characteristics of the process: (1) cell adhesion is a short-
range force; (2) cell adhesion will give rise to a movement of the cells toward 
the entity they adhere to; and (3) this cell movement will decrease as the cell 
density approaches the close-packing density, and at close-packing density 
we expect to find no residual movement caused by adhesion.
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Given these characteristics, we can model cell adhesion as an auto-
crine- (in the case of cell–cell adhesion), or paracrine-like signal f (in the 
case of cell adhesion to the ECM) acting as an adhesive force ac/c on the 
cell population ρ. Consider the case of cell–cell adhesion: in the absence of 
other influences, we can model cell–cell adhesion forces as
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Parameters μ, α, and D f  are the decay, release, and diffusion parameters 
of the adhesion signal that define the range of the adhesive forces. The 
parameter fmax  denotes the threshold value for the release of f. L( f, df ) is 
a cutoff function that keeps the magnitude of the gradient bounded by df 
in order to limit the migration velocity of the cells; here, we chose

	 L f df df df f, max , .( ) = ( )( )−∇ 1 	 (11.3)

The factor κ f  determines the influence of the adhesive force on the cell 
population. In the case where we have populations of different cells ρi, the 
model (11.2) is easily extended to
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where κ ij  describes the heterotypic ( i j≠ ) and homotypic ( i j= ) adhe-
sion strength.

Close-Packing Density

The models (11.2) and (11.4) do not incorporate any repulsive effects that 
might limit the local cell density. Such effects are easily introduced by add-
ing the following pressure-like term to the velocity:

	 a p
pH= − −( ) −κ ρ ρ ρ ρ∇ ∇ 1, 	 (11.5)
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where ρ ρ κ≡∑i i p,  is a constant that determines the cell population 
response to pressure, ρ  is the cell close-packing density, and H is the 
Heaviside function.

The Extracellular Matrix

Continuum simulations of cellular motion rarely explicitly consider  
effects of the ECM on the migration. These effects are, however, crucial, 
as the ECM serves as a scaffolding with adhesive sites that the cells can 
use to exert forces and propel themselves. We propose to model the ECM 
as a collection of bundles of adhesive fibers that facilitate but also bias 
migration. The matrix is constructed as follows: We create N f  fibers as 
lines of thickness bp  from ( , )x ystart start  to ( , )x yend end . The start point is 
drawn from a uniform distribution in the computational domain Ω. The 
end point is given as
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where, α p u a r. . [ , )∈ 0 1  and l is the length of the fiber, which is obtained 
as

	 l l zp
mz= ∈2 0 1, ( , ),with N 	 (11.7)

The base fiber length l and the fiber length variation m are parameters of 
the simulation. The fiber thickness is given as b u a r b bp . . . [ , ).min max∈  These 
fibers are then discretized onto the ECM grid e using Bresenham’s line 
rasterization algorithm (See Figure 11.2). In order to get a differentiable 
field we filter e N filter-  times with a second-order B-spline kernel.

Chemotaxis and Adhesion inside the ECM

In our model of chemotaxis, the migrating cells follow the concentration 
gradient of a chemoattractant φ . The model extension presented here to 
account for cell–ECM adhesion is a formulation of the following assump-
tions: in order to maximize its migration velocity, a cell will crawl along 
fibers, if these fibers are not transverse to the chemotactic cue (∇φ ). If 
there are no fibers in its environment, that is, e = 0, then a cell will not be 
able to migrate efficiently ( eo1); if the fiber density is too high ( e e≈ ∞), 
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then cells have to degrade the matrix before they are able to migrate. These 
assertions are represented by

	
aecm

o
e
e

e e e e,φ φ
φ

φ= − ⋅






+








 +( ) ∞1 ∇

∇
∇
∇

∇ ∇ −−( )e ,
	 (11.8)

and illustrated in Figure 11.3. We would like to point out here that the 
modeling of the chemotactic response aecm,φ  is but the most simple one 
and ignores many effects, such as the saturation of receptor sites on the 
cell membranes. The parameter eo defines the minimal migrative response 
in the total absence of an ECM, and e∞ defines the matrix density thresh-
old that completely blocks migration.

Figure 11.2  An example matrix e in the domain Ω = [0,8] ×  [0,1]: base fiber 
length l = 0.201, Nfilter =  3, bmin = 4 × 10–3, and bmax = 2.7 × 10–2.

γ = 1

φ

γ = 0

O

0 < γ < 1

γ = 1 −
e

| e| ·
∆
∆∆

∆

∆

φ
| φ|

Figure 11.3  A cell will move “onto” a fiber if the fiber direction is not trans-
verse to the chemotactic gradient; that is, the gradient of adhesion is not aligned 
with the chemotactic direction.
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I II IV

A

CB

III

Figure 11.4  (See color insert following page 40) (A) Cell sorting simulations of 
two distinct cell populations ρ1 and ρ2. Top row depicts solution at t = 40, middle 
row at t =160 bottom row depicts a cut through the domain at t =160. Columns: I 
engulfment, κ11 = 0.25, κ22 = 0.225, and κ12 = κ21 = 0.05; II engulfment with pressure, 
κ11 = 0.25, κ22 = 0.025, and κ12 = κ21 = 0.05; III sorting, κ11 = 0.25, κ22 = 0.025, and κ12 
= κ21 = 0.00; IV mixing, κ11 = 0.25, κ22 = 0.09, and κ12 = κ21 = 0.2. (B) Simulation with 
matrix-bound growth factors using pockets of matrix-bound VEGF distributed in 
the matrix. The endothelial cells release MMPs that cleave the bound growth factors 
and make them soluble (diffuse blue cues). (C) Simulation with matrix-bound growth 
factors by the “subscale” model. Within the white circle, there are only soluble growth 
factors present, and outside of the circle a constant concentration of growth factors is 
bound to the matrix. As is apparent from the network structure, the matrix-bound 
growth factors lead to distinctive increased branching.
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Model Applications
We present simulation results for different scenarios of cell sorting and 
cell migration processes. We consider both dynamics of a single cell type 
as well as interactions among different cell types with varying adhesive 
properties.

Cell Sorting

In order to test our model of cell–cell adhesion, we performed simula-
tions of cell-sorting processes. According to the “Differential Adhesion 
Hypothesis” (see References [39,40] and references therein), cellular sort-
ing is induced by differences in intercellular adhesiveness. We consider 
here two different types of cells that differ in their adhesion parameters 
kij. Depending on the choice of adhesion within and across cell types, 
we obtain different sorting behaviors (see Figure 11.4A) such as engulf-
ment of one population by the other, complete sorting, and mixing. We 
also considered the pressure/repulsion effects as introduced earlier in one 
of the cases (see case AII in Figure 11.4). As we model contact-adhesion 
through auto/paracrine signaling, the proposed model successfully recov-
ers the different sorting behaviors, although indirectly.

Angiogenesis-Like Migration

We now assemble a system modeling the chemotactically driven migra-
tion of cells through an ECM. This model consists of (1) cell–cell adhesion, 
(2) cell–matrix adhesion, and (3) chemotaxis. Accordingly, we substitute a 
in Equation 11.1 by a a a= +c c/ φ2  and define

	 aφ
φκ φ

φ
κ φ2 1= − ⋅







+e
e
e

e∇
∇

∇
∇

∇ ∇ . 	 (11.9)

Note that for greater lucidity the system (11.9) ignores the effects of 
fiber density that we have introduced in Equation 11.8. Parameters κe 
and κe define the influence of cell–matrix adhesion and the response to 
chemotaxis.

Figures 11.5–11.7 illustrate the effects of modifying the model param-
eters on the resulting vessel morphology. The simulation outcome can be 
quantified by branch point and vessel section length dynamics as shown 
in Figures 11.8 and 11.9 in the case of varying matrix density and cell–cell 
adhesion.
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In the presented simulation, we assume a linear increase in the chemo-
attractant concentration ϕ from the left side of the domain to the right.

A Multiscale Modeling Approach for Matrix-Bound Growth Factors

So far we have assumed that the growth factors are soluble and freely dif-
fuse through the ECM. However, not all growth factors exist in an a priori 
soluble form; for example, it is well established that there are several dif-
ferent isoforms of VEGF, some that are soluble and some that can bind to 
heparin sites, which can be found in the matrix. These isoforms can bind 
to the matrix and do not diffuse freely. Endothelial cells secrete matrix 
metalloproteinases (MMPs) during angiogenesis. These MMPs have been 
shown [3] to cleave such matrix-bound VEGF isoforms, thus freeing them. 
We modeled this process by distributing small pockets of matrix-bound 
VEGF and by having the ECs secrete a compound that cleaves that matrix-
bound VEGF. Once cleaved, this VEGF adds to the gradient established 

Figure 11.5  Effect of increasing the length of the fibers (in Equation 11.7), 
m = 0.25, 1.0, and 4.0.

Figure 11.6  Effect of increasing the matrix density: 31%, 51%, and 75%.
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by the soluble VEGF present in the domain. Figure 11.4B shows such a 
situation.

A setting such as this is able to provide localized chemotactic cues. 
However, we do not observe an increase in branching, which is what is 
observed in both in vitro and in vivo models of angiogenesis and vasculo-
genesis [3,33].

If we look at the distribution of matrix-bound VEGF, we must realize 
that it is very unlikely to find pockets of VEGF of that size in a real ECM. 

Figure 11.7  Left: Creating thicker vessels by decreasing the close-packing den-
sity ρ. Right: Effect of reducing cell adhesion (cell–cell and cell–matrix).
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Figure 11.8  Sprouting angiogenesis: Effect of the ECM density on the total vessel 
network length (filled circles) and the number of junction points (empty circles).
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Focus points of matrix-bound VEGF must be quite a bit smaller than 
the cell scale. In our continuum description, it is, however, not possible 
to explicitly incorporate localized structures that are truly microscopic. 
We must, therefore, resort to subgrid-scale modeling. From a mesoscopic 
point of view, what will be the effect of localized chemotactic queues that 
are smaller than the description scale? We will clearly not be able to dis-
tinguish any residual localized movement due to these cues. What we can 
expect to see is the cumulative effect on one cell, which from a mesoscopic 
viewpoint will be increased (apparently) random motion. It is well known 
that microscopic random motion manifests itself as diffusion from a mac-
roscopic viewpoint. We therefore model the presence of matrix-bound 
VEGF by an increase in the spatially varying diffusion coefficient d  
in Equation 11.1 for the EC density ρ. That is, if only soluble factors are 
present, the diffusion is zero; in the local presence of matrix-bound fac-
tors, the diffusion term is increased depending on the concentration of 
matrix-bound isoforms. So both the release of MMPs and the cleaving 
of matrix-bound VEGF are modeled implicitly by increasing the diffu-
sion of the ECs. The result of this modification of the model is depicted in 
Figure 11.4C: this type of modeling of matrix-bound VEGF does lead to 
increased branching (see Figure 11.10). We employ the automated imaging 
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Figure 11.9  Sprouting angiogenesis: Effect of cell–cell adhesion on the total vessel 
network length (filled circles) and the number of junction points (empty circles).
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software AngioQuant [41] to extract the network and branching statistics 
from the simulation results (see Figure 11.11).

Discussion
We have presented a pure continuum model of sprouting angiogenesis. This 
model considers several core aspects of mesenchymal motion: (1) cell–cell 
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Figure 11.10  Sprouting angiogenesis: Influence of bound VEGF distributed in 
the second half of the domain on the total vessel network length (filled circles) 
and the number of junction points (empty circles).

Figure 11.11  Extracted networks (using AngioQuant) from simulations with a 
bVEGF incluence factor of 0 (top) and 1.6 × 10−4 in the right half of the compu-
tational domain.

© 2011 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10407-12&iName=master.img-015.jpg&w=239&h=128


232    ◾    Michael Bergdorf, Florian Milde, and Petros Koumoutsakos

adhesion, (2) the structure of the ECM, (3) cell–matrix adhesion, (4) chemo-
taxis, and (5) the effect of matrix-bound growth factors.

In this model, we simulated cell–cell adhesion by modeling it as an 
autocrine signal. Although indirect, this formulation is very simple and 
manages to recover aspects of the sorting behavior of cells. Compared to 
existing continuum models of cell–cell adhesion [26], the present model is 
less intuitive; however, it is more efficient and easier to implement. In the 
present work, the ECM is represented explicitly as a collection of fibers 
that exert adhesive forces. This method of representing the mechanical 
aspects of the cell microenvironment enables us to recover branching 
behavior as an output of the model, and hence we do not need to call on 
heuristic branching events. In addition to soluble chemotactic cues, we 
also consider matrix-bound cues, which are modeled using a subgrid-scale 
approach. The incorporation of these localized cues yields an increase in 
vessel branching, and thus results in the same morphological chances as 
observed in experiments. In its general form, the methods presented ear-
lier can be used to simulate mesenchymal motion in general. The invasion 
of cancer cells into healthy tissue is another tumor-related phenomenon 
that is dominated by mesenchymal motion, and to which the present 
model may be applied (see Figure 11.12).
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Figure 11.12  3D simulations of cells shed from the surface of a spherical tumor, 
and their invasion of the surrounding ECM.
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Introduction
Physical and mathematical models can be very useful in many subfields 
of biomedicine and, in particular, in oncology. Physical models, based 
on a comparison with well-known phenomena, which present formal 
analogies with some aspects of tumoral development, may be extremely 
helpful, since they may suggest new mechanisms to be tested and ana-
lyzed. Mathematical and computational models allow researchers to 
vary the details of the proposed model or their parameters, for example, 
by adding new ingredients and/or eliminating ineffective ones. Thus, it 
becomes possible to perform virtual experiments of selected therapies and 
to predict or optimize the outcome of suggested therapeutic protocols. The 
current relevance of physical, mathematical, and computational modeling 
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is due to a combination of related factors (Deisboeck et al. 2007, 2009; Liu 
et al. 2006; Kitano, 2002; Hornberg et al. 2006; Coffey 1998).

As an example of physical models, consider a study of tumor invasive-
ness based on the analogy with two well-known physical mechanisms, 
that is, the mechanical insertion of a solid inclusion in an elastic material 
specimen or the impinging of a water drop on a solid surface (Guiot et al. 
2007). As far as the computational models are concerned, there exists a 
large number of simulation techniques, such as cellular automata, finite 
difference methods, LISA (Local Interaction Simulation Approach), etc. 
(Scalerandi et al. 1999, 2001; Delsanto et al. 2000). They generally consist 
of “mesoscopic” formulations that help us to connect the macroscopic and 
microscopic points of view, that is, what is mainly of clinical interest from 
what can be learned from the bio-chemo-physics of the cells, for example, 
by means of ab initio calculations (Chignola et al. 2007). Such an under-
standing is necessary not only to predict the emergence of macroscopic 
phenomena from microscopic laws, but also to correlate microscopic and 
macroscopic parameters (Delsanto et al. 2005, 2008).

Closer to real clinical tumors, many biological models have been pro-
posed and investigated. Since the complexity of tumor growth dynamics 
makes this task very difficult in in vivo or even observations ex vivo, a con-
venient experimental tool that captures some of the most relevant features 
of tumor growth kinetics, while allowing for a manageable description, are 
the multicellular tumor spheroids (MTSs) (Mueller Klieser 1993; Delsanto et 
al. 2004). MTSs are spherical aggregations of tumor cells that may be grown 
under strictly controlled conditions. Their simple geometries and the ability 
to produce them in large quantities have led to interesting new insights into 
cancer research. At a higher level of complexity, tumor models on laboratory 
animals, mostly mice (normal, or genetically modified to have various genes 
“knocked out”) are currently being developed (Talmadge 2007).

Model: Cancer Growth
In order to understand the “basics” of tumor evolution, we recall that it is 
generally assumed that tumors originate from a “seed” and grow by cell 
duplication. The notion that a tumor develops from a single cell is called 
monoclonality, and was proposed already in 1862 by Virchow (1892). His 
hypothesis is today supported by data from the majority of human tumors, 
even multicentric or detected in paired organs (Friberg and Mattson 1997). 
Heteroclonality is likely to occur later during the lifespan of a tumor.
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We describe the volumetric tumor growth with the equation:

	 dV
dt

cV= 	 (12.1)

where c can depend on both V (nonlinearity) and t. However, if we assume 
c = c(v, t) in its complete generality, we cannot go too far. For the sake of 
a quantitative analysis, it is necessary to impose some constraint, which, 
although arbitrary, at least should be independent of the particular field 
of application.

Following the Phenomenological Universalities (PUN) approach, 
recently proposed by P.P. Delsanto and collaborators (Delsanto 2007; 
Castorina et al. 2006), we assume that c and its time derivative are related 
through the simple power expansion:

	 dc/dt = βc + γ c2 + δc3 +…	 (12.2)

All the datasets V(t), which are well described by Equations 12.1 and 
12.2, with the latter truncated at the Nth term, are said to belong to the 
Phenomenological Universality (PUN) class UN. For example, if we retain 
only the first term (βc), we have U1. Retaining the second term also, γc2, 
yields U2, etc.

Equations 12.1 and 12.2 describe in general all tumor developmental 
phases, but the various terms (with coefficients β, γ, δ) are expected to 
increase their relevance during tumor growth, for example, when suitable 
thresholds in nutrients and oxygen availability are reached.

	 PUN CLASS U0:  β, γ, δ =…= 0	 (12.3)

Here the growth rate c is constant:

	 dV/dt = cV, that is,  V = V0 exp (ct),	 (12.4)

and therefore, it follows an exponential growth law. As long as no mechani-
cal or nutritional restrictions apply, tumoral cells keep on replicating with 
a constant duplication time. Contrary to expectations, such a model is not 
totally unrealistic. In fact, U0 represents the first phase of any in vitro 
experiment, when there is complete availability of nutrients and oxygen 
for all tumoral cells, and also the initial phase of all tumors.
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An interesting biological model, in which the duration of such an unre-
stricted growth is extended to days, months, or even years, is the multi-
passage tumor (MPT), where tumors grow following the subcutaneous 
implantation on the back of a lab animal (usually mice) of ~ 106 tumor 
cells (from cell cultures or surgical resection). Tumor cells are then pas-
saged from one mouse to another by harvesting them from a growing 
tumor and implanting a given number of them into another healthy 
animal. Once the tumor has grown above a certain volume, it is har-
vested again. This passage of tumor cells is repeated for multiple rounds 
(Steel 1977; McCredie and Sutherland 1971). For example, McCredie et 
al. reported the case of a spontaneous mammary tumor in a C3H mouse, 
from which the first syngenic transplant was done in 1946 and which has 
been serially transplanted into the C3H/HeJ strain, reaching the 900th 
generation in 1971.

As shown in Figure 12.1, tumors grow with a larger rate at each succes-
sive transplant; that is, the growth curves become progressively steeper.

Before looking for complex explanations, for example, those based 
on multiclonality, we should recall that we always transplant “small” 
tumors. This implies that the new seed is reimplanted each time after a 
short time T (e.g., 10 days) into a new healthy, nutrient-rich environment; 
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Figure 12.1  Experimental data relative to the growth of successively trans-
planted tumor cells in rodents. (From Steel, G.G. 1977. Growth Kinetics of Tumors, 
Clarendon Press, Oxford.)
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thus, we can assume at each “passage” an experimental growth law with 
approximately the same rate c. The tumor mass, after n passages in which 
the same amount m0 of tumor is reimplanted, and at a time from the 
beginning of the whole procedure equal to t = nT + Δt, is given by Gliozzi 
et al. (2009):

	 m(t) = m0 (1+exp (ncT) (exp(cΔt)-1))	 (12.5)

Equation 12.5 shows that the exponential trend is corrected by a term that 
accounts for the real age of the tumor and increases at each transplant, 
thus accelerating the growth. Correspondingly, the rate of growth will be

	 dm/dt = m0 c exp(ncT),	 (12.6)

that is, larger for larger n. Or, equivalently, it remains the same, provided 
that the time is properly renormalized to the “scaled” time τ

	 τ = t/r 	 (12.7)

where the “acceleration parameter” r increases with the number of trans-
plants n (see Figures 12.2 and 12.3).

If we follow the tumor growth curve for a longer time (even in vitro), 
a necrotic core will develop, due to the “screening” of the nutrient flow 
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Figure 12.2  Renormalization by means of Equation 12.7 of the data of 
Figure  12.1 and PUN fitting. (Data from Steel, G.G. 1977. Growth Kinetics of 
Tumors, Clarendon Press, Oxford.)

© 2011 by Taylor and Francis Group, LLC



242    ◾    Caterina Guiot, Pier Poalo Delsanto, and Antonio Salvador Gliozzi

U1 fit, R2 = 0.99722
U2 fit, R2 = 0.99859
Exp. data, from [10]

5 10 15 20 25 30
Time [days]

102

101

100

10–1

10–2

Tu
m

or
 V

ol
um

e [
cm

3 ]

(c)

900th Transplant

U1 fit, R2 = 0.99745
U2 fit, R2 = 0.99745
Exp. data, from [10]

0 5 10 15 20 25
Time [days]

102

101

100

10–1

10–2
Tu

m
or

 V
ol

um
e [

cm
3 ]

(b)

First Transplant

0 5 10 15 20
Time [days]

100

Tu
m

or
 V

ol
um

e [
cm

3 ]

(a)

Spontaneous
U1 fit, R2 = 0.99603
U2 fit, R2 = 0.99613
Exp. data, from [10]

Figure 12.3  Renormalization by means of Equation 12.7 of the data of 
Figure 12.1 and PUN fitting. (Data from McCredie, J.A. and Sutherland, R.M. 
1971. Cancer 27:635–642.)
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from the cells of the outer layers, so that a saturation level is reached. This 
corresponds to the

	 PUN CLASS U1: β ≠ 0 γ, δ = 0	 (12.8)

The class is defined by

	 dc/dt = βc	 (12.9)

with β<0. By integration, we easily find

	 c t c t( ) exp( )= 0 β 	 (12.10)

and

	 V t c t( ) exp( )= −( )0 1
β

β 	 (12.11)

and with a saturation value

	 V V c∞= 0 0exp( / )β 	 (12.12)

Such saturation is normally seen in MTSs (see Figure 12.4).
For benign neoplasies, this is the end of the story, but most tumors nev-

ertheless keep on growing, becoming malignant.

Model: Malignant Neoplasias
Most aggressive tumors overcome nutrient deprivation by means of 
angiogenesis, and the neovascular network partly supports growth, as 
discussed by C. Guiot et al. (2006), following the model of G.B. West and 
collaborators (West et al. 1999, 2001, 2004). Often, this late phase is com-
plemented, in in vivo or ex vivo tumors by the processes of tumor inva-
sion and metastasis. Starting from West’s law, a generalized expression for 
growth is then

	 dV/dt = a S – b V	 (12.13)

where S is the embedding layer acting as boundary with the host (i.e., the 
effective surface from which nutrients come and waste products are 
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removed), and V the volume, to which the energy consumption for 
metabolism is assumed to be proportional. (Note: S is not, in general, a 
2D surface.)

It follows that growth implies a favorable ratio S/V, or at least S/V>b/a. In 
fact, tumor invasion, neoangiogenesis, and metastases can be interpreted 
as different surface-maximizing strategies for the tumor, to improve oxy-
gen and nutrient exchanges (Deisboeck et al. 2006). They also are fractal-
like self-similar processes.

This stage of tumor growth corresponds to the

	 PUN CLASS U2: dc/dt = βc + γ c2	 (12.14)

By direct integration, we find:

	 c t c c e ct( )= +





−





−
−

0
0 0

1

1 γ
β

γ
β

β 	 (12.15)

0 50 100 150 150 200 250 300 350 400
Time [hours]

10 20

15

10

5

0

–5

–10

20

15

10

5

0

–5

–10

160
10 10

MTS

180 200 220 240 260 300 350 400

Simulation data
Experimental data
U0 fit

U1 fit

U2 fit

Lo
g 

of
 th

e N
um

be
r o

f C
el

ls 
in

 th
e

N
ec

ro
tic

 C
or

e

Lo
g 

of
 th

e T
ot

al
 N

um
be

r o
f C

el
ls

in
 th

e M
TS

Necrotic core

Figure 12.4  The three phases of growth of EMT6/Ro mouse mammary carci-
noma cells MTSs. (Data from Scalerandi et al. 1999. Phys. Rev. E, 63:11901 and 
Delsanto et al. 2004. Appl. Phys. Lett. 85:4225–4227.)
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V t c e t( ) ln= − + −( )



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1 1 10

γ
γ
β

β

	
(12.16)

with a saturation volume that is given by

	 V V c∞

−

= +



0 0

1

1 γ
β

γ/

	 (12.17)

The class U2 includes, besides Gompertz (1825) as a special case, all the 
growth models proposed to date in all fields of research, that is, besides 
the already mentioned model of West et al. (1999, 2001), also the exponen-
tial, logistic, thetalogistic, potential, von Bertalanffy, etc. (for a review, see 
de Vladar et al. 2006).

The explicit expression of U2 (V(t) = exp[z(t)]) satisfies the ordinary dif-
ferential equation (ODE):

	 dV/dt = a Vp − b V	 (12.18)

where V is the tumor volume and a, b, and p are suitable parameters 
expressed by real numbers.

By comparison with the relation dV/dt = a S – b V, we see that p 
depends on the fractal characteristics of the effective surface of the 
tumor. The value of p may vary, but in the case of a spheroid, S = V2/3; 
hence, p = 2/3. In the case investigated by West et al. for living organ-
isms and Guiot et al. (2003) for tumors, the optimalization of the 
fractal-like distributive system yields p = ¾. Proliferation is possible up 
to V < Vmax = (a/b)3.

The choice of the specific strategy for maximizing the exchange surface 
depends on many factors, according to the characteristics of the host and 
the molecular weapons available. In physical terms, the strategy followed 
by an infiltrative tumor has been investigated using both the propagating 
fracture and the water-drop analogies. First, all such invasion processes 
based on fingering can be described as fractal processes.

The analogy with the water drop (see Figure 12.5), and in particu-
lar the identification of the relevance of the surface tension entering 
our physical analogy, is actually very suggestive. Let us introduce an 
equivalent tumor-host tension σ, which measures the balance between 
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adhesive and cohesive forces exerted by the tumor and its host. On 
the basis of both analogies, we can define a dimensionless Invasion 
Parameter IP (Guiot et al. 2007):

	 IP = P R/σ	 (12.19)

where P is the excess pressure (between outside and inside), R the radius, 
and σ the tumor-host tension. Invasive behavior is expected whenever 

A

B

Figure 12.5  (See color insert following page 40) (A) MTS tumor (image 
reprinted from Habib et al. Physica A 327 501, 2003. With permission). (B) 
Water drop (image courtesy of Professor A Davidazy, Imaging and Photographic 
Technology, Rochester Institute of Technology, Rochester, New York).
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IP > 1, and can be prevented, for example, by increasing the tumor-host 
tension, (e.g., using Dexamethasone). Such an equation can be rewritten as 
a generalization of Laplace’s law:

	 P = IP σ/R	 (12.20)

which states that the tumor-host tension can counteract the excess 
pressure (e.g., given by rapid tumor proliferation) only when IP ≤ 1. 
When IP locally increases, then invasive branching can develop (see 
Figure 12.6a).

The preceding relation can be easily extended to ellipsoids (of semiaxes 
R1 and R2, respectively):

	 P = IP σ (1/R1 + 1/R2)	 (12.21)

and to cylinders (if one allows one of the two semiaxes to go to infinity; 
see Figure 12.6b).

Such a model could be suitable to describe the evolution from breast 
ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). In 
fact, modifications in cohesion and adhesion properties have been recog-
nized in several studies, for example, Min Hu et al. (2008) and Haj et al. 
(2007). Also, such an approach explains the complex clinical management 
of gliomas (Deisboeck and Guiot 2008). A specular situation can be found 
when malignant tumors strongly increase their growth rate by express-
ing molecular weapons acting on the endothelial cells of the preexisting 

(a)

P
P

P
σσ

σ

(b)
Ductσ

P

Figure 12.6  (a) Schematic drawing of a growing tumor spheroid where sur-
face tension counteracts the increase of internal pressure up to a given fingering 
threshold, (b) schematic drawing of a tumor ellipsoid spheroid growing in a duct 
where surface tension counteracts the increase of internal pressure.
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vasculature, generating a new vascular network inside the tumor. Such a 
process is called neoangiogenesis, and is common to almost all malignant 
tumors.

A vascular network is the basis for growth in all living beings (West et 
al. 1999, 2001) and is the main limiting factor for cellular growth. For most 
living organisms, it develops according to some optimality principles [34], 
provided eight assumptions are made:

	 1.	Distribution network scaling

	 2. Distribution network hierarchical

	 3. Equivalence of vessels at the same hierarchical level

	 4. Constant branching ratio

	 5. Space-filling network

	 6. Minimized energy losses in the network

	 7. Same capillary characteristics

	 8. Capillaries are the only exchange surfaces across which oxygen is 
supplied

Under these assumptions, it can be formally proved that the scaling 
parameter is p = 3/4 (as already empirically proposed by Kleiber in 1932). 
Deviations are possible if some of the foregoing assumptions are relaxed, 
and this is certainly the case of tumor neoangiogenic vessels, which are 
known to be very irregular, randomly distributed, and inefficient. In par-
ticular, a recent paper (Mazzone et al. 2009) showed that the morphology 
of the neovasculature may vary from disordered and inefficient to almost 
normally layered from endothelial cells when tumors develop in normal 
animals or in mice deprived of one of the two copies of the PHD2 gene. 
In other terms, at least one protein (PHD2) is involved as oxygen sen-
sor, not only in the short-term response but in vascular plasticity itself. 
This encompasses the possibility that the tumor evolves by changing the 
degree of fractality of its nutrient input system and may imply that the 
fractal parameter p varies dynamically through tumor growth (Guiot et 
al. 2006).

In particular, by fitting the experimental data for a series of short time 
intervals, it was found that p varies with time (see Figure 12.7).
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Discussion: What Next?
	 PUN CLASS U3 : β, γ, δ ≠ 0 is presently under study.	 (12.22)

A proposed mechanism to further enhance tumor metabolism is the 
expression of hormonal receptors on the tumor surface. It is well known 
that breast carcinoma is initially deprived of estrogen receptors (ER-), but 
in most cases such receptors develop later (ER+), being the biological base 
for effective hormonotherapy (Colleoni et al. 2008). Also, other recent 
papers focus on the role of hormones in enhancing tumor metabolism: for 
instance, it has been shown that protein such as Myc can regulate the num-
ber of cellular mitochondria and the ability of the tumor of metabolize glu-
cose and glutamine (Gao et al. 2009); or similarly, high levels of the protein 
ATP synthase, involved in the production of the energy-rich molecules of 
ATP, have been found on the surface of cancer cells (Tsui-Chin Huang et 
al. 2008). Such gaps in the tumor cell metabolism, responsible for tumor 
growth enhancement, maybe perhaps be still hidden in the yet unexplored 
class U3 (or other PUN classes).
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Introduction
Cancer growth, and as a particular example in this paper, solid tumor 
growth, is a complicated phenomenon involving many interrelated pro-
cesses across a wide range of spatial and temporal scales, and as such 
presents the mathematical modeler with a correspondingly complex set of 
problems to solve. The aim of this paper is to formulate a multiscale mathe-
matical model of solid tumor growth, incorporating three key features: the 
avascular growth phase, the recruitment of new blood vessels by the tumor 
(angiogenesis), and the vascular growth and host tissue invasion phase.

Solid tumors are known to progress through two distinct phases of 
growth: the avascular phase and the vascular phase. The initial avascular 
growth phase can be studied in the laboratory by culturing cancer cells in 
the form of three-dimensional multicell spheroids. It is well known that 
these spheroids, whether grown from established tumor cell lines or actual 
in vivo tumor specimens, possess growth kinetics that are very similar to 
in vivo solid tumors. Typically, these avascular nodules grow to a few mil-
limeters in diameter. Cells toward the center, being deprived of vital nutri-
ents, die and give rise to a necrotic core. Proliferating cells can be found in 
the outer cell layers. Lying between these two regions is a layer of quiescent 
(or hypoxic) cells, a proportion of which can be recruited into the outer 
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layer of proliferating cells. Much experimental data have been gathered on 
the internal architecture of spheroids, and studies regarding the distribu-
tion of vital nutrients (e.g., oxygen) and metabolites within the spheroids 
have been carried out. See, for example, the recent reviews by Walles et 
al. (2007), Kim (2005), Kunz-Schugart et al. (2004), and Chomyak and 
Sidorenko (2001), and the references therein.

The transition from the relatively harmless and confined dormant avas-
cular state to the vascular state, in which the tumor possesses the ability 
to invade surrounding tissue and metastasize to distant parts of the body, 
depends on the ability of the tumor to induce new blood vessels from the 
surrounding tissue to sprout toward and then gradually surround and 
penetrate the tumor, thus providing it with an adequate blood supply and 
microcirculation. Tumor-induced angiogenesis, the process by which new 
blood vessels develop from an existing vasculature, through endothelial 
cell sprouting, proliferation, and fusion, is therefore a crucial part of solid 
tumor growth. Sustained angiogenesis is a hallmark of cancer (Hanahan 
and Weinberg 2000). Mature endothelial cells are normally quiescent 
and, apart from certain developmental processes (e.g., embryogenesis and 
wound healing), angiogenesis is generally a pathological process implicated 
in arthritis, some eye diseases, and solid tumor development, invasion, and 
metastasis. Tumor-induced angiogenesis is believed to start when a small 
avascular tumor exceeds a critical diameter (~2 mm), above which normal 
tissue vasculature is no longer able to support its growth. At this stage, the 
tumor cells lacking nutrients and oxygen become hypoxic. In response, 
the tumor cells secrete a number of diffusible chemical substances—tumor 
angiogenic factors (TAFs)—into the surrounding tissues and extracellular 
matrix (ECM). The TAF diffuses into the surrounding tissue and eventu-
ally reaches the endothelial cells (EC) that line nearby blood vessels. ECs 
subsequently respond to the TAF concentration gradient by degrading the 
basement membrane surrounding the parent vessel, forming sprouts, pro-
liferating, and migrating towards the tumor. It takes approximately 10 to 
21 days for the growing network to link the tumor to the parent vessel, 
and this vascular connection subsequently provides all the nutrients and 
oxygen required for continued tumor growth. An excellent summary of 
all the key cell-biological processes involved in angiogenesis can be found 
in the comprehensive review article of Paweletz and Knierim (1989). See 
also the recent review by Carmeliet (2005). Once vascularized, the solid 
tumors grow rapidly as exophytic masses. In certain types of cancer, for 
example, carcinoma arising within an organ, this process typically consists 
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of columns of cells projecting from the central mass of cells and extending 
into the surrounding tissue area. The local spread of these carcinoma often 
assume an irregular jagged shape. By the time a tumor has grown to a size 
whereby it can be detected by clinical means, there is a strong likelihood 
that it has already reached the vascular growth phase.

Cancers also possess the ability to actively invade the local tissue 
and then spread throughout the body. Invasion and metastasis are the 
most insidious and life-threatening aspects of cancer (Liotta and Stetler-
Stevenson, 1991; Liotta and Clair, 2000). Indeed, the prognosis of a can-
cer is primarily dependent on its ability to invade and metastasize. Many 
steps that occur during tumor invasion and metastasis require the regu-
lated turnover of ECM macromolecules. The breakdown of these barri-
ers is catalyzed by proteolytic enzymes released from the invading tumor. 
Most of these proteases belong to one of two general classes: many are 
metalloproteases (Parsons et al., 1997), while others are serine proteases 
(Andreasen et al., 1997, 2000). Proteases give cancers their defining char-
acteristic—the ability of malignant cells to break out of tissue compart-
ments. Motility, coupled with regulated, intermittent adhesion to the ECM 
and degradation of matrix molecules, allows an invading cell to move 
through the ECM (Liotta and Stetler-Stevenson, 1991; Lauffenburger and 
Horwitz, 1996; Friedl and Wolf, 2003). However, proteolytic degradation 
of the ECM is essential for the key processes involved in tissue remodeling 
as well. These processes take place in a number of distinct physiological 
events in the healthy organism, such as trophoblast invasion, mammary 
gland involution, angiogenesis, and wound healing.

The most significant turning point in cancer, however, is the establish-
ment of metastasis. The metastatic spread of tumor cells is the predominant 
cause of cancer deaths, and with few exceptions, all cancers can metasta-
size. Metastasis is defined as the formation of secondary tumor foci at a site 
discontinuous from the primary tumor (Liotta and Stetler-Stevenson, 1991; 
Liotta and Clair, 2000). Metastasis unequivocally signifies that a tumor is 
malignant, and this is, in fact, what makes cancer so lethal. In principle, 
metastases can form following invasion and penetration into adjacent 
tissues followed by dissemination of cells in the blood vascular system 
(hematogeneous metastasis) and lymphatics (lymphatic metastases).

Metastases can appear shortly after surgery, but can also remain unde-
tected for more than a decade before manifesting themselves clinically 
(King, 2000; Chambers et al., 2002; Fidler, 2002). This indicates that dis-
seminated cancer cells can persist in a dormant state (either individually 
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or as an avascular tumor spheroid), unable to form a progressively increas-
ing tumor mass (Chambers et al., 2002). Such heterogeneity of outcome 
indicates that the fate of tumor cells that disseminate to distant organs 
before surgery must be regulated by either inherent cancer cell properties 
or the milieu of the target organs, or both. Identifying the mechanisms 
that keep metastases in their dormant, occult state is one of the most chal-
lenging and important avenues of cancer research (Chambers et al., 2002; 
Fidler, 2002).

Since the seminal work of Greenspan (1976), the mathematical model-
ing of avascular solid tumor growth, similar to its subject, has been rapidly 
expanding. Most models in this area consist of systems of nonlinear partial 
differential equations, and may be described as macroscopic. The review 
paper of Araujo and McElwain (2004) provides an excellent overview. 
See also the recent reviews by Quaranta et al. (2005), Byrne et al. (2006), 
Sanga et al. (2006), Graziano and Preziosi (2007), and Roose et al. (2007). 
Likewise, modeling tumor-induced angiogenesis has a well-established 
history, beginning with the work of Balding and McElwain (1983). The 
review paper of Mantzaris et al. (2004) provides an excellent overview of 
the work in this area. However, unlike avascular growth and angiogen-
esis, vascular tumor growth has received considerably less attention in the 
mathematical modeling literature.

Recently, Zheng et al. (2005) developed and coupled a level-set method 
for solid tumor growth with a hybrid continuous-discrete model of 
angiogenesis originally developed by Anderson and Chaplain (1998). 
This work served as a building block for studies of chemotherapy (Sinek 
et al. (2004)) and morphological instability and tumor invasion (Cristini 
et al. (2005); Frieboes et al. (2006)). Hogea et al. (2006) have also begun 
to investigate tumor-induced angiogenesis and vascular growth using 
a level-set method coupled with a continuous model of angiogenesis. 
Following the strategy pioneered by Zheng et al., Frieboes et al. (2007) 
coupled a mixture model with a lattice-free continuous-discrete model 
of angiogenesis (originally developed by Planck and Sleeman (2004)) 
and studied vascular tumor growth in three dimensions. In these works, 
however, the effects of blood flow through, and subsequent remodel-
ing of, the vascular network were not included. Recently, the effects of 
blood flow through a vascular network on tumor growth were consid-
ered by Alarcon et al. (2005), Lee et al (2006), Bartha and Rieger (2007), 
and Welter et al. (2007) using cellular automaton (CA) tumor growth 
models coupled with network models for the vasculature. These authors 
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investigated vascular network inhomogeneities, the stress-induced col-
lapse of blood vessels, and the implications for therapy. Because of the 
computational cost of simulating cell growth using CA, these studies 
are limited to small scales.

In this paper, we couple an improved continuum model of solid tumor 
invasion (following Macklin and Lowengrub 2007) that is capable of span-
ning the 102_m-cm scale and accounts for cell–cell, cell–ECM adhesion, 
ECM degradation, and tumor cell migration, proliferation, and necrosis 
with a model of tumor-induced angiogenesis (following McDougall et al. 
(2006)) that accounts for blood flow through the vascular network, non-
Newtonian effects and vascular network remodeling, due to wall shear 
stress and mechanical stresses generated by the growing tumor, to pro-
duce a new multiscale model of vascular solid tumor growth. As in Zheng 
et al. (2005), the invasion and angiogenesis models are coupled through 
the tumor angiogenic factors (TAFs) that are released by the tumor cells 
and through the nutrient extravasated from the neovascular network. As 
the blood flows through the neovascular network, nutrients (e.g., oxygen) 
are extravasated and diffuse through the ECM, triggering further growth 
of the tumor, which in turn influences the TAF expression. In addition, 
the extravasation is mediated by the hydrostatic stress generated by the 
growing tumor and, as mentioned earlier, the hydrostatic stress also affects 
vascular remodeling by restricting the radii of the vessels. The vascular 
network and tumor progression are also coupled via the ECM as both the 
tumor cells and ECs upregulate matrix-degrading proteolytic enzymes, 
which cause localized degradation of the ECM, which in turn affects hap-
totactic migration.

We perform simulations of the multiscale model that demonstrate the 
importance, on tumor invasion of the host tissue, of the nonlinear cou-
pling between the growth and remodeling of the vascular network, the 
blood flow through the network, and the tumor progression. Consistent 
with clinical observations, the hydrostatic stress generated by tumor cell 
proliferation shuts down large portions of the vascular network, dramati-
cally affecting the flow, the subsequent network remodeling, the delivery 
of nutrients to the tumor, and the subsequent tumor progression. In addi-
tion, ECM degradation by tumor cells is seen to have a dramatic affect on 
both the development of the vascular network and the growth response 
of the tumor. In particular, when the ECM degradation is significant, the 
newly formed vessels tend to encapsulate, rather than penetrate, the tumor 
and are thus less effective in delivering nutrients.
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The outline of the chapter is as follows. In the following section, the 
mathematical models are presented and the numerical methods are briefly 
described. In the section titled “Results,” numerical results are presented, 
and conclusions and future work are discussed in the last section. Further 
details of the mathematical modelling and numerical methods can be 
found in Macklin et al. (2009).

Model
In this exposition, we present the nondimensional model, starting first 
with the model of tumor invasion in the section titled “The Tumor 
Invasion Model” and followed by the model of tumor-induced angio-
genesis in the section titled “Angiogenesis Model.” Here, time is non-
dimensionalized by the characteristic tumor cell proliferation time 
(i.e., 1/λm , where λm ≈ −2 3 1/ day  is the mitosis rate), and space is non-
dimensionalized by the characteristic diffusion penetration length 
(i.e., D mσ σλ µ* * //( ) ≈1 2 200 , where Dσ

* and λσ
*

 are characteristic values 
of the oxygen diffusion coefficient and uptake rate in the proliferating 
tumor region, respectively). In the following, quantities defined with 
an overbar correspond to nondimensional constants. The nondimen-
sionalization of the parameters and the corresponding values used in 
the numerical simulations are presented in Tables  13.4–13.6. For the 
nondimensionalization and further biological discussion of the mod-
els, the reader is referred to Macklin and Lowengrub (2006, 2007) and 
McDougall et al. (2006).

The Tumor Invasion Model

To accurately model tumor growth in heterogeneous tissues, we develop 
a mathematical model that accounts for spatially dependent cell necro-
sis, cell apoptosis, cell–cell and cell–matrix adhesion, matrix degradation, 
cell proliferation and cell migration. The model is based on continuum 
reaction-diffusion equations that describe these processes and is a gener-
alization and improvement of earlier models (see the reviews listed previ-
ously and recent work by Macklin and Lowengrub [2007b, 2007c]). We 
present the model in two dimensions, but it is equally valid for the three-
dimensional case as well.

Let Ω denote a tumor mass, and let Σ denote its boundary. The tumor 
can be divided into three regions: a proliferating rim ΩP where the tumor 
cells have sufficient nutrient levels for proliferation; a hypoxic/quiescent 
region ΩH where the nutrient levels are too low for normal metabolic 
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activity but not so low that the cells begin to die; and a necrotic region 
ΩN where the nutrient level has dropped so low that the tumor cells 
have died and are degraded. Because necrosis is irreversible, we track the 
necrotic core and its interface ΣN separately of the tumor interface (see 
Figure 13.1).

Nutrient Transport
We model the net effect of nutrients (e.g., oxygen and glucose) and growth-
promoting and growth–inhibiting factors with a single nutrient σ. Here, we 
focus our attention on the role of oxygen, which is supplied by the vascular 
network via the red blood cells. This can be modeled using the haemat-
ocrit, which represents the volume fraction of red blood cells contained 
in the blood. Oxygen, and other nutrients, are supplied by the preexisting 
bulk vasculature and the neovasculature at rates λσbulk and λσneo, diffuses 
throughout the cancerous and noncancerous tissue, is uptaken in the non-
necrotic portions of the tumor, and decays elsewhere (see the following 
text). Wherever the oxygen level inside the tumor drops below a threshold 
value σH, the tumor cells become hypoxic (quiescent), cease proliferating, 
and uptake nutrient at a lower rate. If the oxygen level falls further below 
a threshold value σN, then the tumor cells become necrotic. Inside the 
necrotic core, oxygen reacts with cellular debris to form reactive oxygen 
species (Kloner and Jennings 2001; Galaris et al. 2006), which we model by 

ΣN

Σ
ΩN

ΩH

ΩV

Figure 13.1  Schematic of the tumor regions. ΩP, ΩH, and ΩN are the proliferat-
ing, quiescent/hypoxic, and necrotic regions, respectively.
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a decay term. Since oxygen diffusion occurs more rapidly than cell mito-
sis (the time scale on which the equations are nondimensionalized), these 
processes are described by the quasi-steady reaction-diffusion equation

	
0 = ∇⋅ ∇( )− ( ) + ( )+D t B Pσ λ σ σ λ σ λσ σ σ

pre pre neox x, , , , ,, , , , , ,t B P hneo σ( )
	 (13.1)

where D is the diffusion coefficient, and the parameter λσ combines the 
effects of oxygen uptake and decay and takes the form

	

λ

λ
λ
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σ

σ
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tissue outside
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p E
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H

( )0 Ω
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NN Nin Ω


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





,

	 (13.2)

where pσ and qσ are smooth interpolating functions and E0 the density of 
the original ECM, which is used to assess changes in uptake/decay in the host 
microenvironment (see the section titled “Tumor–Microenvironment 
Interaction”). The interpolating function q H N Hσ σ σ λ( ) ,+ / =2  where 
σH and σN are the oxygen concentration thresholds for quiescence and 
necrosis, respectively, and λH  is the rate of oxygen uptake by quies-
cent cells in the hypoxic tumor. Further, λ tissue and λσ  are the rates of 
oxygen uptake in the host microenvironment and in the proliferating 
tumor regions, respectively, and λN  is the rate of oxygen decay in the 
necrotic portion of the tumor. We note that because the location of the 
viable, hypoxic, and necrotic tumor regions depends on the past and 
present values of the oxygen level σ, the uptake/decay term λσ intro-
duces nonlinearity.

The two remaining sources λ σσ
pre prex , , , ,t B P( )  and λ σσ

neo neox , , , , ,t B P h( ) 
in Equation 13.1 reflect the oxygen-tissue transfer from the preexisting 
and neovascular blood vessels, respectively, and are given by:

	 λ λ σσ σ
pre pre pre= −( ) −( )B t( , ) ,x 11 1 Ω 	 (13.3)

and

	
λ λσ σ

neo neo neo ves= −





−
+

B t h
H

h c P
D

( , ) (minx 1 ssel , ) ,P( ) −( )1 σ
	 (13.4)
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where λσ
pre  and λσ

neo are constant transfer rates from the preexisting and 
neovessels. Here, Bpre is the (nondimensional) blood vessel density of the 
preexisting vessels, whose locations are assumed to be unchanging in time. 
In fact, we take a uniform distribution of preexisting vessels in the host 
tissue, and Bpre satisfies Equation 13.19, where MDE is assumed to degrade 
the preexisting vasculature. The function B tneo neo( , )x 1=  is the characteris-
tic or indicator function of the neovessels (i.e., equal to 1 at the locations of 
the neovessels), and 1Ω is the characteristic function of the tumor region Ω 
(i.e., equal to 1 inside the tumor and is 0 in the tumor exterior). Further, P 
is the oncotic (solid/mechanical) pressure, Pvessel and h are the dimensional 
pressure and the haematocrit in the neovascular network, respectively. The 
constants HD and hmin reflect the normal value of haematocrit in the blood 
(generally about 0.45) and the minimum haematocrit needed to extravasate 
oxygen, respectively. The haematocrit is modeled via the blood flow in the 
vascular network and is determined from the angiogenesis model. This 
provides one aspect of the coupling between the tumor growth and angio-
genesis models. A second mode of coupling between the two models occurs 
through the cutoff function c(Pvessel,P), which is given by

	

c P P
P

p P P
P

( , ) ( )vessel cutoff=
<
≤ ≤

>





0 0
0 1

1 1

∆
∆ ∆

∆
,

	 (13.5)
where pcutoff is a cubic, interpolating polynomial. That is, large oncotic 
pressures may prevent extravasation and transfer of oxygen from the ves-
sels into the tissue. Later, we will discuss how the oncotic pressure may 
also constrict the neovessels. Further, in Equation 13.5,

	
∆P P P P P= −( )vessel vessel scale/ / ,

	 (13.6)

where Pvessel  is a characteristic pressure scale and Pscale is a scale factor. Note 
that we could have analogously taken the oxygen transfer rate from the 
preexisting vessels to also be coupled to the haematocrit and blood vessel 
pressure. This will be explored in a future work.

The oxygen source terms in Equations 13.3 and 13.4 are designed such 
that for sufficiently large transfer ratesλσ

pre  and λσ
neo , the oxygen concentra-

tion σ ≈1 at the spatial locations of the preexisting vessels and neovessels. 
In practice, we will take λσ

neo  large but λσ
pre small, which models the supply 

© 2011 by Taylor and Francis Group, LLC



Multiscale Mathematical Modeling of Vascular Tumor Growth    ◾    263

of only a small amount of oxygen in the host tissue from preexisting vessels. 
We will assume a parent vessel, located at the boundary of the computa-
tional microenvironment domain as discussed later, supplies the bulk of the 
oxygen in the host tissue. Note that oxygen flux conditions across the preex-
isting vessels and neovessels could be imposed (e.g., Alarcon et al. 2005).

The boundary conditions for Equation 13.1 are taken to be a com-
bination of Dirichlet, Neumann conditions. In particular, in the simu-
lations we present later, we assume that a parent vessel coincides with 
the upper boundary of the computational domain. Therefore, a Dirichlet 
condition, σ = 1, is posed along the upper boundary. Zero Neumann con-
ditions, ∂ ∂ =σ / n 0, are imposed along the other boundaries of the com-
putational domain.

Tumor Mechanics and the Cell Velocity
The tumor cells, the ECM, and host noncancerous cells are influenced by 
a combination of forces that contribute to the cellular velocity field. The 
proliferating cells generate an oncotic mechanical pressure (hydrostatic 
stress) that also exerts force on the ECM and host cells. The cells respond 
to pressure variations by overcoming cell–cell and cell–ECM adhesion and 
migrating through the microenvironment. The ECM may also deform, 
degrade, and remodel in response to pressure and to the chemical factors 
released by the cells. The cells may respond haptotactically to adhesion 
gradients in the ECM.

Following previous work, we assume that all solid phases move with a 
single cellular velocity field, and we model the cellular motion within the 
ECM as incompressible fluid flow in a porous medium. In the future, we plan 
to use mixture models (e.g., Ambrosi and Preziosi 2002; Byrne and Preziosi 
2003; Araujo and McElwain 2005a, 2005b) to relax these assumptions. In 
this simplified description of tumor mechanics used here, Darcy’s law is 
taken as the constitutive assumption and, thus, the velocity is proportional 
to the forces in the problem. See Ambrosi and Preziosi (2002) and Byrne and 
Preziosi (2003) for a motivation of this approach from a mixture modeling 
perspective. Accordingly, the nondimensional velocity is given by

	 u = − ∇ + ∇µ χP EE ,	 (13.7)

where µ  is the cell mobility, which models the net effects of cell–cell and 
cell–matrix adhesion, E is the ECM density (e.g., a nondiffusible matrix 
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macromolecule such as fibronectin, collagen, or laminin), and χE  is the 
haptotaxis coefficient. Models for μ and χE are given below in the next sec-
tion. Further, assuming that the density of tumor cells is constant in the 
viable region, the growth of the tumor is then associated with the rate of 
volume change:

	 ∇• =u λP ,	 (13.8)

where λP  is the nondimensional net proliferation rate. This implies that 
the nondimensional pressure satisfies

	 −∇⋅ ∇( ) = −∇• ∇( )µ λ χP EP E 	 (13.9)

We assume that in the proliferating region, cell mitosis is proportional to the 
amount of nutrient present and that apoptosis may occur. Volume loss may 
occur in the necrotic core, and there is no proliferation in either the host 
microenvironment or the hypoxic/quiescent regions. We therefore take
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	 (13.10)

where A is the nondimensional apoptosis rate (“preprogrammed” cell 
death); and GN is the nondimensional rate of volume loss in the necrotic 
core as water is removed and cellular debris is degraded. Assuming a uni-
form cell–cell adhesion throughout the tumor, cell–cell adhesion can be 
incorporated as a surface-tension-like jump boundary condition at the 
tumor–host interface Σ:

	
P P P

G[ ]= − =( ) ,inner outer
1 κ

	 (13.11)

where G is a nondimensional parameter that measures the aggressive-
ness of the tumor (the strength of cell proliferation relative to cell–cell 
adhesion), and κ is the mean curvature of the interface. At the necrotic 
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boundary ΣN, we assume P is continuous. We assume that no voids form 
and, therefore, we take

	 [u n⋅ =] 0  which implies that µ χ∇ ⋅[ ]= ∇P EEn n[ ]i ,	 (13.12)

where n is the unit outward normal to Σ. For simplicity, we will also 
assume that [ ]∇ =Ein 0. At the necrotic boundary, we assume analogous 
conditions. The velocity of the tumor–host interface Σ  is then given by

	 V P EE= − ∇ + ∇µ χi in n ,	 (13.13)

and the velocity of the necrotic boundary ΣN  is

	 V P EN N E N= − ∇ + ∇µ χi in n ,	 (13.14)

where nN is the outward unit normal vector along ΣN. In the far field at 
the boundaries of the computational domain, the pressure is assumed to 
satisfy zero Neumann boundary conditions ∂ ∂ =P n/ 0.

Tumor–Microenvironment Interaction
We model the tumor microenvironment by introducing an ECM density 
E that represents the density of nondiffusible matrix macromolecules such 
as fibronectin, collagen, elastin, and laminin, etc. In addition, as men-
tioned earlier, we keep track of the density E0 of the original ECM and the 
preexisting blood vessel density Bpre to assess the level of oxygen uptake 
and supply, respectively, in the microenvironment.

The tumor interacts with the microenvironment by responding to the 
nutrients supplied by the preexisting and the neovasculature (e.g., see 
Equation 13.1), remodeling the ECM locally by secreting both MDE and 
ECM macromolecules and by a heterogeneous response to pressure and 
ECM adhesion gradients through nonconstant cell mobility and hap-
totaxis coefficients. In order for tumors cells to migrate into the porous 
matrix, they must overcome cell–matrix adhesion. However, in experi-
ments, a maximum migration speed is obtained that depends on the level 
of integrin expression (e.g., Palecek et al. (1997), DiMilla et al. (1991)) and, 
correspondingly, a nonmonotonic dependence of cell migration velocity 
on integrin expression and adhesion gradients in the ECM has been pre-
dicted (DiMilla et al. (1991); Dickinson and Tranquillo (1993)). This has 
been explained by the fact that while some integrins are required for focal 
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adhesion-based migration, too much focal contact strength can retard the 
detachment of the cell’s trailing edge from the ECM. While we do not 
model integrin expression directly here, we take this effect into account by 
making the haptotaxis coefficient a nonmonotone function of E:
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where χE ,min  are the nondimensional haptotaxis in low-/high-density 
ECM, and pχ is a nonmonotone interpolating function with a maxi-
mum  χE ,min  located at E E E= +( )/mincutoff maxcutoff

χ χ 2. Although the mobil-
ity μ may also be nonmonotone, for simplicity, we take a monotone 
decreasing function of E here:
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where pμ is a smooth interpolating function. In a future work, we will 
investigate nonmonotonic cell mobilities μ. In addition, the mobility and 
chemotaxis parameters may also be functions of oxygen concentration σ as 
hypoxic conditions may result in upregulation of HIF-1 alpha target genes 
that may result in decreased cell–cell and cell–matrix adhesion, among 
other effects, and therefore enable cells to more easily migrate through 
and invade the tumor microenvironment (e.g., see Kaur et al. (2005); Erler 
et al. (2006); Pouyssegur et al. (2006)). These effects will also be explored 
in a forthcoming work.

In order to migrate through the ECM and invade the host tissue, tumor 
cells secrete matrix-degrading proteolytic enzymes (MDEs), for example, 
matrix metalloproteases and urokinase plasminogen activators, which 
cause the degradation of the ECM, provide space for the cells, and enhance 
the attachment of the cells to ECM macromolecules, enabling the cells to 
exert traction forces to propel themselves through the ECM. In addition, 
the tumor cells remodel the ECM by secreting insoluble matrix macro-
molecules and possibly reorienting them. We note that during the angio-
genetic response of the host vasculature, an analogous molecular cascade 
occurs as tumor angiogenesis factors (TAFs) and ECM macromolecules 
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(e.g. fibronectin, collagen, and laminin) bind to specific membrane recep-
tors on ECs and activate the cell’s migratory machinery. This leads to a 
remodeling of ECM similar to that described earlier for tumor cells. Here, 
we will not consider the effect of orientational reordering. We model the 
remaining processes as follows. For the MDE, we take

∂
∂

= ∇⋅ ∇( )+ −( ) −M
t

D M M MM
M M

V
λ λproduction decay1 1Ω ++λsprout production sprout tips

M 1
	

			 
		

(13.17)

where M is the nondimensional MDE concentration, D DM M=  is the dif-
fusion coefficient (assumed to be constant), λproduction

M  andλsprout production
M

 are 
the nondimensional rates of production of MDE by the viable tumor cells 
(Ω Ω ΩV P H= ∪ ) and the sprout tip ECs, respectively. Further, λdecay

M is the 
rate of decay (it is assumed that MDE is not used up as a result of the 
interaction with the ECM (Quaranta, private communication)). Finally, 
1sprout tips is the characteristic function of the sprout tips. Because the dif-
fusion coefficient of MDE, DM, is much smaller than that for oxygen diffu-
sion, the full time-dependent diffusion equation is used (Stephanou et al., 
2006). In the far field (boundary of the computational domain), we take 
the zero Neumann boundary conditions ∂ / ∂ =M n 0 .

The ECM density satisfies
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whereλ production
E

 and λsprout production
E

 are the nondimensional rates of produc-
tion of ECM by the viable tumor cells and sprout tip ECs and the λdegradation

E

is the nondimensional rate of matrix degradation by the MDE.
Finally, the original ECM and the preexisting blood vessel density are 

assumed to be degraded by the MDE:
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where λdegradation
B

 and λdegradation
E

 are nondimensional degradation rates.
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Tumor Angiogenic Factors
When tumor cells become hypoxic/quiescent, they are assumed to secrete 
TAFs, which diffuse into the surrounding tissue and attract ECs. ECs 
respond to the TAF by binding with it, proliferating and chemotaxing up 
the TAF gradient. The diffusion coefficient of TAF is similar to that of 
oxygen, and so we model the production, diffusion, decay, and binding of 
TAF by

	 0 1= ∇⋅ ∇( )+ −( ) − −D T T TT
T T

H
λ λ λproduction decay b1Ω iinding sprout tips

T T1 	 (13.20)

where T is the nondimensional TAF concentration, D DT T= is the diffu-
sion coefficient (assumed to be constant), and λproduction

T , λdecay
T , and λbinding

T

denote the nondimensional production, natural decay, and binding rates 
of TAF. In the far field at the boundary of the computational domain, we 
also take zero Neumann boundary conditions ∂ ∂ =T n/ 0.

Angiogenesis Model

We begin with a description, in the next section, of an initial mathemati-
cal model for the growth of a hollow capillary network in the absence of 
any blood flow; this follows Anderson and Chaplain (1998). Then, in the 
two succeeding sections, following McDougall et al. (2006), we will add 
the effects of blood flow and vascular network remodeling, respectively.

Basic Network Model
As described earlier, TAF and ECM macromolecules bind to specific mem-
brane receptors on ECs and activate the cell’s migratory machinery. The 
model of EC migration given in the following text describes how capillary 
sprouts emerging from a parent vessel migrate toward a tumor, leading to 
the formation of a vascular network that supplies nutrients for continued 
development (see Figure 13.2).

At this level, since there is no flow or vessel remodeling, this model may 
perhaps be considered more appropriate at describing in vitro endothelial 
cell migration and capillary sprout formation. The model, inspired by the 
tumor angiogenesis model developed by Anderson and Chaplain (1998), 
assumes that endothelial cells migrate through (1) random motility, 
(2) chemotaxis in response to TAF released by the tumor, and (3) hapto-
taxis in response to ECM gradients. If we denote by n the nondimensional 
endothelial cell density per unit area, then the nondimensional equation 
describing EC conservation is given by
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∂
∂

= ∇ ∇( )−∇ ∇( )−∇n
t

D n T n T nT Ei i iχ χ
sprout sprout

( ) ∇∇( )E .
	 (13.21)

See McDougall et al. (2006) for the nondimensionalization. The diffusion 
(random migration) coefficient is D D=  (assumed to be constant), and the 
chemotactic and haptotactic migration are characterized by the functions
χ χ δsprout sprout

T T T= + ⋅/( )1 , which reflects the decrease in chemotactic sensi-
tivity with increased TAF concentration andχ χsprout sprout

E E= , where for sim-
plicity we have taken the haptotactic migration parameter to be constant. 
In a future work, we will investigate the heterogeneous response of the ECs 
to the ECM and oxygen gradients as discussed earlier in the section titled 
“Tumor–Microenvironment Interaction.” The coefficients D, χsprout

T , and 
χsprout

E
 characterize the nondimensional random, chemotactic, and hap-

totactic cell migration, respectively.

P2
P0

P4 = 0

P1

P3

i–1 i+1i

Parent vessel

Tumor

j–1

j

j+1 TA
F 

gr
ad

ie
nt

Figure 13.2  A schematic diagram of the basic network model of tumor-induced 
angiogenesis. P1, P2, P3, and P4 denote the probabilities of the sprout EC moving 
in the coordinate directions. P0 denotes the probability of its remaining station-
ary. (Reprinted with permission from McDougall et al. 2006. Theor. Biol. 241, 
564–589.)
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The displacement of each individual EC, located at the tips of each 
growing sprout, is given by the discretized form of the EC mass conserva-
tion equation (13.21) on a regular Cartesian mesh. The migration of each 
cell is consequently determined by a set of coefficients (P0–P4) emerging 
from this equation, which relate to the likelihood of the cell remaining sta-
tionary, moving left, right, up, or down. These coefficients incorporate the 
effects of random, chemotactic, and haptotactic movement and depend on 
the local chemical environment (ECM density and TAF concentration). 
Proliferation of the endothelial cells at the capillary tips and branching 
at capillary tips are implemented in the model at the discrete level. Tip 
branching depends on the TAF concentration at a given spatial location 
(see Table 13.1 and Anderson and Chaplain (1998) for details.). Using the 
foregoing model, it is possible to generate “hollow” capillary networks that 
are structurally similar to those observed experimentally.

Modeling Blood Flow in the Developing Capillary Network
Blood is a complex multiphase medium composed of many different con-
stituents, including red blood cells (erythrocytes), white blood cells (leu-
kocytes), and platelets involved in clotting cascades. These solid elements 
represent approximately 45% of the total blood composition—red cells are 
predominant—and are carried in the plasma, which constitutes the fluid 
phase. A measure of the solid phase is given by the blood haematocrit, 
which represents the volume fraction of red blood cells contained in the 
blood. The average human haematocrit has a value of around 0.45. Because 
of its multiphasic nature, blood does not behave as a continuum, and the 
viscosity measured while flowing at different rates in microvessels is not 
constant. The direct measurement of blood viscosity in living microves-
sels is very difficult to achieve with any degree of accuracy. However, by 

Table 13.1  Vessel branching probabilities according to the local TAF (T) 
concentration and to the magnitude of the local wall shear stress (τw). TAFmax (Tmax) is 
the maximum TAF concentration and τmax= 5 Pa (50 dynes/cm2), the maximum shear 
stress derived from preliminary flow simulations

WSS/τmax

[0.0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0)
[0,0,0.3) 0.00 0.00 0.00 0.00 0.00

[TAF]/TAFmax [0.3,0.5) 0.00 0.02 0.04 0.06 0.08
[0.5,0.7) 0.00 0.03 0.06 0.09 0.12
[0.7,0.8) 0.00 0.04 0.08 0.12 0.16
[0.8,1.0) 0.00 0.10 0.20 0.30 0.40
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comparing the flow distribution in a numerical network (generated by 
a mathematical model) with a similar experimental system, Pries et al. 
(1996) determined a relationship between the apparent viscosity of blood, 
the blood haematocrit, and the radius of the vessel, through which the 
blood is flowing that provides a good fit with microvascular experimental 
data. The relationship is given as follows:
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where μplasma is the plasma viscosity, μrel is the relative viscosity,µ0 45.  is the 
(nondimensional) viscosity corresponding to the normal value of the dis-
charge haematocrit (i.e., h HD= = 0 45. ), R is the dimensional vessel radius 
(in μm), R* is a radius scale factor (taken to be equal to 1 μm), and f(h,R) is 
a modulating function of the haematocrit and vessel radius. These effects 
are modeled by:
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The apparent blood viscosity (i.e., Equation 13.22) generally increases 
with decreasing capillary radius, although the precise relationship is non-
linear since it is actually haematocrit dependent.

In order to calculate flow within the entire interconnected network of 
capillaries, it is first necessary to decide upon a local relationship between 
the pressure gradient ∆Pvessel  and flow rate Q  at the scale of a single capil-
lary element of length L and radius R. Such a relationship in the case of 
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a non-Newtonian fluid can be approximated by the following Poiseuille-
like expression:

	
Q R P

R h Lapp
= π

µ

4

8
∆ vessel

( , )
.

	 (13.24)
where μapp = μapparent from Equation 13.22. In order to determine the pres-
sure (and flow rate) and in the vascular network of interconnected capil-
lary elements having distributed radii, one simply conserves mass (or flow 
if the fluid is incompressible) at each junction where capillary elements 
meet (see Figure 13.3).

Hence, for each node the following expression can be written:

	

Q i j k
k

N

( , ), =
=
∑ 0

1 	 (13.25)

j
Qi,j

i

Tumor

Parent vessel

•

Figure 13.3  A schematic representation of the neovessels superimposed on the 
computational grid used for the flow calculation. (After McDougall et al. 2006. 
Theor. Biol. 241, 564–589.)
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where the index k refers to adjacent nodes and N = 4 in a fully con-
nected regular 2D grid as considered in this paper (or N = 6 in 3D). 
This procedure leads to a set of linear equations for the nodal pressures 
(Pvessel,i) that can be solved numerically using any of a number of dif-
ferent algorithms including successive over-relaxation (SOR). Once the 
nodal pressures are known, Equation 13.24 can be used to calculate the 
flow in each capillary element in turn. A more complete discussion of 
the procedure can be found in McDougall et al. (2002). The evolution of 
haematocrit h in the vessels is also calculated using mass conservation 
once the flow is determined.

Capillary Vessel Adaptation and Remodeling
Blood rheological properties and microvascular network remodeling are 
interrelated issues, as blood flow creates stresses on the vascular wall 
(shear stress, pressure, tensile stress) that lead to adaptation of the vas-
cular diameters via either vasodilatation or constriction. In turn, blood 
rheology (viscosity, haematocrit, etc.) is affected by the new network 
architecture—consequently, we should expect adaptive angiogenesis to be 
a highly dynamic process. We follow the work of Pries et al. (1995, 1996, 
1998, 2001a) in incorporating vessel adaptation into our model. In par-
ticular, we consider a number of stimuli that affect the vessel diameters. 
Specifically, we account for the influence of the wall shear stress (Swss), 
the intravascular pressure (Sp), a metabolic mechanism depending on 
the blood haematocrit (Sm), as well as the natural tendency for vessels to 
shrink (Ss). These stimuli form a basic set of requirements for obtaining 
stable network structures with realistic distributions of vessels diameters 
and flow velocities. The theoretical model for vessel adaptation assumes 
that the change in a flowing vessel radius _R over a time step __, where 
time is scaled by the rate of the response of the vessel to wall shear stress 
( kw ), is proportional to both the global stimulus acting on the vessel and 
to the initial vessel radius R. We refer the reader to McDougall et al. (2006) 
for the definitions of the stimuli and a brief discussion.

After the radius of the vessel is updated, the effect of the mechanical 
pressure P, generated by the proliferating and invading tumor on the 
vessel radius is then taken into account. The tendency of the pressure to 
shrink the vessel is modeled by the simple cutoff:

	 R R R R c P P→ + −( )⋅ −( )min min ( , )1 vessel ,	 (13.26)
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where c(P,Pvessel) is the cutoff function introduced earlier in Equation 13.5 
and Rmin is a threshold minimum radius. This provides another means of 
coupling tumor invasion (and mechanics) with the angiogenic response 
and the developing neovascular network. In particular, the solid/mechan-
ical pressure may constrict and cutoff vessels in the neovasculature. To 
prevent singularities in practice, the radius of the vessel is constrained to 
lie between 2.0 and 14 μm, which is the size of the parent capillary.

Inclusion of the foregoing mechanisms into our modeling framework 
now allows us to simulate dynamic remodeling of a flowing vasculature. 
This significant improvement in angiogenesis modeling, introduced by 
McDougall et al. (2006), allows us to describe vascular growth in a far 
more realistic manner, with areas of the capillary network dilating and 
constricting in response to variations in perfusion-related stresses, stimuli 
and pressure mechanical forces exerted on the host microenvironment by 
the invading tumor. The final step in the development of the complete 
dynamic adaptive tumor-induced angiogenesis (DATIA) model is to couple 
the network flow modeling approach outlined in this section to the “hol-
low capillary” model derived from the endothelial cell migration equations 
described earlier. This is achieved through the role of wall shear stress.

Wall shear stress is known to play a leading role in the growth and 
branching of capillary vessel networks (Pries et al. (2001a, 2001b)). In order 
to “bring the morphological and the physiological concepts together” 
(Thompson, 1917), the cell migration and flow models are coupled by 
incorporating the mechanism of shear-dependent vessel branching in addi-
tion to sprout-tip branching via local TAF concentrations. This enables 
the capillary network structures to adapt dynamically through adjuvant 
vessel branching in areas of the network experiencing increased shear 
stresses following anastomosis elsewhere in the system. We note that 
because the shear stress is due to the blood flowing through the capil-
laries, vessel branching can only occur after some degree of anastomosis 
has taken place. Therefore, the early stages of angiogenesis are primarily 
characterized by branching at the capillary tips, which depends only on 
the TAF concentration.

The combined effects of the local wall shear stress and TAF concentra-
tion on vessel branching probability have been implemented in the model 
as described in Table 13.1. In the absence of quantitative experimental 
data, the probabilities chosen for the vessel branching process have been 
defined on a qualitative basis and reflect the combined influence of the 
wall shear stress (WSS) and local TAF concentration. High values of WSS 
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in tandem with high local TAF concentrations lead to a higher branching 
probability, while lower values of one or both of WSS and TAF concen-
tration lead to lower branching probability. For each range of WSS (lin-
early distributed in the interval [0,1]), the corresponding TAF probability 
profile has been obtained via a linear scaling of the values reported in 
McDougall et al. (2002) and Stéphanou et al. (2005a, 2005b).

As mentioned earlier, in the absence of WSS, TAF-dependent sprout 
tip branching is the only means by which a migrating vessel can bifur-
cate. Sprout tip branching is performed using the algorithm developed 
by Anderson and Chaplain (1998) and the corresponding tip branching 
probabilities are shown in Table 13.2.

Numerical Schemes
Tumor Invasion Model
The tumor invasion model described in the section titled “The Tumor 
Invasion Model” consists of a coupled system of nonlinear, elliptic, and 
parabolic (reaction-diffusion) differential equations that must be solved on 
a complex, moving domain where the motion of the tumor/host bound-
ary depends on gradients of the solutions to these equations. Further, one 
of these solutions—the pressure—is discontinuous across the tumor–host 
interface where the discontinuity depends on the geometry (i.e., the cur-
vature) of the interface, which is an additional source of nonlinearity. 
Therefore, standard finite difference methods cannot be used to accurately 
solve the system. Instead, specialized methods that can accurately take 
into account discontinuities in solutions and complex domains must be 
used. Here, we use a ghost-cell/level-set method and adapt and extend 
the numerical techniques we recently developed (Macklin and Lowengrub 
2005, 2006, 2007) to solve this system. In this approach, the equations 
are discretized on a regular Cartesian mesh and the difference stencils 

Table 13.2  Sprout tip branching probabilities as 
a function of the local TAF concentration

TAF concentration
Sprout tip branching 

probability
≤0.3 0.0
 [0.3–0.5] 0.2
 [0.5–0.7] 0.3
 [0.7–0.8] 0.4
>0.8 1.0
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near discontinuities are modified. We note that other alternatives exist 
(see the discussion in Macklin and Lowengrub 2007), but an advantage of 
our approach is that it can be implemented in a dimension-by-dimension 
manner, making the extension to 3D straightforward, and our algorithm 
is simpler to implement than the alternative approaches.

In this approach, the interface is captured as the zero set of an auxil-
iary function (the level-set function) φ satisfying φ < 0 inside Ω, φ > 0 
outside Ω, and φ = 0 on the tumor–host interface Σ. Typically, φ is taken 
to be an approximation to the signed distance function; that is, | |∇ ≈ϕ 1. 
The interface normal and curvature can easily be calculated from φ. The 
interface ΣN separating viable tumor cells from the necrotic cells is also 
captured using additional level-set function boundary φN that satisfies 
the same properties as φ, only with ΩN and ΣN in place of Ω and Σ.

Away from Σ, the elliptic/parabolic equations can be discretized using 
centered finite differences. However, near the interface, the difference 
stencils need to be modified to account for possible jumps in solutions 
and in their normal derivatives. To do this, ghost cells on either side of 

Table 13.3  The variables in the tumor invasion model and their nondimensionalization

Biological quantity
Nondimensional 

variable Scaled by
Oxygen concentration σ σ*, the oxygen level in well-

oxygenated tissue (assumed to 
be the same as the oxygen level 
in the blood vessels)

Proliferation-induced 
biomechanical pressure 

P λ µM l2 / * , where μ* is a 
characteristic mobility value, 
and λm is the mitosis rate

Tumor-secreted angiogenic 
growth factor (TAF)

T T*, the concentration of TAF 
secreted by tumor cells

Matrix-degrading enzyme 
(MDE)

M M*, the concentration of MDE 
secreted by the tumor cells

Extracellular matrix (ECM) E  E*, the concentration of ECM 
secreted by tumor cells

Original extracellular matrix E0 E*, the concentration of ECM 
secreted by tumor cells

Endothelial cell (EC) density n n*, a characteristic density of ECs
Preexisting blood vessel density Bpre Bpre

* , a characteristic density of 
preexisting vessels (e.g., value at 
the initial time)
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the interface are introduced, and the variables are extrapolated across the 
interface to ensure that the difference stencil effectively does not include 
nodes on the other side of the interface. The resulting nonlinear system is 
solved using an iterative algorithm.

The Dynamic Adaptive Tumor-Induced Angiogenesis Model
For a fixed tumor geometry and TAF distribution, the tumor vasculature is 
first grown using the basic network model given in the section titled “Basic 
Network Model”; capillary tips may branch or anastomose during this 
stage. Further, the Cartesian mesh for the tumor growth system coincides 
with that used for the neovascular network. After a certain period of time, 
referred to as the capillary growth duration time, the fluid flow is solved 
in the fixed neovascular network and then the network is dynamically 
remodeled, following the algorithm described in sections titled “Modeling 
Blood Flow in the Developing Capillary Network” and “Capillary Vessel 
Adaptation and Remodeling,” respectively. During the simulation of the 
flow, a CFL condition is imposed on the time step: ∆τ ≅ min( / )V Qcap cap

 , 
where Vcap and Qcap are the velocity and flow rate in a capillary element. 
The minimum is taken over the neovascular network. This ensures hae-
matocrit remains conserved during the simulation (e.g., McDougall et al. 
2002). Then, the process of blood flow, followed by remodeling, is repeated 
for an amount of time referred to as the flow duration time.

Overall Computational Solution Technique
Initially, the avascular tumor, the preexisting vascular network, the oxy-
gen, and ECM and MDE concentrations are given. We will consider a 
single parent vessel placed at the top of the computational domain (see 
Figures 13.1 and 13.2). The algorithm then consists of iterating the follow-
ing steps:

	 1.	Solve Equation 13.1 for the oxygen concentration, where the oxygen 
source in Equation 13.4 is obtained from the haematocrit and the 
pressure in the existing vascular network and the tumor mechanical 
pressure from the previous time step. We then use the solution σ to 
update the position of the necrotic core:

	
Ω Ω ΩN N Ntupdated previous= ∪ ( )<{ }∩( )x x: ,σ σ

,
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	 and to identify the hypoxic region ΩH. As described earlier, the 
necrotic core is expanded to include previously necrotic tissue as 
well as any tumor tissue where the oxygen level has dipped below 
the necrotic threshold σN. We then rebuild φN as a level-set func-
tion that represents the updated region ΩN. (See the Appendix 2, 
Macklin and Lowengrub (2007) and the level-set references earlier 
for information on initializing a new level-set function.)

	 2.	Solve Equation 13.20 for the tumor angiogenic growth factor (TAF), 
and update the MDE and ECM according to Equations 13.17 and 
13.18, respectively.

	 3.	Determine the cellular mobility, and solve for the tumor biomechan-
ical pressure from Equation 13.9.

	 4.	Update the position of the tumor–host interface Σ and the necrotic/
viable ΣN by advecting the level-set functions φ and φN with the 
appropriate velocities. If necessary, the level-set functions are reini-
tialized to be local distance functions to Σ and ΣN.

	 5.	From the updated tumor position, TAF, MDE, and ECM fields, the 
neovascular network is grown using the basic network model.

	 6.	Steps (1)–(5) are repeated until the growth duration time interval is 
reached. At this point, the fluid flow in the neovascular network is 
determined, and the network is adapted. The hydrostatic pressure 
P and the TAF are held fixed during this process. The flow and net-
work adaption are repeated (for fixed tumor and capillary tip posi-
tions) until the flow duration time is reached.

	 7.	Go to Step 1, and repeat the algorithm.

Results
In this work, we shall focus on tumor growth coupled to angiogen-
esis in a square 4 × 4 mm region. Although we solve the nondimen-
sional equations, we present dimensional results using the length scale 
l m≈ 200 µ  and the timescale1 1 5/ .λm ≈ day. A parent capillary vessel is 
located at the top of the computational domain. A preexisting vascula-
ture is assumed to exist and provides a small level of nutrient uniformly 
throughout the host tissue domain. Initially, a small cluster of proliferat-
ing cells is placed approximately 3 mm from the parent vessel. The initial 
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ECM is taken to be nearly constant (=1) but with small random per-
turbations uniformly distributed throughout the computational domain 
(see the time t = 0 plot in Figure 13.7a. Accordingly, whenever we cal-
culate gradients of E, we actually calculate the gradient of smoothed E, 
where a Gaussian smoothing with standard deviation 3.0 is used (see 
Macklin and Lowengrub 2005). We begin by demonstrating that in the 
absence of tumor-induced angiogenesis, the small tumor cluster grows 
to an avascular tumor (2D) spheroid. Actually, since there is a preex-
isting vasculature, this is a misuse of notation; however, we still refer 
to this case as avascular since there is no neovascular network. Then, 
tumor-induced angiogenesis is initiated and we present several simula-
tions of angiogenesis and vascular growth. Finally, we examine the effect 
of increased ECM degradation by MDE and its affect on avascular and 
vascular growth. The parameters, and nondimensionalization, used in 
the simulations are given in Tables 13.3–13.6.

Avascular Growth to a Multicellular (2D) Spheroid

In Figure  13.4a, we present the growth of an avascular tumor. The spa-
tial grid is 200 200×  and the time step Δt  =  0.05 and is adapted to sat-
isfy the Courant–Friedrichs–Lewy (CFL) condition (see Macklin and 
Lowengrub 2006, 2007). The red, blue and brown colors denote ΩP, ΩH, 
and ΩN the proliferating, hypoxic/quiescent, and necrotic regions, respec-
tively. The nondimensional oxygen and ECM concentrations and the solid 
(oncotic) pressure are also shown. The oxygen diffuses only a short distance 
(about 0.2 mm from the diffusion length) from the parent vessel as can 
be observed from the figure. However, the preexisting vasculature (which 
yields a background oxygen concentration of approximately 0.4) provides 
enough oxygen for the tumor to grow. As the tumor grows, the pressure 
in the proliferating region increases, the oxygen is depleted in the tumor, 
and the ECM is degraded. A hypoxic/quiescent core forms at about 9 days, 
when the tumor radius is approximately 0.34 mm. While the tumor con-
tinues to grow and degrade the ECM, the pressure decreases and the tumor 
growth starts to slow, as can be seen in Figure 13.4b. A necrotic core forms 
around day 15, when the radius of the tumor is approximately 0.5 mm. 
The pressure drops significantly to reflect the volume loss in the necrotic 
core associated with the breakdown of the necrotic cells, and the growth 
of the tumor slows even further as the tumor approaches a steady state. 
As the growth of the tumor slows, the ECM degradation becomes more 
pronounced. This actually causes a competition between two effects: the 
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Table 13.4  Values of the parameters for the tumor invasion model—Equations 
13.1–13.20

Biological quantity
Nondimensional 

parameter Scaled by
Value used in 
simulations

Uptake rate of oxygen 
in proliferating tumor 
region

λσ λσ
* , the 

characteristic 
rate of oxygen 
uptake in the 
proliferating 
tumor region

1

Uptake rate of oxygen 
in host 
microenvironment

λ tissue λσ
* 0.25

Uptake rate oxygen in 
quiescent (hypoxic) 
tumor region

λH 3 5 10 4. × − 0.5

Decay rate of oxygen in 
necrotic tumor region

χsprout
T δ 0.25

Rate of blood-tissue 
oxygen transfer 
(extravasation) from 
preexisting vessels

χsprout
E kp 0.25

Rate of blood-tissue 
oxygen transfer 
(extravasation) from 
neovessels

kw 1 10 6× − m 20

Lower cutoff of 
original ECM, used in 
uptake in host 
microenvironment

τw
* E*, the 

concentration of 
ECM secreted by 
the tumor cells

1.0

Upper cutoff of 
original ECM, used in 
uptake in host 
microenvironment

τref E* 0.625

Characteristic value of 
discharge haematocrit

τe
* Already 

nondimensional
0.45

Minimum value of 
haematocrit needed 
for extravasation

τs
* Already 

nondimensional
0.05

Characteristic 
dimensional value of 
pressure in the 
neovessels (Equation 
13.6)

Pvessel
* — 5000 Pa

Apoptosis rate A λm, the mitosis rate 0
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Table 13.4  Values of the parameters for the tumor invasion model—Equations 
13.1–13.20 (Continued)

Biological quantity
Nondimensional 

parameter Scaled by
Value used in 
simulations

Scaling factor for 
hydrostatic 
(mechanical) pressure 
cutoff (Equation 13.6)

Qref 0.33

Necrosis rate GN μm 0.3
Tumor aggressiveness 
(adhesion) rate

G μm 40

Minimum haptotaxis 
rate

1 909 10 11 3. /× − m s 6 10 6× − m, where 
l is the length 
scale

0

Maximum haptotaxis 
rate

χE ,max χ λE mE l* * / ( )2 0.25

Maximum value of 
ECM used in 
haptotaxis coefficient 
(Equation 13.15)

Emaxcutoff
χ E* 0.1

Minimum value of 
ECM used in 
haptotaxis coefficient 
(Equation 13.15)

Emincutoff
χ E* 0.9

Minimum tumor 
mobility (response to 
hydrostatic/
mechanical pressure)

µmin μ*, a characteristic 
value of mobility

1.0

Maximum tumor 
mobility (response to 
hydrostatic/
mechanical pressure)

µmax μ* 4.0

Minimum value of 
ECM used in mobility 
coefficient (Equation 
13.16)

Emincutoff
µ E* 0

Maximum value of 
ECM used in mobility 
coefficient (Equation 
13.16)

Emaxcutoff
µ E* 1.0

Oxygen diffusion 
coefficient

Dσ Dσ
* , a 

characteristic 
dimensional 
oxygen diffusion 
coefficient

1.0

(Continued)
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pressure-induced motion, which becomes more effective since the mobility 
increases when the ECM decreases; and haptotaxis, which tends to inhibit 
growth of the tumor into the less dense ECM outside the tumor (recall 
that haptotaxis induces motion up ECM gradients). Further, the MDE also 
degrades the preexisting vessels, which results in a reduction in the supply 
of oxygen. As a result of haptotaxis and the reduced oxygen supply, the 
tumor actually shrinks slightly after reaching a maximum radius of about 
0.64 mm (see Figure 13.4b).

Table 13.4  Values of the parameters for the tumor invasion model—Equations 
13.1–13.20 (Continued)

Biological quantity
Nondimensional 

parameter Scaled by
Value used in 
simulations

MDE diffusion 
coefficient

DM l2 λm 1.0

Production rate of 
MDE by tumor cells

λproduction
M λ m 100

Natural decay of MDE λdecay
M λm 10

Production rate of 
MDE by EC sprout 
tips

λsprout production
M λm M* 1.0

Rate of degradation of 
ECM by MDE

λdegradation
E λm /M* (Figures 13.4–13.7)

1.0 (Figures 
13.8–13.9)

Rate of production of 
ECM by tumor cells

λproduction
E λm (Figures 13.4–13.7)

2.72 Figures 
13.8–13.9)

Rate of production of 
ECM by EC sprout 
tips

λsprout production
E λm /E* 0.1

Rate of degradation of 
preexisting blood 
vessels

λdegradation
B λm /M* (Figures 13.4–13.7)

1.0 
(Figures 13.8–13.9)

TAF diffusion 
coefficient

DT Dσ
* 1.0

Rate of TAF 
production by 
hypoxic tumor cells

λproduction
T λσ

* 100

Rate of natural decay 
of TAF

λdecay
T λσ

* 0.01

Rate of binding of TAF 
by EC sprout tips

λbinding
T λσ

* 0.025
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Tumor-Induced Angiogenesis and Vascular Growth: No 
Solid Pressure-Induced Neovascular Response

We next consider tumor-induced angiogenesis where there is no effect of 
the solid pressure on either the radius of the neovessels or the extravasa-
tion of nutrient. In particular, we take c P P( , )vessel = 0  in Equations 13.4 
and 13.26. Angiogenesis is initiated from the avascular tumor configu-
ration at t = 45 days from Figure 13.4. At this time, 10 sprout tips are 
released from the parent vessel. The initial vessel radii are 6 μm. The inlet 
pressure and outlet pressures in the parent vessel are P Pavessel,in = 3660  
and P Pavessel,out = 2060 , respectively. The growth duration is t = 0.05, 
which means that the intravascular flow and vessel adaption algorithms 
are called nearly every tumor growth time step. The flow duration is 
τ = 0.25 with a time step approximately equal to Δτ = 0.005 (again, Δτ is 
adaptive to satisfy an intravascular CFL condition). This means that 50 

Table 13.5  Values of the nondimensional parameters for the angiogenesis 
model—Equations 13.21–13.26

Biological quantity
Nondimensional 

parameter Scaled by
Value used in 
simulations

Random motion of 
EC

D l2 λm 3 5 10 4. × −

Chemotactic 
response of EC 
sprout tip

χsprout
T l2 λm /T* 0.38

Decrease in 
chemotactic 
sensitivity

δ 1/ T* 0.6

Haptotactic 
response of EC 
sprout tip

χsprout
E l2 λm /E* 0.16

Response rate of 
neovessel radius to 
intravascular 
pressure

kp kw , the response 
rate of the 
neovessel radius 
to wall shear 
stress

0.1

Response rate of 
neovessel radius to 
metabolic stimulus

1 10 6× − m τw
* 0.07

Natural shrinking 
tendency of 
neovessel radius

τref Already 
nondimensional

0.35

© 2011 by Taylor and Francis Group, LLC



284    ◾    Mark A.J. Chaplain, et al.

iterations of the flow and vascular adaptation algorithms are performed 
every tumor growth time step. By flowing and adapting the vascular 
network so frequently, we hoped that a relatively short flow duration 
time could be used to get a reasonable approximation of the blood flow 
in the network. Indeed, preliminary simulations showed that increasing 
the flow duration did not change the results qualitatively or, in some 
cases depending on the vascular network configuration, quantitatively. 
In a future work, we will quantify the effect of the flow duration on the 
results.

The evolution of the tumor and the neovascular network is shown in 
Figures 13.5a and 13.5b. As can be seen from the figures, it takes some 
time for flow to develop after angiogenesis is initiated. Further, flow first 
occurs after about 7 days in a region near the parent vessel. This can be 
seen from the plots of haematocrit and oxygen, which are signatures of 
blood flow. Little additional oxygen diffuses to the tumor. Accordingly, 
the tumor maintains a steady size (or shrinks a little due to the reasons 
described earlier). This may be seen in Figure 13.5c. Some of the vessels 
continue to lengthen, branch, and migrate toward the tumor, heading in 
particular for the hypoxic region where TAF is released.

Table 13.6  Values of the dimensional parameters for the angiogenesis model—
Equations 13.21–13.26

Biological quantity
Dimensional 

parameter Value used in simulations
Dimensional Neovascular radius 
scale factor (Equation 13.22)

R* 1 10 6× − m

Dimensional Wall shear stress 
scale factor

τw
* 0.1 Pa

Dimensional Wall shear stress 
regularization factor

τref 0.0103 Pa

Dimensional Intravascular 
pressure stress scale factor

τe
* 0.1 Pa

Dimensional Natural shrinking 
tendency scale factor

τs
* 1 Pa

Dimensional Intravascular 
pressure scale factor

Pvessel
* 103 Pa

Flow rate in the parent vessel Qref 1 909 10 11 3. /× − m s

Threshold minimum neovessel 
radius for pressure cutoff 
(Equation 13.27)

Rmin 6 10 6× − m
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After about 10 days, a large loop forms through which blood flows. 
The loop penetrates the tumor and provides the tumor cells with a direct 
source of oxygen. The tumor responds by rapidly growing along the oxy-
gen source and co-opts the neovessels, and the hypoxic region shrinks and 
changes shape. As the tumor grows, the hypoxic and necrotic regions start 
to grow again as well and the neovessels near the tumor–host interface 
branch in response to wall shear stresses and increased TAF levels. This 

(a) Time = 15.00 days Time = 30.00 days
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0.12
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Time = 45.00 days
Tissue overlay
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0.12
1.00
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Figure 13.4  (See color insert following page 40) (a) The evolution toward 
a steady-state avascular multicell (2D) spheroid. The tumor regions (red—
proliferating ΩP, blue—hypoxic/quiescent ΩH, brown—necrotic ΩN), the oxygen, 
mechanical pressure, and ECM are shown at the times indicated. 
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results in increased anastomosis and blood flow. The increased oxygen 
supply in turn causes large pressures to form in the proliferating region 
and the tumor to grow even more rapidly, enhancing this effect. Because 
there is no response of the neovessels to these large pressures, the tumor 
simply continues to co-opt the vessels, creating an effective tumor micro-
vasculature. This microvasculature provides a nearly uniform source of 
nutrient in the upper two-thirds of the tumor; the lower third is primarily 
hypoxic and quiescent. As a consequence, the tumor shape remains com-
pact as the tumor grows.

In Figure 13.5b, the dimensional neovessel radii (in m) and intravascu-
lar pressures (in Pa) are shown together with the nondimensional ECM 
and TAF concentrations. At early times, the radii are small and TAF dif-
fuses from the quiescent zone. The ring of lowered ECM surrounding the 
tumor is clearly seen. The pressure is highest in the neovessels closest to 
the inlet of the parent capillary, where the highest pressures are. As blood 
flow starts, the radii increase and the overall pressure decreases, while 
the pressure in some vessels increases as blood spreads throughout the 
network. This process continues as the tumor grows and the vasculature 
continues to branch, anastomose, and carry more and more flow. As the 
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Figure 13.4  (Continued) (b) The areas (mm2) of the total tumor (solid line), 
proliferating region (“o”), hypoxic region (“⦁”), and the necrotic region (“inverted 
triangle”) as a function of time for the simulation in Figure 13.4a.
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Figure 13.5  (a) Tumor-induced angiogenesis and vascular tumor growth. The 
vessels do not respond to the solid pressure generated by the growing tumor. The 
tumor develops a microvascular network that provides it with a direct source of 
oxygen and results in rapid growth with a compact (sphere-like) shape. The color 
scheme is the same as in Figure 13.4a.
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(b) Vessel radius
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Figure 13.5  (Continued) (b) The dimensional intravascular radius (m) and 
pressure (Pa) together with the nondimensional ECM and TAF concentrations at 
different times from the simulation shown in Figure 13.5a. (1) Time (days) = 48, 
(2) 52.5, (3) 55.5, (4) 58.5, (5). 63.0, (6) 67.5.
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hypoxic and necrotic regions shrink, the TAF distribution changes, and 
the vessels respond accordingly. Observe that the degraded ECM just out-
side the tumor does not prevent the vessels from penetrating the tumor 
even though the sprout tips have to migrate up ECM gradients to accom-
plish this.

The first vessels that penetrate the tumor do not carry blood and, thus, 
the tumor does not respond to their penetration. Instead, these vessels 
migrate toward the hypoxic region, where they tend to get stuck. This 
occurs because the TAF concentration is nearly uniform (T = 1) and so 
the sprout tips move randomly and tend to collide with their own trail-
ing vessel, preventing further migration. At later times though, new ves-
sels grow into the tumor center and anastomose. This leads to blood flow 
and oxygen extravasation deep in the tumor interior. Further, observe 
that the tumor grows so fast that it outruns the ring of degraded ECM 
around its boundary and is growing into only very slightly degraded 
ECM. The ECM in the tumor interior degrades rather slowly, and the 
ECM signature of the original avascular tumor spheroid can still be seen 
at late times.
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Figure 13.5  (Continued) (c) The areas (mm2) of the total tumor (solid line), 
proliferating region (“o”), hypoxic region (“⦁”), and the necrotic region (“inverted 
triangle”) as a function of time for the simulation in Figure 13.5a.
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This simulation shows that when the neovessels are not affected by 
the tumor solid pressure, dramatic growth occurs as the tumor co-opts 
the host vasculature to create its own microvasculature and receives a 
direct source of oxygen. In addition, the tumor growth and angiogene-
sis processes are nonlinearly coupled as the vasculature responds to the 
growth by migrating towards the ever-changing TAF distributions and 
by branching and anastomosing near the tumor–host interface. This leads 
to increased blood flow. At the same time, the increased blood flow in the 
vascular network affects how the tumor grows and, in particular, speeds 
growth up. This then affects the response of the vasculature.

Tumor-Induced Angiogenesis and Vascular Growth: The 
Effect of Solid Pressure-Induced Neovascular Response

Next, we consider, in Figures 13.6a–13.c, the effect of solid/mechanical pres-
sure-induced vascular response on tumor-induced angiogenesis and vascular 
growth. We repeat the simulation in the section titled “Angiogenesis Model” 
except with c P P( , )vessel  nonzero as given in Equation 13.5. This means that 
the transfer of oxygen from the neovessels to the tissue may be significantly 
reduced, and the vessel radii may be correspondingly constricted. With 
the values of the parameters used here (Tables 13.4–13.6), a solid pressure-
induced vascular response begins to occur when the solid pressure P ≈ 0 8. .

At early times, the angiogenic response and the tumor growth are similar 
to the case presented earlier in Figures 13.5a–13.5c. The newly developing 
vessels migrate, proliferate, branch, and anastomose. It also takes some time 
for flow to begin with significant flow developing only after about 10 days. 
Blood flow in the neovasculature starts near the parent capillary and, even-
tually, the flow reaches the tumor. Because the initial ECM is slightly differ-
ent from that in Figure 13.5 (due to the random component) and due to the 
random component of the sprout tip motion, the vascular network at early 
times is not identical to that obtained previously in Figure 13.5.

In contrast to the case considered in Figure 13.5, here the solid pres-
sure prevents any delivery of oxygen internally to the tumor and, thus, 
the delivery of oxygen is heterogeneous, and significant oxygen gradi-
ents persist in the tumor interior. There is no functional microvascula-
ture internal to the tumor. While the tumor responds by growing toward 
the oxygen-delivering neovessels, the solid pressure generated by tumor 
cell proliferation also constricts the neovessels in the direction of growth 
(where pressure is highest) and also correspondingly inhibits the trans-
fer of oxygen from those vessels. As a consequence, the overall solid 
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Figure 13.6  (a1) Tumor-induced angiogenesis and vascular tumor growth. 
The vessels respond to the solid pressure generated by the growing tumor. 
Accordingly, strong oxygen gradients are present that result in strongly hetero-
geneous tumor cell proliferation and shape instability. The color scheme is the 
same as in Figure 13.4a.
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pressure is significantly lower than that in Figure  13.5. This makes the 
tumor grow much more slowly than that in Figure 13.5, as can be seen in 
Figure 13.6c. Note that the vertical scale in Figure 13.6c is one half of that 
in Figure 13.5c.

The neovessels in other areas of the host microenvironment then pro-
vide a stronger source of oxygen. This triggers tumor–cell proliferation 
and growth in regions where proliferation had been decreased previously. 
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Figure 13.6  (Continued) (a2) Tumor-induced angiogenesis and vascular 
tumor growth. The vessels respond to the solid pressure generated by the growing 
tumor. Accordingly, strong oxygen gradients are present that result in strongly 
heterogeneous tumor cell proliferation and shape instability. The color scheme is 
the same as in Figure 13.4a.
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The heterogeneity of oxygen delivery and the associated oxygen gra-
dients cause heterogeneous tumor cell proliferation. Unlike the case in 
Figure 13.5, proliferation is confined to regions close to the tumor–host 
interface. This results in morphological instability that leads to the forma-
tion of invasive tumor clusters (e.g., buds) and a complex tumor morphol-
ogy. This result is consistent with the theory and predictions made earlier 
(see, for example, Cristini et al. (2003); Cristini et al. (2005); Anderson 
(2005); Macklin and Lowengrub (2005, 2006, 2007); Anderson et. al. 
(2006); and Gerlee and Anderson (2007)) that substrate inhomogeneities 
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Figure 13.6  (Continued) (b) The dimensional intravascular radius (m) and 
pressure (Pa) together with the nondimensional ECM and TAF concentrations at 
different times from the simulation shown in Figure 13.6a. (1) Time (days) = 67.5, 
(2) 105, (3) 120, (4) 150.
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in the tumor microenvironment tend to cause morphological instabilities 
in growing tumors.

Although nutrient-providing, functional vessels are not able to pen-
etrate the tumor during growth, the growth of the tumor elicits a strong 
branching and anastomosis response from nearby neovessels in the host 
microenvironment. Although there is an analogous neovascular response 
seen in Figure 13.5, the effect here is much more pronounced as the levels 
of TAF are higher in these regions (because tumor hypoxia is increased) 
and, thus, the wall shear stresses initiate more significant branching.

In Figure 13.6b, the dimensional neovessel radii (in m) and intravascu-
lar pressures (in Pa) are shown together with the nondimensional ECM 
and TAF concentrations. As before, blood flow causes a dilation of the 
vessels and an overall decrease of pressure as branching, anastomosis, and 
increased blood flow occur throughout the neovascular network. The con-
striction of neovessels in response to the solid pressure is clearly seen.

The tumor-secreted MDE degrades the ECM in the host microen-
vironment near the tumor and in the tumor interior. As before (recall 
Figure 13.5b), the neovessels are still able to migrate through the region of 
lower ECM even though this acts against haptotaxis. Because the tumor 
grows more slowly than that in Figure 13.5b, only the tips of the invasive 
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Figure 13.6  (Continued) (c) The areas (mm2) of the total tumor (solid line), 
proliferating region (“o”), hypoxic region (“⦁”), and the necrotic region (“inverted 
triangle”) as a function of time for the simulation in Figure 13.6a.
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clusters outrun the degraded ECM. As can be seen in Figure 13.6c, the 
host ECM is degraded in the region between the invading clusters. The 
ECM signature of the original avascular tumor spheroid can no longer be 
seen at later times.

This simulation shows even stronger nonlinear coupling between the 
tumor-induced angiogenesis and the progression of the tumor compared to 
the prior case shown in Figure 13.5. The pressure-induced vascular response 
of constricting neovessel radii and inhibiting blood-tissue oxygen transfer 
not only affects the tumor growth dramatically, but also significantly affects 
the growth of the neovascular network, and vice versa.
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Figure 13.7  (a) The evolution toward a steady-state avascular multicell (2D) 
spheroid with enhanced ECM degradation. The MDE production and degrada-
tion parameters are larger than those used in Figure 13.4a; see Table 13.4.
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Avascular Growth to a Multicellular (2D) Spheroid with 
Enhanced ECM Degradation and Production

We next examine the effect of ECM degradation on the results. In 
Figure 13.7a, we repeat the simulation in the section titled “The Tumor 
Invasion Model” except that both the MDE degradation and produc-
tion parameters are increased (see Table  13.4). The tumor grows by 
uptaking oxygen delivered by the preexisting (uniform) vasculature 
and growth is more rapid than that for the avascular tumor shown 
in the aforementioned section (Figure 13.4a). This occurs because the 
mobility is greater here due to the enhanced degradation of ECM. This 
effect overcomes the tendency of haptotaxis to keep the tumor away 
from the degraded ECM.

The tumor reaches a nearly steady size, containing both a hypoxic and a 
necrotic core, that is significantly larger than that shown in Figures 13.4a and 
13.4b; the radius at 45 days is approximately 0.78 mm (see Figure 13.7b). At 
the final time shown (45 days), the ECM is significantly degraded in the host 
microenvironment and in the tumor necrotic core to the point that there is 
even a thin annular “hole” in the ECM immediately surrounding the spheroid, 
and a circular hole in the necrotic region, where the density of ECM E ≈ 0.

(b)
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Figure 13.7  (Continued) (b) The areas (mm2) of the total tumor (solid line), 
proliferating region (“o”), hypoxic region (“⦁”), and the necrotic region (“inverted 
triangle”) as a function of time for the simulation in Figure 13.7a.
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Figure 13.8  (a1) Tumor-induced angiogenesis and vascular tumor growth with 
enhanced ECM degradation.
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Tumor-Induced Angiogenesis and Vascular Growth: The 
Effect of Solid Pressure-Induced Neovascular Response 
and Enhanced ECM Degradation and Production

Next, we consider, in Figures 13.8a–13.8c, the effect of enhanced ECM degra-
dation on tumor-induced angiogenesis and vascular growth. We repeat the 
simulation shown in the section titled “Numerical Schemes” except that the 
initial condition is the t = 45 day simulation from Figure 13.7a and the MDE 
parameters are the same as in the previous section (see Tables 13.4–13.6).

As in the simulation shown in the section titled “The Tumor Invasion 
Model,” the neovessels grow and form loops near the parent capillary. 
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Figure 13.8  (Continued) (a2) Tumor-induced angiogenesis and vascular tumor 
growth with enhanced ECM degradation.
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However, now because of the growing ECM annular hole surrounding 
the tumor, the neovessels are not able to reach the tumor and are instead 
trapped by the ECM hole due to haptotaxis. The vessels then encapsulate 
roughly the upper half of the tumor.

As blood flows through the neovascular network and approaches the 
tumor, the tumor responds by growing toward the flowing neovessels that 
provide the oxygen source, as described in the section titled “Numerical 
Schemes.” The tumor elongates, constricts the neovessels in its path, and 
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Figure 13.8  (Continued) (b) The dimensional intravascular radius (m) and 
pressure (Pa) together with the nondimensional ECM and TAF concentrations at 
different times from the simulation shown in Figure 13.8a. (1) Time (days) = 67.5, 
(2) 105, (3) 120, (4) 150.
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prevents the transfer of oxygen from the neovessels to the host. This limits 
tumor cell proliferation and results in a roughly steady maximum solid 
pressure. Correspondingly, there are heterogeneous oxygen supply, het-
erogeneous tumor cell proliferation, and strong oxygen gradients. As in 
the aforementioned section, this results in a morphological instability of 
the growing solid tumor.

As the tumor continues to grow, the neovessels respond by increasing 
branching and anastomosing near the tumor–host interface. This results 
in a broader supply of oxygen in the part of the tumor closest to the par-
ent capillary. Proliferation is increased, and the top of the tumor flattens. 
The increased proliferation leads to large solid pressures, which then 
constrict the nearby neovessels and inhibit oxygen supply. The tumor 
then begins to grow toward other vessels near the parent capillary, and 
the top of the tumor becomes unstable. Further, there is instability along 
the side of the tumor that leads to the encapsulation of host domain 
inside the tumor. Also, observe that a small amount of oxygen is able to 
be delivered to the tumor at very late times as haematocrit is trapped in 
a constricted vessel at a location where the pressure is sufficiently low to 
allow extravasation.
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Figure 13.8  (Continued) (c) The areas (mm2) of the total tumor (solid line), 
proliferating region (“o”), hypoxic region (“⦁”), and the necrotic region (“inverted 
triangle”) as a function of time for the simulation in Figure 13.8a.
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Figure  13.8b shows the dimensional neovessel radii (in m) and the 
intravascular pressures (in Pa) together with the nondimensional ECM 
and TAF concentrations. The results are similar to those obtained before 
except that the tumor does not outrun the ECM hole, although at the top 
of the tumor, the hole is quite shallow.

Interestingly, even though the initial tumor in Figure  13.8a is larger 
than that in Figure 13.6a, the final tumor size at t = 150 days is roughly 
the same for both cases (see Figures 13.8c and 13.6c). The ECM hole pres-
ent in the simulation in Figure  13.8 prevents the neovessels from get-
ting close to the tumor during the early stages of growth; this allows the 
tumor in Figure 13.6 to catch up and even grow slightly larger than that 
in Figure 13.8.

Finally, in Figure 13.9, we compare the average radii in the neovascular 
networks for the simulations in Figures 13.5, 13.6, and 13.8. At early times, 
the radii for the simulation in Figure 13.5, where the neovasculature does 
not respond to solid pressure, grows the fastest as blood flows uninhibited 
through the network. Later, however, the simulation with lower ECM deg-
radation shows the most rapid radii increase. This occurs because the EC 
sprout tips are able to move more freely through the host domain and do 
not get caught by degraded ECM. This provides the vascular network with 
a more widely varying flow response.
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Figure 13.9  Average vessel radii. Simulation from Figure 13.6 (solid), simula-
tion from Figure 13.5. (“⦁”), simulation from Figure 13.8 (“diamond”).
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Discussion
In this paper, we have coupled an improved continuum model of solid 
tumor invasion (following Macklin and Lowengrub (2007)) with a model 
of tumor-induced angiogenesis (following McDougall et al. (2006)) to 
produce a new multiscale model of vascular solid tumor growth. The 
invasion and angiogenesis models were coupled through the tumor angio-
genic factors (TAFs) released by the tumor cells and through the nutrient 
extravasated from the neovascular network. As the blood flows through 
the neovascular network, nutrients (e.g., oxygen) are extravasated and 
diffuse through the ECM, triggering further growth of the tumor, which 
in turn influences the TAF expression. In addition, the extravasation is 
mediated by the hydrostatic stress (solid pressure) generated by the grow-
ing tumor. The solid pressure also affects vascular remodeling by restrict-
ing the radii of the vessels and, thus, the flow pattern and wall shear 
stresses. The vascular network and tumor progression were also coupled 
via the ECM as both the tumor cells and ECs upregulate matrix-degrading 
proteolytic enzymes, which cause localized degradation of the ECM that 
in turn affects haptotactic migration.

We performed simulations of the multiscale model that demonstrated 
the importance of the nonlinear coupling between the growth and 
remodeling of the vascular network, the blood flow through the network 
and the tumor progression. The solid pressure generated by tumor cell 
proliferation effectively shuts down large portions of the vascular net-
work, dramatically affecting the flow, the subsequent network remodel-
ing, the delivery of nutrients to the tumor and the subsequent tumor 
progression. In addition, ECM degradation by tumor cells was seen to 
have a dramatic affect on both the development of the vascular network 
and the growth response of the tumor. In particular, when the ECM deg-
radation is significant, the newly formed vessels tended to encapsulate, 
rather than penetrate, the tumor and were thus less effective in deliver-
ing nutrients.

There are many directions in which this work will be taken in the future 
both in terms of modeling additional biophysical effects as well as algo-
rithmic improvements. Regarding the algorithm, we plan to upgrade the 
solid pressure/nutrient solver by solving for P and _ as a coupled system. 
This will prevent oscillations that may occur by lagging P in the source 
term for nutrient. We also plan to accelerate the solver for the intravascu-
lar pressure to improve performance of the coupled algorithm.
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Regarding the model, we plan to develop a more detailed model of the 
effect of solid pressure on the constriction and collapse of vessels in the 
microvasculature and on the corresponding response of the microvascu-
lar network. We also plan to include, for the first time, the effects of the 
venous system. Other features, such as the recruitment of pericytes by the 
vascular ECs, will also be investigated. In addition, we will incorporate 
more realistic models for soft tissue mechanics.

The work presented here demonstrates that nonlinear simulations are a 
powerful tool for understanding phenomena fundamental to solid tumor 
growth. A biophysically justified computer model could provide an enor-
mous benefit to the clinician, the patient, and society by efficiently search-
ing parameter space to identify optimal, or nearly optimal, individualized 
treatment strategies involving, for example, chemotherapy and adjuvant 
treatments such as antiangiogenic or anti-invasive therapies. This is a 
direction we plan to explore in the future.
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Introduction
According to the World Cancer Report, 12 million new cancer diagnoses 
are expected worldwide this year, and by 2010 it will be the leading cause 
of death. Better understanding of tumor formation is of utmost social, 
economic, and political importance, and finding more effective therapies 
may be regarded as one of the biggest challenges of our time.

Most tumors are caused by abnormalities in the genetic material of the 
transformed cells. Cancer progression seems to involve the accumulation 
of such abnormalities, leading to changes in the behavior of the tumor cells 
and making them more invasive (Hanahan and Weinberg 2000). Initially, 
the transformed cells proliferate and form a cluster, which gradually 
increases in size. In this early phase, tumors vivo tend to develop without 
a dedicated vascular network, relying on diffusion from the neighboring 
healthy vascularized tissue for the supply of oxygen and nutrients and for 
the removal of wastes (e.g., CO2). Diffusion from the host tissue alone, 
however, does not suffice to support larger tumors, which often develop 
hypoxic and eventually necrotic regions. In response to acute hypoxia 
the neoplasm produces a cascade of specialized agents, collectively called 
tumor angiogenesis growth factors (TAF). These biochemicals promote the 
proliferation and migration of endothelial cells, thereby creating a special-
ized vascular network, which is able to supply the tumor. This formation 
of a vascular system is called tumor-induced angiogenesis (Carmeliet and 
Jain 2000), enabling extensive growth and leading to increasing pressure 
and traction on the tumor’s micro-environment (Gordon et al. 2003). It is 
believed that pressure might have an impact on the transport of nutrients 
(and drugs), tissue composition and proliferation. In this paper we restrict 
our attention to solid (i.e., benign) tumors, although some concepts could 
also be applied to invasive (i.e., malignant) ones. A solid tumor is an abnor-
mal mass of tissue that usually does not contain cysts or liquid areas.

The complexity and quantity of biological knowledge, combined 
with rapidly increasing computational power and the vision of more 
efficient therapy and drug design, has generated an increasing interest 
in mathematical and computational models of tumor growth, angio-
genesis, tissue mechanics, blood f low, and other relevant fields in the 
past three decades. At the different spatial scales, various types of mod-
els have been developed, including continuous, discrete, deterministic, 
stochastic, analytical, and numerical methods. Exhaustive surveys can 
be found in Araujo and McElwain (2004), in Byrne et al. (2006), and 
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in the recent paper by Bellomo et al. (2008). Additional literature on 
specific aspects relevant to our model was presented in our previous 
works (Szczerba and Székely 2002, 2005; Lloyd et al. 2008) and will not 
be repeated here.

One of the main limitations of many current modeling approaches is 
that they neglect the important interactions between the individual under-
lying processes, covering a broad spectrum of spatial and temporal scales. 
As documented in Bellomo et al. (2008), there is a long list of different 
models operating at the characteristic (natural) scale of the phenomenon 
they represent. If we are to build models that capture the interdependence 
between different processes involved, it is inevitable that we develop meth-
ods to integrate the corresponding scales into one consistent model. One 
of the first tumor models incorporating multiple scales in a systematic 
way (Alarcón et al. 2004, 2005) included three modules: oxygen and TAF 
diffusion, cell division dynamics, and blood flow. The cell cycle dynamics 
is represented by a cellular automaton, which shares the same domain as 
a preexisting hexagonal vascular network. They do not include the pro-
cess of sprouting angiogenesis, instead replacing it by remodeling due 
to (flow-induced) shear stress and TAF, based on the work by Pries et al. 
(1998). More recently they extended their approach to include cell crowd-
ing (Betteridge et al. 2006). The model described by Frieboes et al. (2006) 
treats the cell dynamics and transport of oxygen and growth factors using 
convection-diffusion-reaction equations (Macklin and Lowengrub 2007). 
Cell-to-cell adhesive forces are modeled by surface tension, treating the 
tissue as an incompressible fluid. Their recent work (Sanga et al. 2007) 
includes angiogenesis using a model based on the approach by Plank and 
Sleeman (2004). The paper by Kim et al. (2007) presents a hybrid model of 
avascular tumor growth, which treats the actively proliferating rim using 
a discrete approach, while employing a continuum viscoelastic material 
response for the remaining regions. This reduces the computational bur-
den compared to a purely discrete approach.

We have been working on a framework that allows us to consider mul-
tiple phenomena in a coupled way by interfacing components both hori-
zontally (component-wise) and vertically (scale-wise). A first attempt for 
computational implementation has been presented in Lloyd et al. (2007). 
A more detailed description, with a special focus on multiscale aspects 
of nutrient transport was given in Lloyd et  al. (2008). Specifically, we 
explicitly model the sprouting tips of the developing vasculature and 
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the convective transport of oxygen in the circulatory system. Transport 
and blood-tissue exchange phenomena are an essential model compo-
nent also with respect to drug delivery (Jang et al. 2003). Furthermore, 
we have tested alternative biomechanical models in order to investigate 
their impact on the morphogenesis of a specific type of solid tumor, a so-
called uterine (leio-) myoma (Szczerba et al. 2009). In order to account for 
tissue necrosis and heterogeneities we have recently extended our model 
to a compartmentalized approach, which makes it possible to simulate 
the effect of therapy strategies  (Hirsch et  al. 2009). Since the focus of 
these last two works has been on tissue mechanical and heterogeneity 
aspects rather than angiogenesis, we have employed a simplified implicit 
representation of vascular growth, similar to the work of Anderson and 
Chaplain (1998).

The framework is modular and allows any finite element- based 
module (i.e., mesh) to be added horizontally by giving it access to the 
global underlying information such as the domain representation 
(geometry, topology, and constraints) and expecting its contribution to 
a global coefficient matrix, or performing a requested number of itera-
tions in case no global assembly is required or the problem is nonlin-
ear. The dialogue between the different components does not need to be 
restricted to the same resolution. For example, the oxygen source in a 
tissue-level reaction-diffusion model can be estimated from a cellular-
scale blood flow simulation. The interaction is realized via constitutive 
laws (e.g., effective responses to loads, tractions, or constraints modu-
lated by other components of the model).

A comprehensive package will allow simulating the underlying physi-
cal and biochemical processes, covering mutual relationships between 
mechanical and biochemical stimuli, transport flow, diffusive transport, 
active cell migration or possibly even gene expression, resulting in tissue 
formation, deformation, or removal.

Tumor Simulation Based 
on an Explicit Vessel Model
Our model combines several previously identified components in a con-
sistent framework, including neoplastic tissue growth, blood and oxygen 
transport, and angiogenic sprouting. We use a hybrid approach combin-
ing continuum scale reaction-diffusion equations and microscale trans-
port for addressing the oxygen delivery problem. Sprouting angiogenesis 
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is treated by explicitly modeling sprouting vessels’ tips, proliferating and 
migrating up the gradient of angiogenic growth factors, which are pro-
duced in hypoxic regions of the tumor. Finally, a continuum model of 
mechanical tissue response and growth is added to the multiphysics, mul-
tiscale simulation.

The major difference in time scales at which the diffusion of molecules 
takes place (ns-s) and at which the cells proliferate (days) allows us to treat 
the processes in a quasistatic manner, that is, at a given time step we com-
pute a concentration map of oxygen according to the sources, and con-
sumption by the tissue based on the actual tumor and vascular geometry. 
In the following section we give a more detailed description of the indi-
vidual model components.

Tissue Growth

The growth model was presented in Lloyd et  al. (2007) and will only 
briefly be described here in order to keep this chapter self-contained. 
Solid tumor development is assumed to be relatively slow, therefore, it is 
reasonable to surmise that over time the neighboring tissue will accom-
modate for the stretching by increased growth or cell migration. The 
volumetric growth due to cell proliferation is prescribed by an initial 
strain ε0 (Zienkiewicz and Taylor 2000). We compute the new deforma-
tion caused by a volume expansion using the finite element method. 
In our initial implementation we neglected the accumulation of stress 
during growth, instead assuming that the residual stress caused by 
inhomogeneous volume increase dissipates completely, constituting an 
elasto-plastic growth law. From biological research it is known that cells 
need certain conditions in order to undergo mitosis. One mechanism, 
which regulates proliferation through changes in cell cycle dynamics, is 
the dependency on oxygen and glucose (Jiang et al. 2005). At low concen-
trations, oxygen consumption and cell proliferation are reduced accord-
ing to Freyer and Sutherland (1985), who explain this observation by 
the increased number of cells in a quiescent state. Under acute hypoxia, 
cells will eventually die, leading to necrotic regions in the tumor. Based 
on these observations we have defined a functional relationship between 
the prescribed initial strain (i.e., tissue growth) and the availability of 
oxygen:

	 ε0 2
( ) ( ( ))t f c tO= ,	 (14.1)
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where f is selected as a piece-wise linear function. For high oxygen concen-
trations (>h1), the cells reach the maximum proliferative potential, which 
decreases at lower levels. In necrotic regions with oxygen concentrations 
below a threshold h2, we allow for removal of tissue debris by prescribing 
a negative strain leading to volume loss.

Vascular System and Oxygen Transport

Oxygen is transported by the blood and diffuses through the vessel walls 
and into the tissue. For computational reasons, and since we are mainly 
interested in the development of the tumor and not the healthy tissue, 
we choose to use a dual representation of the oxygen source. Inside the 
tumor, an explicitly modeled vasculature supplies the tissue with oxy-
gen, while in the healthy tissue we postulate a homogeneous source of 
oxygen from an implicit preexisting regular vascular system. In the 
implicit representation, oxygen diffuses into the tumor from the bound-
ary. At a macroscopic scale this process can be modeled by a reaction-
diffusion equation

	
∂c

t
D c R c R cO

O O O O O O
2

2 2 2 2 2 2
2

∂
= ∇ + +− +( ) ( ) ,	 (14.2)

where cO2  is the oxygen concentration and DO2  the diffusion constant. 
The oxygen consumption rate RO2

−  depends on the tissue type and can 
vary, depending on the metabolic activity. The source term RO2

+  is gov-
erned by the blood flow inside the vascular system and the local tissue 
oxygen content, which influences how much oxygen diffuses through the 
vessel wall. Under the assumption that the oxygen levels in the healthy 
tissue are not affected by the presence of the tumor, we can model this 
as a reaction-diffusion problem (14.2) with no flux boundary conditions 
at a distant surface δΩ1 (Figure 14.1).

In order to estimate the oxygen source term RO2
+ , we first need to solve 

the blood flow problem. The vessel network generated by our angiogen-
esis simulation consists of straight vessel segments (pipes) connected in a 
network. Following our previous work on tumor-induced angiogenesis we 
compute the pressure distribution and flow in the network (Szczerba and 
Székely 2002, 2005). For laminar, steady flow in stiff and straight tubes, 
the flow is computed according to Poiseuille’s law

	 Q G P P
R

L
P Pij ij i j

ij

ij ij
i j= − = −  ( )   ( ),π

µ8

4

	 (14.3)
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where Qij, Rij, Lij, and μij are the flow, the radius, the length, and the vis-
cosity between nodes i and j. The variables Pi, Pj are the pressure values 
at the nodes, and Gij  is the conductance. The flow fulfills mass balance at 
the junctions between pipe segments (i.e., ∑j Qij = 0

 
for all nodes i ). Mass 

balance and Poiseuille’s law lead to a system of linear equations, with pres-
sure as an unknown quantity. For large vessels the blood viscosity μij is 
approximately constant, while for small diameters the Fahraeus–Lindqvist 
effect causes non-Newtonian behavior and has to be taken into account. 
Therefore, in order to correct for small vessels, we use an apparent viscos-
ity, empirically estimated under in vivo conditions by Pries et al. (1996).

Oxygen Supply by the Vascular System

As blood flows through the vessels, oxygen diffuses through the vessel walls 
into the tissue. Using a mass balance principle for the blood oxygen content 
and Fick’s first law, we compute the amount of oxygen, delivered to the tissue

	 Qc x Qc x dx dS D cO O O
w

O2 2 2 2
2( ) ( )− + = ⋅ ⋅∇ ,	 (14.4)

where Q is the blood flow, cO2
 is the oxygen concentration, dS the surface 

of the vessel between x and x+dx, and w is the wall thickness. DO
w

2  is the 
diffusion constant of oxygen in the vessel wall; the position x is upstream 
of x+dx (Figure 14.2). The oxygen concentration cO2

 in the tissue is propor-
tional to the oxygen partial pressure PO2  according to Henri’s Law

δΩ2

δΩ1

Ω2

Ω1

Ωc3<c3th

Figure 14.1  Compartments of the model. The tumor (Ω2) consisting of necrotic 
and viable parts, is embedded into the host tissue (Ω1). δ denotes the respective 
interfaces.
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	 P k c cO O
tissue

O
O
tissue O2 2 2

2

2

1= =
α .	 (14.5)

This linear relationship is only valid for dilute solutions as in the case 
of oxygen dissolved in the tissue interstitial f luid. The parameters 
kO

tissue
2

,  αO
tissue

2
.  are called Henri’s constant and solubility, respectively. 

Assuming that Henri’s Law is valid inside the vessel wall, the gradient 
term in Equation 14. can be replaced and approximated by a difference 
quotient

	 Qc x Qc x dx dS D PO O o
w

O2 2 2 2
( ) ( )   .   .  (− + = α tissue

OO OP
w2 2

1blood tissue    ) ,− 	(14.6)

where PO2
tissue  is the pressure on the interface between the vessel and the 

tissue. The partial pressure on the surface of the vessel lumen is given by 
PO2

blood . Basically, oxygen is removed downstream, eventually leading to a 
small difference in the oxygen partial pressure between the tissue and the 
blood (i.e., at low blood PO2

 very little oxygen will be delivered to the tis-
sue.) Additionally, we can see that the blood gradient along the vessel will 
be smaller if the flow is higher.

Because only a small proportion of blood oxygen content is dissolved 
and the major part is bound to hemoglobin, the sigmoidal shape of the 
PO2 −cO2  curve is dominated by the oxygen–hemoglobin dissociation rela-
tionship. In general, the oxygen content in the blood can be given by

	 c P S PO O O O2 2 2 2
= +α βb ( ), 	 (14.7)

where αb is the solubility of oxygen in blood and So2 is the oxygen satura-
tion of the hemoglobin (i.e., the percentage of hem sites that are combined 
with oxygen). We use Hill’s equation for the saturation function SO2   (Ji 
et al. 2006). Using the same nomenclature as for the blood flow calcula-
tion, we can rewrite Equation 14.6 as

Qin, Pin Qout, Pout

x x+dx

O2 O2

Figure 14.2  Schematic illustration of the convective transport of oxygen in a 
pipe segment.

© 2011 by Taylor and Francis Group, LLC



Tumor Growth with Explicit Vessel Network    ◾    317

	 Q c Q c R L D P Pij i ij j ij ij O
w

O
w

O O− = ⋅ ⋅ ⋅ −2
2 2 2 2
α ( blood ttissue ) 1

w
	 (14.8)

Because, according to Equation 14.7 the blood partial pressure depends 
on the oxygen concentration in a nonlinear fashion, the above relation is 
a nonlinear function in ci and cj. If ci is known, the unknown downstream 
value cj can be calculated using a Newton–Raphson scheme.

Finally, if the oxygen concentration in the arterial inflow pipes is 
known, we can compute the cO2  distribution in the entire vascular system 
by propagating through the network in the direction of the blood flow. By 
integrating over the surface of the vessels, we estimate the local amount 
of oxygen delivered by the explicit vessel network. This result is used in 
the macroscopic-level reaction-diffusion in Equation 14.2, which we solve 
using a finite element method (Huebner et al. 2001). Note, that the actual 
amount of oxygen flux across the vessel walls depends on the oxygen con-
centrations in the tissue via PO2

tissue . Therefore, the macroscopic and micro-
scopic models are coupled and must be solved iteratively.

Sprouting Angiogenesis

The formation of blood vessels by sprouting angiogenesis is a process where 
capillary sprouts depart from preexisting parent vessels in response to 
externally supplied chemical stimuli. By means of endothelial cell prolif-
eration, migration, and remodeling, the sprouts then organize themselves 
into a branched, connected network structure. The preliminary capillary 
plexus does not necessarily require blood flow to form.

It is widely agreed on that a major cause of elevated angiogenesis growth 
factors (TAF) is hypoxia. Hypoxia upregulates many genes, but the induc-
tion of vascular endothelial growth factors (VEGF) is perhaps the most 
remarkable—up to 30-fold within minutes (Carmeliet 2003). As the growth 
factors diffuse into the surrounding tissue, there is some uptake and bind-
ing by the cells (Ausprunk and Folkman 1977). Therefore, the process can 
be modeled by a reaction-diffusion equation with a natural decay term

	
∂c

t
S D c ctaf

taf taf taf taf∂
= + ∇ −2

0Θ , 	 (14.9)

where ctaf is the TAF concentration, Dtaf the diffusion coefficient, and Θ0 
the decay rate. The source term depends on the local tissue oxygen con-
centration. If the oxygen tension is below a threshold, growth factors are 
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secreted by the affected cells. We can model this by a function Staf (cO2 ), 
e.g., Staf (cO2 ) = S0 ⋅ H(cO2 –h2), where H(⋅) is the Heaviside function, S0 is a 
constant production rate, and h2 is the oxygen concentration threshold, 
below which the tissue becomes hypoxic.

Once a sufficient concentration of growth agents has been established, 
endothelial cells respond to the stimulus by sprouting. In our previous 
work, we have developed a model of sprouting angiogenesis, which gen-
erates functional flow networks, consisting of interconnected straight 
pipes  (Szczerba and Székely 2002, 2005). An example of vascular flow 
network sprouting towards higher TAF concentrations is depicted in 
Figure  14.3. Similarly to our previous method we model the dynam-
ics of the sprouting vessel tips using a Lagrangian approach. In Lloyd 
et al. (2008) we couple the vascularization to the tissue growth via the 
time-dependent changes in growth factor concentration, which typically 
decreases with increasing vascularization, since the initially hypoxic 
region receives a new source of oxygen. Additionally, we allow for 
the capability of the vascular system to adapt to current hemodynamic 

Figure 14.3  (See color insert following page 40) Example of angiogenic 
sprouting toward the higher concentration of TAF (shown using volume render-
ing). The color-coding corresponds to the vessel radius.
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conditions by remodeling the vessels diameters in order to decrease the 
flow resistance.

Tissue Heterogeneity

Tumorous tissue and in fact tissue in general is a complex compound of 
various cell types, embedded in an extracellular environment. In reality 
there is a plenitude of different cell types and developmental states for 
both tumor and healthy tissue, such as proliferating, quiescent, necrotic, 
transient cells and even these may be characterized with subtypes. This 
diversity has to be taken into account for developing a more realistic pic-
ture of the tumor development.

As the explicit vessel representation described in the previous section 
titled “Vascular System and Oxygen Transport” is computationally demand-
ing, we have developed an alternative implicit (density) description, which 
includes the motility of endothelial cells and the resulting oxygen transport 
and delivery. A potential advantage of this approach is that only a reduced 
set of (lumped) parameters is required (Szczerba et al. 2009; Hirsch et al. 
2009). Here we regard the vessel system as a density distribution of endothe-
lial cells (EC). A relation is established estimating the diffusion of oxygen 
through the vessels for a given vessel diameter. Hence, the density of EC is 
directly linked to an oxygen supply. The model consists of mass and force 
balance equations; the mass transport of all constituents is modeled with 
reaction-convection-diffusion equations. Concentrations of growth factor 
ctaf, endothelial cells cec, and oxygen cO2

 are transported through the tissue, 
and may enter chemical reactions anywhere in the whole domain.

Healthy tissue is in a dynamic balance between cell proliferation and 
death. The process of controlled cell death—apoptosis—is an integral 
part of the constant renewal of tissue in the natural cell cycle. The con-
trol mechanism is part of the homeostasis required by living organisms 
to maintain their internal states within certain limits. After apoptosis, the 
cell may be phagocytosed completely without exposing the tissue to poten-
tially harmful intracellular debris. In contrast, necrosis is an uncontrolled 
death, for example, due to hypoxia or toxic agents, and is characterized by 
an uncontrolled bursting of the cell membrane with only partial resorp-
tion of the debris. As the apoptotic cells are removed, the overall density 
of cells inside the tumor N can be decomposed into two compartments, 
viable N+ and necrotic N– cells:

	 N t x y N t x y N t x y( , , ) ( , , ) ( , , ).= ++ − 	 (14.10)

© 2011 by Taylor and Francis Group, LLC



320    ◾    Sven Hirsch, Bryn Lloyd, Dominik Szczerba, and Gabor Székely

In our model, proliferation is constrained by the availability of oxygen 
(Graziano and Preziosi 2007; Anderson and Chaplain 1998) and the spa-
tial conditions (Chaplain et al. 2006). We account for tumor cell prolifera-
tion, apoptosis, and necrosis. Necrotic cells originate from hypoxic tumor 
cells. Tissue may be assumed to be in homeostasis under normal condi-
tions and thus the healthy tissue is assumed to have a zero net growth. g +, 
g ––, and g – are the individual growth rates for each mechanism:

	 growth g h c h
Tc OO

: ( ) ( ) ln ,+ + +
+

=
2 2

2
2

σ σ 	 (14.11)

	 necrosis g h c
Tc OO

: ( ) ln ,− −
−

=
2 2

2
2

	 (14.12)

	 apoptosis g
T

: ln ,−−
−−

= 2
2

	 (14.13)

where the variables T2 are the doubling times of the respective processes. 
This formulation seamlessly introduces a dependency to mechanical stress 
and oxygen concentrations via the factors hσ+ , hcO2

+ , and hcO2
− . However, on 

a cellular level it is still very difficult to quantify the response to stress, 
hence we neglect this particular effect (hσ+ =1). The populations N + and 
N – are governed by

	 ∂
∂

= ⋅ − −[ ]
+

+ + − −−N t x y
t

N t x y g g g( , , ) ( , , ) ,	 (14.14)

	 ∂
∂

= ⋅
−

+ −N t x y
t

N t x y g( , , ) ( , , ) .	 (14.15)

Tumor progression and regression is modeled as initial strain condition, 
governed by the relation in the cell populations. For the time-discrete for-
mulation the volumetric strain at timestep i is:

	 ε0
1 1

1
( ) ( ) ( ) ( )

(
t V t

V
N N N N

N
i i i i

i
= ∂

∂
≈ + − ++ −

−
+

−
−

−
+ ++ −

−Ni 1 )
, 	 (14.16)

and can also be negative, meaning cell degradation and removal.
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Tissue Mechanics

Tissue is a highly complex material which, depending on the time scale and 
applied loads, can be hyper-, viscoelastic, or plastic (Gladilin et al. 2003). It 
is certainly a major simplification to treat the tissue response to volumetric 
growth with a linear constitutive law. When, for example, studying the for-
mation of myomas, it is apparent that a viscoelastic model is necessary to 
describe the mechanical behavior (Szczerba et al. 2009). Uterine leiomyomas 
(fibroids, a typical exponent of a benign tumor) are the most common uterine 
neoplasm. In general, a myoma grows slowly but continuously, an increase of 
volume by a factor of two usually takes several months or years. A myoma 
has a much stronger tendency to keep its shape than any of the tissues sur-
rounding it, as it is composed of very dense fibrotic tissue. There is no real 
capsule around a that which is only surrounded by a clustered myometrium. 
The endometrium is a reactive tissue carrying viscoelastic characteristics cov-
ering the entire uterine cavity including protruding myomas of any degree.

We base our modeling on experimental observations of mechanical tis-
sue responses to chemical growth factors (see, e.g., Gordon et al. [2003]). To 
quantify this stress one needs to model the tissue response to strain (Cristini 
et al. 2003). To describe the tissue behavior under some strain ε(t) we take 
the standard viscoelastic model after Humphrey and DeLange (2004):

	 d
dt

t E t EE E E d
dt

tσ σ
µ

ε
µ

ε( ) ( ) ( ) ( ).+ = + +0
0 	 (14.17)

Solving symbolically for σ(t) leads to an expression for stress relaxation:

	 σ ε µ( ) ( )/t E Ee Et= + −
0 0 	 (14.18)

with ε0(E0 + E) being the linear contribution to total stress and µ the relax-
ation time. Under the assumption of tissue incompressibility and approxi-
mate spherical symmetry, the thickness of the tissue rim surrounding the 
myoma from the cavity side has to get thinner with the increase of the 
pathology radius in order to compensate for the volume change. Perfectly 
elastic wall (hoop) stress in a thin-walled sphere is given as:

	 σ( )r pr
r r w r w

=
− + + +

1
2 22

0 0 0
2 	 (14.19)

with r0 and w0 being the rest-state radius of the sphere and the thickness 
of its wall, respectively.
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Even if the strain-stress relation is linear the wall stress is not, because 
of the variable wall thickness. Solution for a general stress (including vis-
cous effects) will be of a similar form, multiplied by a relaxation factor. 
As a consequence, we are able to simulate a spectrum of tissue behaviors: 
from perfectly elastic (μ→0) to perfectly plastic (μ→∞), regulating the 
relaxation contribution with µ. Of course these model parameters will be 
different for the tumor and the surrounding tissue.

Drug Therapy Prediction

It is one of the strengths of this fully integrated model that many agents 
may be incorporated easily, given that they may be expressed within the 
reaction-diffusion-convection scheme. We present a first approach for vir-
tual therapies, which lies within our general direction to develop usable 
tumor models for clinical research.

Angiostatin (AST) is a potent inhibitor of angiogenesis, and by this mech-
anism it influences tumor cell proliferation. For simulating the effect of an 
externally introduced anti-angiogenetic drug, the influence of diffusion and 
a natural decay on its concentration cast has to be taken into account:

	 ∂c
t

D c R cast
ast ast ast taf∂

= ∇ −2 	 (14.20)

with no flux boundary condition on δΩ1. As the actual mechanism of AST 
is not fully understood, we anticipate that this agent directly neutralizes 
the growth factor. Hence, Equation (14.9) is extended by a reaction term 
depending on AST concentration

	
∂c

t
S D c c R ctaf

taf taf taf taf taf ast ast∂
= + ∇ − −2

0Θ , ,, 	 (14.21)

The realism of the simulation is obviously very sensitive to the selection of 
the governing parameters and their determination is a challenging part of 
tumor simulation. Further information on the parameter choice may be 
found in an earlier publication (Hirsch et al. 2009).

Results
In the preceding section we have presented a modeling framework, which 
can incorporate multiple physical, biochemical, and biological aspects 
of tumor growth and angiogenesis. The basic model relies on explicit 
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modeling of sprouting angiogenesis and has been implemented in three 
dimensions. Variations of this model, relying on the same or similar 
equations employ an implicit representation of the growing vessels, that 
is, it cannot account for blood flow and the related convective transport of 
nutrients. Nevertheless, these extensions allow the computationally efficient 
investigation of (a) the compartmentalization of tissue in separate states and 
the transition between these states (proliferation, necrosis, apoptosis); (b) 
the influence of mechanical tissue response on tumor growth; and (c) the 
therapeutic effects of antiangiogenic agents in cancer therapy. In this sec-
tion we first present results corresponding to the basic model. In the follow-
ing, simulation results for the mentioned studies will be shown.

Basic Coupled Tumor Model

To initialize the pathology growth inside the hosting tissue, we place a small 
avascular ball inside a larger domain representing the healthy tissue. The ini-
tial tumor cluster does not contain any necrotic tissue and is small enough 
to receive enough oxygen for rapid growth. At a certain distance from the 
tumor, we define several preexisting vessels, which will be the origin of the 
new sprout formation. The growth process is iteratively solved and updated, 
solving quasi-static problems using the most recent solution the from the 
other simulation components in each time step as described in the section 
titled “Tumor Simulation Based on an Explicit Vessel Model.”

Figures 14.4a and 14.4b presents the simulation results at two different 
stages of tumor development. The figure depicts a volume rendering of the 
angiogenesis growth factor concentration and the developing vascular sys-
tem. The first stage represents the avascular phase, with diffusion from the 
neighboring healthy tissue as the main source of oxygen. In Figure 14.4b 
the vasculature has penetrated hypoxic areas and is already dense enough 
to support a dramatic increase in growth rate.

The formation of a vascular shell around the tumor characterized by the 
rather chaotic geometric arrangement of the individual vessel segments 
can be well explained by the diminishing gradient of TAF concentration 
resulting in decreasing influence of the directed motility during tip migra-
tion. The resulting geometry resembles qualitative experimental observa-
tions made on casts of tumor neovascularization (Walocha et al. 2003). The 
spatial distributions of some governing factors and characteristic system 
descriptors are depicted in Figure 14.4, corresponding to the same time 
step as in (b). The oxygen concentration is plotted in (c); in (d) the local 
growth expansion in percent and in (e) the TAF concentration is shown.
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(a)

(b)

Figure 14.4  (a) and (b) show a volume rendering of TAF concentration distri-
bution, together with the developing vascular system at two different time steps. 
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(c)

(d)

Figure 14.4  (Continued) In (c) the growth rate and in (d) the TAF distribu-
tion is depicted at the second development stage for a slice cutting through the 
tumor.
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In Figure 14.5 we have computed various entities, which quantitatively 
describe the development process and allow the identification of charac-
teristic events during the process. Initially, the growth seems to be more 
or less linear until the angiogenic switch is turned on. The last third of 
the process shown exhibits a nearly exponential volumetric growth. This 
correlates well with the onset of the availability of additional oxygen sup-
ply driven by the flow through the newly formed vessels, as shown in 
Figure 14.4b. In (d) we see that the volume of the hypoxic region of the 
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Figure 14.5  The temporal evolution of some quantities characterizing the 
progress of growth and vascularization during simulation are shown in (a)–(d).
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tumor increases at the beginning, but as the new oxygen source becomes 
available it gradually decreases again until it reaches zero.

Tissue Heterogeneity

Again, the simulations are initiated with a small cluster of tumor cells 
in the center of the host tissue surrounded by vessels on each side. The 
unregulated tumor growth is presented in Figure 14.6 as an oxygenation 
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Figure 14.5  (Continued) The temporal evolution of some quantities character-
izing the progress of growth and vascularization during simulation are shown 
in (a)–(d).
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map and in Figure 14.8a as the EC density. The corresponding high EC 
density is visible in Figure 14.8 as a decaying gray shadow gradient at the 
box walls. The tumor promotes directed vessel growth via the secretion of 
tumor angiogenic factors (TAF), leading to EC migration from the adja-
cent parent vessels. In this vascular phase the tumor expands virtually 
unbounded and will eventually cause physiological problems due to com-
pression of the surrounding tissue. The elevated EC density leads to the 

(a)

(b)

Figure 14.6  Two examples of compartment formation within the tumor (white 
outline with mesh) of necrotic and viable tissue for different necrosis thresholds. 
The oxygenation map is grey coded, the inner areas denote oxygen iso-contours 
corresponding to the threshold level.
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increase of the corresponding vessels’ diameter and wall thickness in time, 
which in turn modulates their oxygen delivery rate. For large vessels, blood 
flow increases and diffusion through the wall decreases. Nonsymmetrical 
compartments develop despite the initial boundary symmetry. EC density 
is realized with a typical capillary buildup in the center of the host tissue 
in the form of a frequently observed vascular capsule. Four branches of 
vessels are clearly visible, connecting the tumor to the feeding arteries on 
the periphery. The tumor itself is penetrated by a dense network of capil-
laries, corresponding to experimental findings.

Effects of Mechanical Tissue Response

With an extended mechanical model we can investigate, how the mor-
phology of a growing myoma is inf luenced by the local mechanical 
conditions. A development of a virtual tumor is shown in Figure 14.7 
coded with stress, using identical grayscale maps to facilitate magnitude 
comparisons. The neoplasm started growing as a small oval pathology 
in the myometrium and continues to grow into the surrounding tis-
sue that is largely dissipating the generated strain energy. As shown, 
the tissue gradually relaxes after being exposed to the critical stress 
of around 1  MPa as in Figure  14.7e (initial stress value beyond the 
scale bar), allowing the pathology to continue expanding and therefore 
only weakly constraining its progression. The formation of an experi-
mentally observed myoma protruding the uterine cavity is inevitable. 
Should the behavior of the surrounding tissue be dominated by elastic-
ity (i.e., the expansion induced stress in the surrounding thin tissue 
slab would be mostly preserved), the stretched layer of the myome-
trium would very strongly hinder the growth. This is because the reac-
tion force would be equal to—or even greater than—the accumulated 
stress, comparable in magnitude to the elastic modulus of the pathol-
ogy, eventually constraining further growth in a stage, where no acute 
angle is yet formed between the myoma and the uterine wall (as in 
Figure 14.7e).

Prediction of Therapy Outcome

Clinical studies clearly demonstrated that angiostatin (AST) is a potent 
inhibitor of angiogenesis. Several pathways for the AST influence on the 
tumor are proposed, yet the underlying mechanisms are not fully under-
stood (Sim et  al. 2000; Folkman 2002). We have been investigating the 
effect of its application based on the model described in the section titled 
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(a)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(b)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(c)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(d)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(e)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

Figure 14.7  Simulation results for a myoma (type I) developing at the border of 
the myometrium. Due to stress dissipation there is no significant resistance from 
the tissue layer on the cavity side (upwards on the image). As a result the pathol-
ogy envelope forms an acute angle with the basement layer.
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(f)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(g)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

(h)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

Figure 14.7  (Continued) Simulation results for a myoma (type I) developing at 
the border of the myometrium. Due to stress dissipation there is no significant 
resistance from the tissue layer on the cavity side (upwards on the image). As a 
result the pathology envelope forms an acute angle with the basement layer.
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“Drug Therapy Prediction,” accounting for the direct neutralization of the 
growth factor as described by Equation 14.21.

In our numerical study AST has been applied off-center in the lower 
left quadrant of a quadratic tissue domain (Figure 14.8a) and not inside 
the tumor, in order to prevent the vessels from reaching the tumor. In 
Figure  14.8b we notice a strongly asymmetric EC density distribution, 
where the AST supplied area is excluded from any vessel growth. The local 
concentration of AST does not actually prevent the vessels from connect-
ing to the tumor. Instead, the EC density indicates clearly defined feeding 
vessels around the AST supplied area. The EC density accumulates outside 
the AST application region and is able to supply a dense capillary capsule. 
Similar observations have been made when studying the effects of embo-
lization, which are reported in detail in (Hirsch et al. 2009).

Discussion
We have presented an integrated framework to model solid tumor devel-
opment, handling some of the major processes, that is, the mechanical 
deformation due to growth, the biochemical response to hypoxia, blood 

(i)

0.00 1.00e+05 2.00e+05 3.00e+05 4.00e+05
Mises

Figure 14.7  (Continued) Simulation results for a myoma (type I) developing at 
the border of the myometrium. Due to stress dissipation there is no significant 
resistance from the tissue layer on the cavity side (upwards on the image). As a 
result the pathology envelope forms an acute angle with the basement layer.
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(a)

(b)

Figure 14.8  Endothelial cell density within the host tissue resulting from 
unregulated growth (a) and after the application of angiostation in the lower left 
quadrant of the domain (b).
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flow, oxygenation, and the explicit development of a vascular system in 
a coupled way. The results demonstrate the feasibility of the approach. 
Unlike previous methods to simulate angiogenesis, we do not treat the 
vascular sprouting remodeling as a process, which takes place within a 
static domain, or as a static distribution of growth factors. Instead, our 
angiogenesis and remodeling approach is coupled to a dynamically grow-
ing domain, with evolving TAF concentrations. Whereas in a fixed domain 
vascular growth and remodeling eventually reach a static equilibrium, this 
is not the case for vascularized tumors. With our modeling framework we 
are now able to perform in silico studies to identify factors, which could 
possibly stabilize this process.

We showed possible extensions to our approach dealing with the com-
partmentalization or different material properties, and we illustrated how 
our framework can be used to evaluate therapeutic effects. These experi-
ments were conducted using a simplified implicit vessel representation. 
According to our experience this approach is still feasible for investigating 
several problems, while being computationally much more effective than 
relying on explicit representation of the developing vascularity. We dem-
onstrated the ability of this simplified model to describe capillary pen-
etration of the tumor, tumor compartmentalization, and some therapeutic 
effects. Therefore, it seems to be a very convenient testing ground for pos-
sible refinements and we plan extensions towards incorporating further 
therapeutically relevant aspects like thermal effects, hormonal therapy, 
radiation or chemotherapy. Once, first experience has been collected, 
some of the concepts can be incorporated into the explicit vessel model.

We reproduced the growth of a myoma by using an advanced vis-
coelastic tissue model. We have shown that the morphology of the mature 
myoma depends strongly on the tissue properties. Here, a point of dis-
cussion is the viscoelasticity of the surrounding tissue. This could cor-
respond, for example, to increased proliferation or loss of elasticity due 
to structural fiber damage under prolonged exposure to stress. From 
histological stains we know that the healthy myometrium mesh and 
the membranaceous endometrium may be stretched by a stiff-growing 
myoma to a multiple of their original dimensions, due to hypertrophy 
and/or hyperplasia. At a certain moment, thinning of healthy structures 
is not compatible with sufficient blood supply anymore, leading to necro-
sis in the most stressed area first, causing, for example, pain and bleeding 
disorders.
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The tumor model is generally difficult to validate since many of the 
parameters are unknown or carry large measurement errors. It is the most 
difficult challenge to quantify these effects on the cellular level, which is 
the reason why the simulation outcome currently cannot be rigorously 
compared against physiological findings. Our ultimate goal is to develop 
a comprehensive framework allowing creating, testing, and validating 
models of tumor development, which can be used as a research tool to 
test hypotheses and perform in silico experiments for drug and therapy 
design. We are currently working on setting up a corresponding experi-
mental environment based on animal models. In order to be able to collect 
comprehensive spatiotemporal in vivo data, mouse tumor models will be 
investigated using multimodal noninvasive imaging approaches address-
ing various aspects involved in the formation of neovasculature. These 
longitudinal in vivo studies will be complemented by high-resolution x-ray 
tomographic analysis of the tumor vascular system. The obtained data will 
not only provide the experimental environment of model building and 
simulation but will also serve as a basis for the quantitative validation of 
the developed methods.
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Introduction
Drug resistance in cancer is one of the major causes of cancer treatment 
failure. Many types of resistance are thought to be associated with genetic 
events that modify cellular phenotype inside the tumor. In this chapter 
we will formulate a mathematical model that allows for a systematic study 
of drug resistance in cancer and its effects on treatment. The goal of this 
approach is to aid in optimal treatment strategy design.

The first stochastic model of drug resistance was created by Goldie and 
Coldman (1979), who developed a whole new approach to mathematical 
treatment of resistance in their subsequent work (see, e.g., Goldie and 
Coldman 1983; Goldie and Coldman 1985a; Goldie and Coldman 1985b; 
Goldie and Coldman 1986). A number of important theoretical and 
numerical results have been obtained by the authors for the case of one or 
more drugs. Since this groundbreaking work, a lot of mathematical models 
of drug resistance in cancer have been proposed. Several models, includ-
ing stochastic branching models for stable and unstable gene amplification 
and its relevance to drug resistance, were explored (Axelrod et al. 1994; 
Harnevo and Agur 1991; Harnevo and Agur 1993; Kimmel and Axelrod 
1990; Kimmel and Stivers 1994). Stem cell dynamics is explicitly incor-
porated in models (see Glauche et al. 2009; Roeder and Glauche 2008). 
Methods of optimal control theory were used to analyze drug dosing and 
treatment strategies (Cojocaru and Agur 1992; Kimmel et al. 1998). Models 
for tumor growth incorporating age-structured cell-cycle dynamics, in 
application to chemotherapy scheduling, have been developed by Gaffney 
(2004, 2005). Mechanistic mathematical models developed to improve the 
design of chemotherapy regimens are reviewed in Gardner and Fernandes 
(2003). Jackson and Byrne (2000) extended an earlier partial differential 
equation (PDE) model of Byrne and Chaplain (1995) to study the role of 
drug resistance and vasculature in tumors’ response to chemotherapy; in 
this class of spatial models, the tumor is treated as a continuum of different 
types of cells that include susceptible and resistant cells. Another class of 
models is based on the Luria–Delbruck mutation analysis (Jaffrezou et al. 
1994; Kendal and Frost 1988; Komarova et al. 2007; Michor et al. 2006).

In this paper we review some of the recent work where the stochastic 
dynamics of drug resistance in cancer was studied. Biological applica-
tions of the model include: (i) the number of drugs needed for success-
ful treatment; (ii) designing the optimal therapy where the number of 
drugs is reduced in the course of treatment, and (iii) treatments with 
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cross-resistant drugs. Applications are discussed in the context of chronic 
myeloid leukemia (CML).

Model

Mutation Networks and Cellular Dynamics

Following the method developed in Komarova (2006), and Komarova and 
Wodarz (2005), we start by building a mutation network of the resistance 
types of interest. This network’s nodes denote cancer cell phenotypes that 
have different characteristics with respect to their drug susceptibility. For 
example, if two drugs are used to treat the tumor, then potentially there 
could be at least four different cell types: those that are fully susceptible, 
characterized by the binary index s = 00; those resistant to drug 1 and 
susceptible to drug 2 (s = 10); those resistant to drug 2 and susceptible to 
drug 1 (s = 01), and those resistant to both drugs (or fully resistant), with 
s = 11 (see Figure 15.1). In general, if m drugs are applied in the course 
of the therapy (separately or in combination), we have 2m combinatorial 
resistance types. The binary index s has m positions corresponding to the 
m drugs; “1” in a given position denotes resistance to the corresponding 
drug, while “0” means susceptibility. In principle, there could be other cell 
types that differ from the ones listed above by the level of their susceptibil-
ity. Such types can be included; the methodology described in this chapter 
will work as long as the types can be annotated by a discrete index.

10

00

Fully
susceptible

01

11

Fully
resistant

u1

u2

u2 u1

Figure 15.1  Mutation diagram for m = 2 drugs.
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The nodes of the network are connected with arrows corresponding to 
mutation processes that transform one cell type into another. By muta-
tions we mean a wide range of heritable cellular transformations that 
includes point mutations per se as well as larger-scale genetic modifica-
tions and epigenetic events. The mutation rates are marked by the arrows 
and denote the probability to produce one daughter cell of the modified 
type upon a division of the cell of the given type.

The dynamics of cells includes the following events: a faithful cell divi-
sion (such that both daughter cells are of the original type), a division with 
a mutation (whereby one of the daughter cells acquires a different phe-
notype, in agreement with the mutation network), cell death, and other 
events such as cellular quiescence and awakening from the state of qui-
escence (Komarova and Wodarz 2007a, 2007b). The present framework 
would have to be modified considerably to include spatial cell migration.

To set up the stochastic description of cell dynamics, we denote by is 
the number of cells of resistance class s. Let ϕi in t

0 , , ( )…  denote the prob-
ability that at time t there are is cells of resistance class s, for all classes 
s, with 0 ≤ s ≤ n=2m–1. Suppose that cancerous cells divide with rate ls, 
and die with rate Ds. These kinetic rates can depend on the treatment 
dose; in particular, the death rate of cells is comprised of the “natural” 
rate of cell death in an untreated tumor and the action of the drug(s), 
if any, upon the cells. We assume an exponential time distribution for 
various events (such as cell reproduction and death), and set up the fol-
lowing Kolmogorov forward equation for a linear birth-death process: 
ξi i s

n
sn

Q
0 0, , ,… == ∑  with

	

Q i l us i i i s s s j
out

j
s n

= − −










+

… − … →∑ξ
0 1 1 1, , , ( )

ii l us s i i i i
j

j
s out

i is j n s
ξ ξ

0 01, , , ,
,

, ,,… … − … … +∑ + 11 1, , ( ) ;… +i s sn
i D 	 (15.1)

here, us j
out
→  denotes the mutation rates for all arrows originating at s.

Probability Generating Functions

The following probability generating function can be defined:
Ψ( ; ) ( ) ,, ,


ξ ϕ ξ ξt ts

n
i i

i
n
i

n
n= ∑ …= …0 00

0  with 

ξ ξ ξ= …( , , )0 n . This function satisfies 
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the following partial differential equation (obtained by standard methods 
from the Kolmogorov forward equation above):

	

∂
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		  (15.2)

Following the standard technique for transport-type equations, we have a 
system of equations for characteristics:

	  


ξ ξs sF t= − ( ; ), 	 (15.3)

where

	 F t l u l us s s j
out

j
s s

j
s j
out

j
ou( ; ) ( )


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s s s sl D D− +












+( ) .ξ 	 (15.4)

The dependence on time in the right hand side comes from the fact that 
the kinetic rates such as birth and death rate can, in general, be func-
tions of time. In order to evaluate the function Ψ( ; )


′ ′ξ t  at some point

′ = ′ … ′ξ ξ ξ( , , )0 n , we “reverse the time” by the change of variables, t → t′–t  
and solve the following system:

	 


ξ ξ ξ ξs s x sF t= = ′( ; ), ( ) .0 	 (15.5)

Then the desired function is given by

	 Ψ( ; ) [ ( )] ,

′ ′ = ′

=
∏ξ ξt ts

M

s

n

s

0

	 (15.6)

where in the right-hand side the functions ξs(t) are solutions of the above 
system, and the constants Ms are the initial abundances of mutants of 
type s. In the rest of this chapter we will assume for simplicity that, ini-
tially, there are M0 cells of type s = 00, and zero cells of any other types.

In the particular case of m = 2 drugs and four mutant classes, we have 
four equations:

	 ξ ξ ξ ξ00 00 1 2 00
2

00 1 10 2 01 01= − − + + −l u u l u u l( ) ( ( ) ( 00 00 00 00+ +D D)) ,ξ 	 (15.7)
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	 ξ ξ ξ ξ10 10 2 10
2

10 2 11 10 10 101= − + − + +l u l u l D( ) ( ( )) DD10 , 	 (15.8)

	 ξ ξ ξ ξ01 01 1 01
2

01 1 11 01 01 011= − + − + +l u l u l D( ) ( ( )) DD01 , 	 (15.9)

	 ξ ξ ξ11 11 11
2

11 11 11 11= − + +l l D D( ) , 	 (15.10)

where we denoted by u1 (u2) the mutation rate with which resistance to 
drug 1 is created (drug 2). The time-dependence of the coefficients in 
Equations 15.7–15.10 is implicit.

Treatment Strategies

Different treatment strategies define the values of the death rates, Ds, at 
different moments of time:

	 Ds = ds+ hs (t),

where the coefficients ds are natural death rates of the cancer cells, and hs 
(t) are the drug-induced cell death rates. The functions hs (t) depend on the 
particular strategy used. As different drugs are applied, the “strength” of 
each drug, which depends on the concentration of the drug in the patient’s 
blood, changes as some smooth functions of time. The exact shape of these 
functions and, therefore, the shape of hs (t), depends not only on the treat-
ment strategy (that is, whether drugs are applied in combination or cycli-
cally), but also on the way the drugs are administered, and on how quickly 
they are absorbed. For example, it can be assumed that hs (t) for a sus-
ceptible class reaches a maximum sometime after the drug is taken, and 
decays until the next administration of the drug. However, in this paper 
we simplify this picture by assuming that the functions hs (t) are piecewise 
constant. They are assumed to have a constant nontrivial value for all the 
susceptible classes as long as the patient is treated with a given drug, and 
they become zero after the drug is discontinued.

Different resistance types are characterized by different drug-induced 
killing rates, and those in turn depend on which drugs are applied. In 
Table 15.1 we present the drug-induced killing rates for different resistance 
types, under treatments by drug 1 only, drug 2 only, and drugs 1 and 2 in 
combination. We assume that when applied alone in the context of sus-
ceptible types, the two drugs induce death rates h1 and h2, respectively. The 
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effect of the two drugs in combination upon the fully-susceptible type is 
described by the function F ( h1 + h2 ) which satisfies max( h1, h2) ≤ F ( h1 + 
h2 ) ≤ h1 + h2. In other words, the combined action of two drugs can range 
from the single action of the stronger of the drugs to the sum of the two 
actions.

Let us suppose that the natural history of a tumor can be split into sev-
eral time intervals, according to the treatment strategies used. In the case 
of a single treatment stage with drugs 1 and 2 in combination, which starts 
at time t1 and ends at time t2, we could have three time intervals: pretreat-
ment: 0 ≤t<t1; treatment: t1 ≤t<t2; and posttreatment: t ≥ t2. We will further 
assume that the division rates, ls, and the death rates, ds, of cells are time 
independent, and also that some of the rates are the same for all types, 
namely, that ls= l and ds= d for all s. Then, the values of the time-dependent 
coefficients are given by:

	 D00= D10= D01= D11= d, for 0 ≤t< t1

	 D00= d+F (h1 + h2) , D10= d+h2, D01= d+h1, D11= d, for t1 ≤ t<t2 , and

	 D00= D10= D01= D11= d, for t≥ t2.

Colony Extinction and Probability of Treatment Success

In this chapter we will be concerned with the probability of treatment suc-
cess, which is the same as the probability of extinction of the colony. This 
quantity is given by

	 ϕ0 0 0, , ( ) ( ; ).… =t tΨ


	 (15.11)

To evaluate this function, we will use general formula (15.2) with Ms = 0 
for all (partially) resistant types:

	 Ψ( ; ) ( ),

0 00

0t tM= ξ 	 (15.12)

Table 15.1  Drug-induced death rates of different resistance types 
under different treatment conditions

Type 00 Type 10 Type 01 Type 11
Drug 1 h1 0 h1 0
Drug 2 h2 h2 0 0
Drugs 1 and 2 F (h1 + h2)  h2 h1 0
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where ξ00 (t) is the solution of system (15.3–15.6) with the initial conditions

	 ξ ξ ξ ξ00 01 10 11 0= = = = 	 (15.13)

To exclude the scenarios where the colony goes extinct spontaneously 
before treatment starts, we will be studying the following slightly modi-
fied quantity:

	 P t t d l
d l

M M

Msuccess( ) ( ) ( / )
( / )

.= −
−

ξ00
0 0

01
 	 (15.14)

To obtain solution ξ00 (t), system (15.7–15.10) with piecewise-constant 
coefficients can be solved numerically. Because of the time-reversal pro-
cedure used in the derivation of the ODEs, the following simulation algo-
rithm applies. Suppose that there are k stages in the natural history of the 
tumor: 0≤t<t1 , t1≤t<t2 , ..., tk-1≤t<tk , where the value tk can be infinite. We 
will denote the constants corresponding to the coefficient values during 
stage i as Ds

(i) and the length of each time interval Δti= ti − ti − 1 . To start 
the solution process, we will integrate system (15.7–15.10) with constant 
coefficients Ds

(k) and with initial conditions (15.13) to find the solution 
corresponding to the time Δtk. Then, we will plug these values as initial 
conditions for system (15.7–15.10) with coefficients Ds

(k−1) and solve the 
equations for time duration Δtk-1. We will then use the resulting values 
as the initial conditions and repeat the process the total of k times. This 
procedure corresponds to the (“reversed”’) time-variable changing from 
the end of treatment (physical time tk) back to time t = 0. The obtained 
function ξ00(t) is used in Formula 15.14).

The limiting value of the probability of treatment success,

	 lim ( ),
t

P t
→∞ success

is of a particular interest. This approximation corresponds to long-term 
treatment strategies where the drugs are used long enough for all the sus-
ceptible types to be eliminated. The limiting procedure in our simulations 
corresponding to the length of stage k, Δtk , increasing to infinity.

The probability of treatment success defined above depends on all 
the parameters of the system. Of special importance are, however, the 
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mutation rates at which resistant types are generated, and tumor size at 
start of treatment. The latter quantity is not included explicitly in the cal-
culation. In our studies, we will assume that the colony size, N, and the 
time when treatment begins, t1, are related by means of a deterministic 
equation for the average population size. In particular, if the growth and 
death rates of all the resistant types are the same in the absence of treat-
ment, we have t1= log(N/M0)/(l−d).

Results
In this section we will review several applications of the methodology we 
have presented.

Combination Therapies: Number of Drugs Needed for Treatment

We start our discussion by considering combination treatments. We 
would like to determine the number of drugs, m, needed for successful 
treatment (Komarova and Wodarz 2005, 2009). An important assump-
tion we make in this section is the absence of cross-resistance. In other 
words, a single mutation event is assumed to create resistance to one 
drug only, and no single mutation is enough to make a cell resistant to 
two or more additional drugs. Later in this chapter we will address the 
question of cross-resistance in some detail.

In our framework, the absence of cross-resistance imposes certain con-
straints on mutation networks. To explain this, let us use the Manhattan 
distance to measure distances between nodes in mutation networks (the 
Manhattan distance is the number of positions where the two binary indi-
ces differ). The absence of cross-resistance means that only the nodes of 
distance 1 can be connected by a mutation arrow.

We will fix parameters l and d, and assume for simplicity that h i= h, 
and ui = u for all the drugs used (these assumptions will be removed later 
on). We will vary the mutation rate u (with which resistant mutants are 
generated) and the number of tumor cells at which treatment is started, 
N. For each pair (u,N), we will find the minimum number of drugs that 
gives a probability of treatment success greater than 1-δ, where δ is the 
maximum tolerated failure rate. The result for a particular choice of 
parameters is presented in Figure 15.2. We can see that for smaller muta-
tion rates and smaller tumor cell numbers, two drugs are enough to treat 
successfully. For larger tumors or mutation rates, the number of drugs 
grows significantly.
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Can We Reduce the Number of Drugs in the Course of Treatment?

In the diagram of Figure 15.2 we notice that smaller tumors require fewer 
drugs in combination to achieve the given probability of treatment success. 
This leads us to ask the question, as the cancer population decreases dur-
ing therapy, is it possible to reduce the number of drugs used for treatment 
without reducing the likelihood of treatment success (Komarova and 
Wodarz 2009)? In Figure 15.3 we calculate the number of tumor cells at 
which one drug can be taken away such that the probability of treatment 
success does not decrease by more than δ. The figure presents the prob-
ability of treatment success as a function of the quantity Noff, the number 
of tumor cells at which treatment with three drugs is replaced by treat-
ment with only two of those three drugs. This is plotted for different values 
of N, the number of tumor cells at which treatment is started. We observe 
the following interesting trends.

The probability of treatment success is flat for small values of Noff, and 
it is equal to the probability of treatment success for m = 3 drugs. In other 
words, if we remove one of the drugs when the number of cancerous cells 
is very low, it does not change the probability of treatment success. Note 
that in the particular example of Figure 15.3, the probability of treatment 
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Figure 15.2  The number of drugs needed for the probability of treatment suc-
cess 1-δ with δ = 0.01, as a function of u and N. Other parameters are the follow-
ing: l = 1, d = 0, h = 2, M0 = 100. The jagged appearance of the boundaries between 
the domains is due to a discrete method used to calculate it and can be smoothed 
by using a simulation with a higher resolution.
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success for low Noff is very close (closer than δ) to 1 for all curves except for 
the one with N = 1013. If N = 1013 and u = 10–6, we can see from Figure 15.2 
that the number of drugs necessary for a success rate greater than 1 − δ 
is m = 4, that is, if m = 3, the probability of success is smaller than 1 − δ. 
This can be seen in the limiting value of the probability of success rate as 
Noff → 0 for N = 1013 in Figure 15.3. 

On the other hand, if we take away one drug too early (Noff near N), 
then the probability of treatment success is lower than that with m drugs 
throughout the course of therapy. There is a relatively sharp transition 
between maximum possible probability of treatment success and a low 
probability of treatment success.

The main finding is that if we wait sufficiently long, the number of drugs 
used in combination treatment can be safely removed by one. Using simi-
lar methods, we can show that for some parameter combinations, there are 
conditions when more than one drug can be removed from treatment with-
out compromising the ability of treatment to suppress the tumor.

Which Drug Should Be Removed?

The next step is to remove the symmetry assumptions, hi = h, and ui = u for 
all the drugs, and discuss drugs with different characteristics (Komarova 
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Figure  15.3  Probability of treatment success as a function of Noff, the num-
ber of tumor cells at which the number of drugs is reduced by one. Different 
curves correspond to different numbers of tumor cells at start of treatment, N. 
The initial number of drugs is 3, u = 10–6, and the rest of the parameters are as in 
Figure 15.2.
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and Wodarz 2009). In particular, we will concentrate on the activity spec-
trum and potency of the drugs, which are defined as follows.

We will say that a drug is characterized by a broad activity spectrum if 
it is effective against a large spectrum of mutant cells. On the other hand, 
a drug with a narrow activity spectrum is a more specific agent, which is 
active against a relatively small number of cell variants. In terms of our 
modeling approach, the drug with a broader activity spectrum will be 
characterized by a smaller mutation rate, u, with which mutants resistant 
to the drug are generated. The more specific, or narrow, drug is character-
ized by a larger mutation rate associated with the generation of mutants 
resistant to the drug. By potency, we mean how effectively a drug kills cells 
that are susceptible to the drug; this is reflected in the drug-induced cell 
death rate characteristic of each drug, where higher potency is correlated 
with higher values of h.

Consider a two-drug treatment with drugs 1 and 2. Suppose that drug 2 
is characterized by a broader activity compared with drug 1. Let us envis-
age a schedule whereby the tumor is first treated with a combination of 
drugs 1 and 2, and then the number of drugs is reduced by one. Which 
drug should remain and which one should be taken off?

The results are presented in Figure  15.4. The top two graphs assume 
that the potency of both drugs is the same, that is, h1 = h2. The rightmost 
dashed thick line in both graphs corresponds to a combination therapy. 
The other lines show the probability of treatment success when a drug 
is discontinued; the drug is removed once the number of tumor cells is 
reduced by a factor R, which appears above each line. The goal is to keep 
the probability of treatment success as high as possible (the thick dashed 
line). We can see that in both cases, if the reduction happens sufficiently 
late in treatment (low values of R), the probability of treatment success will 
be unchanged.

Comparing (a) and (b) in Figure 15.4, we can see that if the drug with 
a broader activity spectrum is removed then we need to wait until the 
number of tumor cells is reduced by a factor of R = 10−8; otherwise, the 
probability of treatment success is significantly lower compared with 
that of continuous combination therapy. On the other hand, if the drug 
with a narrower activity spectrum is removed, then we can withdraw 
the drug earlier in treatment (more precisely, when the number of tumor 
cells is reduced by a factor of R = 10−7). This suggests that a more effec-
tive strategy is the one when the drug with a narrower activity spectrum 
is removed.
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The bottom two graphs in Figure 15.4 correspond to the cases where the 
two drugs also differ by their potency. In Figure 15.4c, the drug with a nar-
rower activity has a higher potency, while the drug with a broader activity 
has a lower potency. We can see that in order to maximize treatment suc-
cess in this scenario, the drug with a narrower activity and higher potency 
should be removed. In Figure 15.4d, the drug with narrower activity has 
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Figure 15.4  (See color insert following page 40) The probability of treatment 
success as a function of N, the number of tumor cells, for different treatment 
schedules. Top, the two drugs have equal potency (h/l = 5). The dashed thick 
line corresponds to the combination treatment of two drugs. The other lines 
correspond to treatment schedules where one of the drugs is removed once the 
number of tumor cells is reduced by a factor R, indicated in the figure. (a) The 
drug with broader activity is removed. (b) The drug with narrower activity is 
removed. Bottom, the two drugs have different potency. The dotted lines corre-
spond to the strategy whereby after a combination treatment only the drug with 
broader activity is removed. Solid lines correspond to the strategy whereby the 
drug with narrower activity is removed. (c) The drug with a narrower activity 
has a larger potency; different lines correspond to values of  h2/l∈{5, 10, …, 50} 
such that h2 ≤ h1 = 50l. Note that multiple solid lines are on top of each other, as 
the success of the corresponding strategy does not depend crucially on h2. (d) 
The drug with narrower activity has a lower potency; different lines correspond 
to values of h2/l∈{5, 10, …, 50}, such that h1 ≤ h2 = 50l. The parameters are d/l = 
0.2, u1 = 10–7, u2 = 10–6, M0 = 102.
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a lower potency. In this case, if the potencies of the drugs are significantly 
different, it is the broader activity and higher potency drug that should 
be removed. Results presented here follow from stochastic simulations. 
Biological explanations for these outcome are presented in Komarova and 
Wodarz (2009) and based on the rather complex interplay between the 
number of resistant mutants produced and the magnitude of the drug-
induced killing rate.

We conclude that if drugs with differential activity spectra are used, 
then the drugs with the broader activity should be continued, and the 
drug(s) with the narrowest activity can be removed. On the other hand, if 
the broader-activity drug is also considerably more potent, the less potent 
and narrower drug should remain and the more potent and broader one 
can be removed.

Cross-Resistance and the Utility of Drug Combinations

In this subsection, we will include the possibility of drug cross-resistance 
and study how this can affect the probability of treatment success, and the 
choice of optimal treatment strategies (Komarova et al. 2009). Formally 
speaking, in the presence of cross-resistance any node in the mutation 
network can be connected to another node. The corresponding mutation 
rate reflects mutation events that comprise resistance to more than one 
drug at the same time. We will use the short-hand notation “cross-resistant 
mutations” to refer to such events. In the presence of two drugs, only two 
situations are logically possible: the drugs are cross-resistant or non-cross-
resistant. With a higher number of drugs, the situation quickly becomes 
more complex. For example, for m = 3 drugs, there are five possibilities (see 
Figure 15.5, top panel: (1) no cross resistance, (2) partial cross-resistance 
when only one of the three pairs of drugs has cross-resistant mutations, 
(3) partial cross-resistance when two of three pairs of drugs have (different 
sets of) cross-resistant mutations, (4) complete pairwise cross-resistance 
when there are three (nonintersecting) sets of cross-resistant mutations, 
corresponding to each of the three pairs of drugs, and (5) triple cross-
resistance when there are mutations conferring resistance to all the three 
drugs simultaneously.

We will start our exploration of cross-resistance by considering a two-
drug case. Figure 15.5 shows the probability of treatment success for one 
and two drugs, assuming the absence of cross-resistance. This is compared 
to the cross-resistance scenario. While the probability of treatment success 
is lower in the presence than in the absence of cross-resistance, combining 
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two cross-resistant drugs clearly improves the probability of treatment 
success relative to the use of only one drug. This pattern was observed as 
long as the probability of cross-resistant mutations was not too high (see 
Komarova et al. [2009] for details). In this case, it is more likely to acquire 
a mutation that confers resistance against only one drug than to acquire a 
cross-resistance mutation. Hence, for most mutations, combination ther-
apy will not be challenged by cross-resistance.

Next, consider the combination of three drugs, and assume the existence 
of triply-cross-resistant mutants (scenario 5 in Figure 15 5, top panel). The 
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Figure  15.5  The role of cross-resistance in drug treatment. Top, the cross-
resistance networks are presented for m = 3 drugs, by using connected and 
disconnected nodes. The number of nodes corresponds to the number of 
drugs used. Connected nodes correspond to the existence of a cross-resistant 
mutation. Identical connecting lines indicate that the same mutation confers 
cross-resistance to all connected drugs. Different (single, double, dashed) lines 
correspond to different mutations. Bottom, the probability of treatment success is 
plotted as a function of the colony size, N. Different curves correspond to differ-
ent combination treatments, with one, two, and three drugs. Simulation param-
eters are as follows: u = 10−7, the cross-resistance mutation rate is 10−9, M0 = 100, 
d/l = 0.5, h/l = 3.
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striking result is that in this case, combining three drugs will not lead to any 
further advantage compared to the combination of two drugs (see the graphs 
in Figure 15.5). For a triple combination therapy to be advantageous, most 
resistant cells must harbor mutations that render them resistant against two 
of the drugs (but not the third one). Accumulating two separate resistance 
mutations, however, is a relatively rare event. It is much more likely that a 
cell acquires the single cross-resistance mutation. Hence, a triple combina-
tion therapy (with triply-cross-resistant drugs) does not improve the prob-
ability of treatment success compared to double combination therapy.

Finally, the existence of partial or complete pairwise cross-resistance, 
while decreasing the chances of treatment success compared to non-
cross-resistant three-drug therapy, still provides a significant advantage 
over non-cross-resistant two-drug treatments. Therefore, adding a third 
(even cross-resistant!) drug to two non-cross-resistant drugs improves the 
chances for treatment success. Clinical applicability of our results is briefly 
discussed in the next section.

Discussion
Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system 
and is initiated and driven by the product of the BCR-ABL fusion gene 
(Calabretta and Perrotti 2004; Melo et al. 2003; Shet et al. 2002; Yoshida 
and Melo 2004). It proceeds in three stages: the chronic phase in which 
the number of cells is relatively low and the degree of cellular differen-
tiation is relatively high; the accelerated phase during which the num-
ber of cells starts to rise to higher levels and the degree of differentiation 
declines; and blast crisis, which is characterized by explosive cell growth 
and a low degree of differentiation. Small molecules that specifically target 
the BCR-ABL gene product provide a successful treatment approach that 
can lead to a reduction of BCR-ABL+ cells below detectable levels, at least 
during the early stages of the disease. The drug Imatinib has been mostly 
used in this respect (Daley 2003; Deininger and Druker 2003; Gorre et 
al. 2001; O’Dwyer et al. 2002; Shah et al. 2004; Yoshida and Melo 2004). 
As the disease advances, however, the chances of treatment failure rise 
due to the presence of drug-resistant mutants that are generated mostly 
through point mutations, but also through gene duplications (Daub et 
al. 2004; Druker 2003, 2004; Gambacorti-Passerini et al. 2003; Nardi et 
al. 2004; Shannon 2002). Drug resistance can potentially be overcome by 
the combination of multiple drugs, where a mutation that confers resis-
tance against one drug does not confer resistance against any of the other 
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drugs in use. In addition to Imatinib, the drugs Dasatinib and Nilotinib 
are alternative inhibitors of the BCR-ABL gene product. The reality, how-
ever, is that these three drugs are cross-resistant because of one mutation 
(T315I) that confers resistance against all those drugs (Bradeen et al. 2006; 
Deininger 2007; Talpaz et al. 2006; Weisberg et al. 2007). In addition, there 
are more than 50 mutations that confer resistance against only one of the 
three drugs and not against the others.

The mathematical framework presented in this chapter naturally 
applies to the evolution of drug-resistant cancer cells in CML treated with 
small-molecule inhibitors. This framework suggests that a combination 
of three or four different non-cross-resistant small-molecule inhibitors 
needs to be administered to avoid treatment failure as a result of drug 
resistance. We can generate charts (such as that presented in Figure 15.2) 
that map the number of drugs needed for various numbers of tumor cells 
and mutation rates.

We further investigated the effect of withdrawing one or more drugs 
from the combination therapy regimen once the number of cancer cells has 
declined to lower levels. On the most basic level, the modeling tells us that 
the number of drugs can be reduced for long-term therapy without signifi-
cantly reducing the chances of tumor suppression. This is important in the 
face of side effects that are likely to become problematic if treatment is con-
tinued in the long term. Using our computational approach, we calculated 
the threshold number of cancer cells at which the number of drugs can be 
reduced without significantly altering the chances of tumor suppression.

Our method also helps determine which drugs should be removed and 
which ones continued. For example, in two-drug treatments, if one of the 
drugs has a narrower activity spectrum, and it is equally potent or more potent 
than the second drug, then it is the drug with the narrower activity that should 
be discontinued. On the other hand, if the narrower drug is significantly less 
potent than the broader activity drug, then it is the broader drug that should 
be removed from treatment. Experimental and clinical studies performing 
measurements of the rate at which resistance mutations are generated and the 
drug-induced death rates will be vital to make clinically relevant predictions. 
Cancer kinetic parameters (such as the division and death rate of the cancer 
cells) are essential to predict the time course of treatment, such as treatment 
length and the duration of time until the number of drugs can be reduced 
without compromising continued tumor suppression.

Finally, we addressed the question of cross-resistance and studied 
whether drug combinations can still improve treatment outcomes if the 
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drugs possess a degree of cross-resistance. Our results are relevant to the 
treatment of CML with the three currently available drugs: Imatinib, 
Dasatinib, and Nilotinib. There is one point mutation, T315I, which confers 
resistance against all of the three drugs, thus making them triply-cross-
resistant. Therefore, in this context, our calculations suggest that combin-
ing two of the three currently available drugs can provide an advantage 
over using one drug alone. Recent experimental data support this notion 
(Bradeen et al. 2006). However, combining all the three drugs does not 
improve the chances of treatment success beyond that of a double combi-
nation therapy. Hence, at present, the two most effective drugs should be 
given simultaneously to treat CML. Once a drug effective against T315I 
mutants becomes available, the most effective treatment strategy will be to 
combine that drug with two of the three presently existing drugs.
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Introduction
Gliomas are malignant lesions of the brain characterized by their propen-
sity to proliferate and invade the normal-appearing tissue. These brain 
tumors show diverse anatomic and metabolic traits that manifest differ-
ently across patients, ranging in aggressiveness from low-grade gliomas 
(LGGs) to high-grade gliomas (HGGs). Approximately 50% of glioma 
patients are diagnosed with glioblastoma multiforme (GBM), a World 
Health Organization grade IV glioma, which is the most aggressive type 
of brain tumor in adults (Louis et al. 2007). Difficulty in treating gliomas 
arises primarily from the invasiveness of the cell populations compris-
ing the tumor. Despite extensive treatments including surgical resection, 
radiotherapy, and chemotherapy, GBMs have a propensity to recur and 
prove to be fatal with a median survival of approximately 1 year (Burnet 
et al. 2007; Welsh et al. 2009).

Modern radiology offers imaging techniques such as magnetic reso-
nance imaging (MRI) and positron emission tomography (PET) that 
allow noninvasive detection of brain tumor anatomy and aberrant molec-
ular activity, respectively. Clinically, routine MRIs comprise a variety of 
modalities, including T1-weighted gadolinium-enhanced (T1Gd), which 
images the highly vascularized portion of the tumor and T2-weighted and 
fluid attenuation inversion recovery (FLAIR) MRI, which image the bulk 
mass as well as surrounding edema with isolated invading tumor cells. 
However, because of the diffuse invasion of gliomas cells into the normal 
appearing brain, even current advances in radiology do not allow detec-
tion of the glioma cells that lie beyond the imageable tumor periphery 
(Harpold et al. 2007).

Mathematical modeling utilizing experimental and/or human data 
provides a novel tool for understanding the spatial and temporal growth 
of brain tumors by allowing us to create patient-specific virtual tumors 
that show the distribution of glioma cells that exist beyond the image-
able boundary (Harpold et al. 2007; Rockne et al. 2008a; Swanson et al. 
2003; Hatzikirou et al. 2005). These virtual controls serve as novel tools 
for assessing and predicting response to therapy as well as for designing 
new therapy. In this chapter, we will consider recent contributions to the 
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mathematical modeling of gliomas, focusing on work bridging the gap 
between predictive multiscale mathematical modeling and current clini-
cal care of gliomas.

Quantifying In Vivo Glioma Kinetics Noninvasively
Recent models of tumor growth look at both the spatial motility and pro-
liferation of tumor cells, and can be divided into two general modeling 
approaches: discrete and continuous. Cellular automata (CA) models are 
discrete in their approach (Hatzikirou and Deutsch 2008; Huang et  al. 
2008) and model individual tumor cells at discrete time-points along with 
cell–cell and cell–microenvironment interactions at the microscopic level. 
CA model predictions apply mostly to cell cultures because of the com-
putational limitations of large numbers of cells typically seen in tumors 
of clinically detectable size. Continuum models assess the growth and 
spread of tumor cell density macroscopically, and have applications in 
predicting tumor growth on the scale of clinical imaging and gross tissue 
histology but with limited applicability at the cellular level. Both mod-
eling approaches are necessary to understand glioma growth and con-
nect cell or tissue culture experiments to clinical reality, which has led 
to proposals for multiscale models. A recent study by Tanaka et al. shows 
that hybridizing discrete continuum and compartment modeling allows 
assessment of tumor size as detected clinically, and individual cell behav-
ior as detected in a cell culture (Tanaka et al. 2009). Deroulers et al. focus 
on multiscale migration study of gliomas and compare their results to in 
vitro data (Deroulers et al. 2009). These studies utilize mathematical tools 
to understand biological processes underlying glioma behavior; however, 
their current results cannot be paralleled to clinically available data such 
as medical imaging or gross tissue histology. For gliomas in particular, an 
ideal mathematical model would predict invasive tumor growth beyond 
the imageable abnormality and be easily amenable to input from the most 
commonly used (clinical) tools to assess glioma growth and response to 
therapy, namely clinical imaging and gross histology.

Professor J.D. Murray and colleagues, as reviewed in Murray (2003) 
and Harpold et al. (2007), proposed one of the first glioma models with 
prospects of clinical application. This is a reaction-diffusion model that 
captures both the diffuse dispersal and proliferation of glioma cells, hence 
denoted as the proliferation-invasion (PI) model. In other words, this 
equation says that the rate of change of glioma cell density is equal to the 
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net diffusion of the glioma cells plus the net proliferation of the glioma 
cells. Translated to math, we have
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where c(x,t) defines the concentration of glioma cells over space (x) and 
time (t) and is spatially limited by the boundaries of the skull and ven-
tricles, which are anatomical structures of the brain that serve as impen-
etrable walls for glioma cells. This model utilizes two main terms: net 
dispersal/diffusion (D) of tumor cells differentiated spatially in three 
dimensions, and net proliferation (ρ) of tumor cells with a logistic growth 
term, where K is the carrying capacity or maximum cell density allowed 
per cubic centimeter of tissue (about 108 cells/cc, assuming a typical cell 
with diameter of 10 μm). Simulations of this model are performed in the 
three-dimensional, anatomically-accurate brain domain, approximated 
by the BrainWeb atlas (Collins et al. 1998; Cocosco et al. 1997), to capture 
tumor growth in the complex architecture of the human brain (Swanson 
et al. 2002b; Swanson 1999).

In order to incorporate heterogeneous motility of tumor cells through-
out the brain yet keep the model simple, the diffusion coefficient, D, is spa-
tially defined according to the grey and white matter composition of the 
brain such that D(x) = Dg in gray matter, which consists of densely packed 
neuronal cell bodies, and D(x) = Dw in white matter, which comprises axon 
tracts originating from, and leading to, neuronal cell bodies in the gray mat-
ter (Swanson 1999). The density of glial cells is highest in white matter and 
organized as myelin surrounding axons. Gliomas preferentially migrate 
along white matter tracts with diffusion fastest parallel and slowest perpen-
dicular to these fiber tracts (Stadlbauer et al. 2009). The variation in the net 
rate of diffusion in white matter (Dw) can be 5 to 100 times faster than in 
gray matter (Dg) (Swanson et al. 2000, 2002b; Harpold et al. 2007).

One result of the PI model is that of linear radial growth. That is, the 
radial growth pattern asymptotically approaches Fisher’s approximation 
for a constant velocity of expansion v D= 2 ρ. An analysis of velocity 
for a set of patients with LGGs (one example shown in Figure 16.2) sug-
gested that the rate of change of radial expansion is constant in untreated 
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gliomas (Swanson et al. 2004; Mandonnet et al. 2003, 2008) and that this 
constant velocity served as a prognostic factor for LGGs (Pallud et  al. 
2006). Swanson showed that the two parameters in Equation 16.1, D and 
ρ, could be derived from volumetric measurements of tumor abnormality 
as imaged with T1Gd and T2 MRI scans in humans (Harpold et al. 2007). 
Using this set of data collected at two time points prior to treatment or 
operation allows for the calculation of radial velocity of tumor growth 
(Figure  16.2). These results demonstrated that glioma growth prior to 
treatment could be predictively modeled in vivo in humans.

Many LGGs do not contrast-enhance, that is, these tumors are visible 
on T2 and FLAIR modalities, but not on T1Gd. This is because LGGs have 
little angiogenesis or new blood vessel formation, which allow leakage 
of the gadolinium-enhancement tracer. However, many LGGs progress 
to higher grades, although the time to progression (TTP) is quite vari-
able (Chaichana et al. 2009; Michotte et al. 2004). In the study of LGGs, 
velocity of tumor growth predicted time to contrast enhancement on 
T1Gd MRI, thereby velocity could be utilized to predict TTP (Alvord and 
Swanson 2007). Prior to this result, malignant progression was considered 
an unpredictable event.
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Figure 16.1  The left side shows a 2D slice through MRI scans (T1Gd on the 
top and T2 on the bottom). If we noted the diameter of the tumor abnormal-
ity through both images, we would obtain a theoretical 1D profile as shown on 
the right where glioma cell density is represented on the vertical axis and space 
is represented on the horizontal axis. The black dotted line is the threshold of 
detection for the T1Gd MRI (approximately 80% of total cell density), and the 
white dotted line is the threshold of detection for the T2 MRI (approximately 16% 
of total cell density). Velocity of the tumor growth asymptotically approaches 
Fisher’s approximation and the invisibility index is given by the ratio of the dif-
fusion and proliferation parameters.

© 2011 by Taylor and Francis Group, LLC



364    ◾    Gargi Chakraborty, et al.

Anisotropic Tumor Cell Motility 
in Heterogeneous Brain Tissue
Recently, the simulations of glioma invasion was improved by incorporating 
anisotropy using information from diffusion tensor imaging (DTI), a type 
of MRI that detects the directionality of water diffusion in the brain (Jbabdi 
et al. 2005). DTI scans provide a tensor at each spatial location (voxel) in the 
brain indicating the magnitude and direction that glioma cells would pre-
sumably prefer to migrate. It was shown that the shape and kinetic evolution 
of the tumors were better simulated with anisotropic rather than isotropic 
diffusion as expected because the tensors provided a patient-specific direction 
schema for the motility of glioma cells (Jbabdi et al. 2005). Implementation 
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Figure 16.2  A patient with an LGG assessed serially on T1Gd and T2. The left 
part of the graph indicates measurements of mean tumor radius prior to treat-
ment and shows that the velocity of radial expansion on T2 MRI is constant 
(change in radius is linear as displayed by the line of best fit—dotted gray line). 
The right part of the graph indicates tumor dynamics after treatment with radia-
tion therapy and subtotal resection. The increase in T2 tumor radius along with 
contrast-enhancement on T1Gd seen after day 1200 is indicative of tumor pro-
gression. The drop in both T1Gd and T2 radius thereafter is due to the surgical 
removal of tumor.
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of the PI model in three dimensions by the Swanson group showed that the 
architecture of the brain segregated into gray and white matter dictating 
the tumor’s spatial morphology as compared with T2-MRI, visualized in 
three dimensions (Figure 16.3). Including input from DTI scans to further 
dictate the motility of glioma cells, simulations of the PI model looking at 
radial growth of tumor over time indicates that there is indeed a difference 
in the predicted tumor radius in T1Gd and T2 MRIs with isotropy versus 
anisotropy (Sodt et al. 2009).

Other groups have considered extensions of the PI model incorporating 
DTI information as well as a biomechanical component of GBM growth 
that exerts a mass effect on surrounding brain structures such as skull and 
ventricles (Bondiau et al. 2008; Clatz et al. 2005). Mass effect is considered to 
be responsible for the mechanical impact of the tumor on surrounding brain 
tissue. However, for glioma models incorporating mass effect, the problem 
of parameter estimation from patient data such as imaging was unaddressed 
until a recent preliminary study by Hogea et al., which compares optimized 
parameter estimates for one patient case (Hogea et al. 2008).

Assessing Glioma Ablation and Regrowth 
Posttherapy with Mathematical Parameters
Although glioma growth kinetics differ across patients, the standard 
of care is surprisingly homogeneous and consists of resection or biopsy, 
followed by radiation therapy along with adjuvant and concurrent 

Figure 16.3  (See color insert following page 40) Panel A shows a patient-spe-
cific 3D simulation of the PI model including differential motility in the grey and 
white matter, while panel B shows the actual tumor detected by T2 MRI.
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chemotherapy. Mathematical modeling tools may be used to understand 
the extent to which certain therapies may improve survival for any indi-
vidual patient and to develop a control method by which to assess whether 
certain patients will respond better to particular therapies.

Does More Treatment Mean Better Survival?

With the continual introduction and investigation of new and more 
aggressive therapies, assessing the benefits of treatment on decreasing 
tumor burden and improving a patient’s quality of life can be a challenge 
for physicians. Recurrence of gliomas is common and likely arises from 
the fraction of cells that cannot be imaged and thus targeted for therapy. 
Although the diffuse extent of malignant glioma cell invasion cannot be 
imaged, it can be modeled in a virtual glioma with three-dimensional 
simulations of the PI model. As presented in Figure 16.1, 80% of the total 
tumor cell concentration is imageable by the T1Gd MRI and 16% (a five-
fold increase) is imageable by the T2 MRI (Swanson et al. 2002b), from 
which a tumor cell gradient is inferred. The spatial distribution of invisible 
cells has been shown to lead to a better assessment of treatment planning 
and detect potential sites of tumor recurrence, which may aid physicians 
in designing an optimal time course for a glioma treatment-regimen that 
can be tailored to the patient (Swanson et al. 2004).

A survival analysis of 32 GBM patients indicated that regardless of 
therapy, the model-defined parameters correlated with patient progno-
sis (Wang et al. 2009). This result maintained statistical significance even 
while controlling for standard clinical parameters such as histology, age, 
and Karnofsky Performance Status (KPS) (Wang et  al. 2009), showing 
the result to be robust. In particular, this pioneering work showed that 
in a univariate survival analysis, the net proliferation rate, and the ratio 
ρ/D, which is related to the shape of the gradient of invading glioma cells 
outside the T1Gd imageable region, strongly correlated with survival. 
This significant modeling result showed that patient-specific PI model 
parameters allow assessment of survival independent of standard clinical 
approaches.

Resection

It is not clear whether glioma patients in whom a larger mass of the tumor 
is removed tend to do better prognostically than those patients receiving 
a biopsy (McGirt et al. 2008, 2009; Laws et al. 2003; Devaux et al. 1993). 
Further, predicting survival based solely on the extent of resection (EOR) 
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is ambiguous since it is difficult to quantitatively determine the percent 
of tumor removed due to the diffuse nature of gliomas, as not all tumor 
cells can be visualized through current imaging or histology (Harpold 
et al. 2007). The tumor’s location in the brain also plays a significant role 
in determining how much of the tumor is resected. Large resections are 
avoided in cases where removal of more tumor region in critical parts of 
the brain may lead to a worse quality of life. For example, for tumors strad-
dling the precentral gyrus, which is the cortical area involved in control-
ling most body motor functions, large resection would result in impaired 
movement control and execution. Thus, to quantitatively assess whether 
the EOR is related to survival requires other tools such as mathematical 
models.

Woodward et al. (1996) considered resection in the context of the spa-
tially homogeneous PI model showing that even with varying extents 
of surgical resection, gliomas could not be completely “cured” due to 
the diffuse infiltration of malignant tumor cells throughout the brain. 
Building upon this idea, Swanson et al. (2008) considered glioma patients 
who had undergone either partial or near-total resection of the tumor 
and applied the patient-specific growth kinetic parameters D and ρ from 
the PI model to model and predict survival based on patient-specific vir-
tual controls. Interestingly, survival correlated better with D and ρ than 
with the extent of resection. Thus, tumors with a higher propensity to 
diffuse and proliferate led to shorter survival regardless of the extent of 
resection (Swanson et al. 2008). Further assessment of the net diffusion 
and net proliferation parameters combined with the spatial location of 
gliomas suggests that these parameters are independent of tumor loca-
tion (Szeto et al. 2009). These studies lead to a dominating hypothesis in 
glioma that the kinetic parameters of growth dictate patterns of tumor 
growth irrespective of location and may allow better prediction of sur-
vival than location-dependent surgical removal of the tumor.

Radiation Therapy

After surgery, external beam radiation therapy (XRT) is typically the sec-
ond-line of treatment in the clinical management of gliomas. XRT targets 
the tumor mass not removed by surgery and has been shown to improve 
survival over other postoperative therapies (Erpolat et al. 2009; Bloor et al. 
1962). However, XRT does not affect all patients equally: some patients 
respond better to XRT than others, and this phenomenon cannot be pre-
dicted clinically prior to treatment. Rockne et al 2009, combined classic 
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linear-quadratic radiobiological mathematical models of the delivery of 
and response to XRT to equation (1). When applying this model to patient-
specific tumor evolution seen on MR imaging, Rockne et al. (2008b) found 
that the model may help predict which patients will respond better to 
XRT and to what degree each will respond. Further, this sheds light on 
the patient-specific tailoring of XRT dose to actual disease distribution as 
opposed to the one-size-fits-all philosophy currently applied clinically in 
XRT dose design for each patient’s tumor.

Dionysiou et al. (2004) introduced a four-dimensional model that con-
siders the effects of XRT on the growth of GBMs. This model incorporated 
sensitivity to radiation, genetic profile of tumors, and dose fractionation. 
Updated work on the model explored the effect of XRT on tumor and nor-
mal tissue to simulate fractionation doses (Stamatakos et al. 2007). While 
the model utilizes tumor size from patient MRI to apply radiation fields, it 
does not yet have the predictive capacity to suggest patient-specific tailor-
ing of therapy, although because of the large number of parameters to be 
estimated a method of optimizing treatment is provided (Dionysiou et al. 
2008).

Swanson et  al. (2008) provided a means of distinguishing glioma 
patients that are sensitive or resistant to XRT by using PI model-defined, 
patient-specific virtual controls. Studying eight patients with GBM, 
Swanson et al. (2008) developed virtual controls using the PI model that 
predicted untreated patient-specific glioma growth. Patients received 
XRT as per the standard of care, whereas virtually, patient-specific glioma 
growth was simulated without treatment. Determining time to reach fatal 
tumor burden as defined by the T1Gd radius of 35 mm allowed assessment 
of survival if the patient received no treatment (virtual control). Swanson 
et  al. (2008) compared actual survival after treatment with XRT to the 
survival predicted by the PI model. Results indicated that approximately 
half the population survived as predicted by the PI model suggesting that 
even with XRT, survival was not improved. The other half of the popula-
tion survived twice as long as predicted by the PI model suggesting that 
this population had radio-sensitive tumors.

Advancing the modeling methodology, Rockne et  al. (2009; Rockne 
et  al. 2008b) proposed an extension of the PI model to incorporate the 
delivery and effect of XRT as quantified by the classic linear-quadratic 
model (Hall 1994) for radiation efficacy. This study presents the effect of 
changing dose delivery from the current clinical standard on a virtual case 
study. Results suggest that a low-frequency and high-dose delivery scheme 
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would be optimal in reducing the targeted tumor volume (Rockne et al. 
2009). Further, for the extended model Rockne et al. show that the param-
eter of radiation sensitivity, α, can be predicted from ρ (patient-specific 
parameter of net proliferation in the PI model) prior to treatment, and can 
be applied to study XRT in virtual glioma patients that can be paralleled 
to clinical cases (Rockne 2008b). Powathil et al. (2007) described a similar 
reaction-diffusion model, however, their model did not estimate patient-
specific parameters.

Other Therapies

Beyond surgery and radiation therapy, chemotherapy targeting aberrant 
cell-cycle activity or factors controlling neoangiogenesis among others is 
utilized to minimize tumor recurrence. Chemotherapeutic agents such 
as Temozolomide and Bevacizumab have been shown to improve patient 
survival (Erpolat et al. 2009; Nishikawa 2009; Zhang et al. 2009). However, 
survival for glioma patients still remains dismal and the incidence of drug-
induced toxicity in patients is increased (Calabrese and Schlegel 2009). 
Mathematical modeling may shed light on the design of optimal chemo-
therapy dosing such that drug toxicity can be minimized and the attack 
on tumor cells maximized. Challenges include modeling the spatial and 
temporal drug delivery, along with simulating how drugs cross the blood–
brain barrier (BBB).

Tracqui et al. (1995) first applied a continuous model to study the effects 
of chemotherapy spatially and temporally in brain tumors. This model 
extended Equation 16.1 to incorporate a loss term for cells that died from 
chemotherapy and investigated the effect of treatment on cancer cells 
resistant and sensitive to therapy. Results from these studies indicated that 
tumor cell subpopulations would react differently to treatment doses, and 
that this could explain the failure of the standard management of gliomas 
(Tracqui et al. 1995).

Similar work by Eikenberry et al. (2009) using a reaction-diffusion model 
provides an initial framework of how mathematical modeling can be uti-
lized to monitor effects of multiple treatments in virtual GBM patients, but 
only qualitatively ties model simulations to clinical data. A model devel-
oped by Tian et al. (2009) on the other hand provides a purely theoretical 
perspective on assessing the effects of therapy on glioma growth. Powathil 
et al. (2007) come closer to describing effects of chemotherapy by modifying 
the base model studied by Murray’s group, by appending death terms to a 
log-kill model. Modeling radiotherapy and chemotherapy simultaneously, 
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this investigation reports the clinical result that chemotherapy with 
Temozolomide following XRT results in less neurotoxicity, and consid-
ers improving the targeting of tumor cells with concurrent Temozolomide 
and XRT, which is the current clinical practice (Powathil et al. 2007). This 
result, though in an early phase, promises further study and validation in 
the clinic.

Swanson et al. (Swanson et al. 2002a) compare a clinical case study to 
homogenous and heterogeneous models of drug delivery, which suggests 
that drug delivery is necessarily a function of the varying vascular density 
in brain tissue and thus accounts for the clinical observation of tumor 
reduction in some locations and continued growth in other regions of the 
tumor surroundings. A recent model (Hinow et al. 2009) based on the spa-
tial dynamics of tumor–host interaction, incorporates the tumor microen-
vironment along with angiogenesis and suggests that the time course and 
spatial delivery of drugs needs to be considered, and supports Swanson’s 
result from 2002. In addition, model simulations by Hinow et al. (2009) 
propose that chemotherapy may either heavily reduce the tumor mass or 
increase tumor growth substantially depending on how the drug interacts 
with both tumor and nontumor cells (Hinow et al. 2009). These results 
provide support for clinicians to plan out both the spatial and temporal 
effects of chemotherapeutic agents, again with the use of virtual controls 
and careful consideration of the spatial element of glioma disease distri-
bution and response to therapy.

Capturing Influence of Tumor 
Microenvironment on Glioma Growth 
by Parallel Comparison of MRI and PET
While clinically routine MRIs conducted serially provide information 
about changes to gross tumor anatomy over the scale of months, PET 
imaging provides a dynamic picture of information about the tumor 
on the molecular level, conferred through radiolabeled tracer activity 
monitored over minutes to hours (Ullrich et al. 2008). Two common PET 
radio tracers used in assessing brain tumors are: 18F-Fluoromisonidazole 
(FMISO), which detects hypoxia or regions of low oxygenation (Rajendran 
et al., 2006), and 3′-Deoxy-3’-[18F]-Fluorothymidine (FLT), which detects 
cell proliferation (Hatakeyama et al. 2008). Another common PET tracer 
used in the clinical management of gliomas is [18F]-Fluorodeoxyglucose 
(FDG), which is a marker of hyperglycolytic activity (Spence et al. 2004). 
Studies focusing on the clinical use of PET and MRI show that functional 
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imaging tends to aid diagnosis and treatment planning of brain tumors 
(Krohn et al. 2007; Spence et al. 2008) because these scans capture regions 
of aberrant activity in the tumor microenvironment.

Hypoxia Assessed with FMISO-PET

Hypoxia not only decreases the radiation sensitivity of tumor cells, but 
also contributes to tumor progression and drives selection pressure for 
more aggressive cancer phenotypes (Lunt et al. 2009; Sullivan and Graham 
2007). Hypoxic burden assessed in vivo by FMISO-PET (Figure  16.4c) 
correlates significantly with decreased survival and shorter time to tumor 
progression (Swanson et  al. 2009; Spence et  al. 2008). Comparison of 
hypoxic burden with tumor abnormality observed in spatially registered 
T1Gd MRI suggests a spatial link between bulk tumor mass and hypoxia 
(Swanson et al. 2009).

Due to the spatial link between MRI and FMISO-PET, the Swanson 
group hypothesized that metrics of glioma growth as quantified by the 
PI model along with MRI-based parameters might shed light upon the 
aggressiveness determined by the presence of hypoxic burden. This was in 
fact the case, and they confirmed the link between hypoxia and biological 
aggressiveness quantified by the ratio ρ/D, where higher ρ/D corresponded 
to a more aggressive tumor growth (Szeto et al. 2009). While hypoxia is a 
well-known hallmark of aggressive behavior, this work displayed the first 
quantitative connection between hypoxia imaged by PET and anatomi-
cal tumor data imaged by MRI as well as the profound implication that a 
mathematical model-based metric could link the two in a patient-specific 
manner.

While the PI model has been validated and shown to be accurate for 
assessing anatomical tumor growth and survival, it does not account 
for the role of the tumor microenvironment. Incorporating nutrient 
availability and deprivation into glioma kinetics necessitates an exten-
sion of the PI model that considers hypoxic burden and its connection 
to normoxic (tumor cells sufficiently supplied with oxygen) and necrotic 
(tumor cells that have died due to anoxia) cells. The link between the 
tumor cell populations relates the presence of vasculature, development 
of new vessels (angiogenesis) as needed to continue growth, and the com-
munication between tumor cells and vessels through angiogenic growth 
factors. Incorporating a heterogeneous cell population and capturing the 
dynamics of tumor cells through the angiogenic cascade, an extended 
model, denoted the proliferation-invasion-hypoxia-necrosis-angiogenesis 
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Figure 16.4  Panels A through D show a glioblastoma imaged in the axial 
plane on T1Gd-MRI, T2-MRI, FMISO-PET, and FDG-PET, respectively. 
The bright regions on the MRIs and the dark regions on the PETs repre-
sent tumor abnormality. In panel D, note that for an unprocessed FDG-PET, 
the gray matter contralateral to the glioma is isointense with the tumor 
abnormality making tumor identification challenging.
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(PIHNA), is currently being investigated that builds upon the success of 
the PI model and is specifically designed to parallel MRI and PET imaging 
data (Swanson 2009; Harpold 2006b).

Hyperglycolysis Assessed with FDG-PET

FDG-PET, unlike FMISO-PET and FLT-PET is a clinically routine PET 
imaging modality, and indicates regions of hyperglycolysis (Figure 16.4d). 
Gray matter of the brain, however, demonstrates elevated levels of glycolysis 
relative to most normal body tissue, and even relative to other portions of 
the brain. This presents a challenge for differentiating regions of increased 
FDG signal intensity between the normal grey matter and that due to the 
tumor abnormality. Spence et  al. (2004) investigated how to delineate 
tumor abnormality in FDG-PET using an ordinary differential equation 
based compartmental model for FDG metabolism kinetics. This study 
suggested that hyperactive tumor growth could be segmented visually and 
quantitatively from normal activity of gray matter by increasing the time 
interval between tracer delivery and PET acquisition (Spence et al. 2004). 
Additional studies considered patient-specific kinetic parameters derived 
from FDG-PET proved that different kinetics of glucose metabolism could 
aid in differentiating gliomas from other brain abnormalities such as lym-
phomas (Kimura et al. 2009). Further assessment of the abnormality seen 
on FDG-PET showed that this imaging modality served as a prognostic 
marker and could be utilized to evaluate response to therapy (Mankoff 
et al. 2007).

Since FDG-PET relays glucose metabolic activity in vivo, it can serve 
as a tool to assess the microenvironmental influence on tumor behavior. 
Harsh tumor microenvironment results from acidosis and hypoxia (Fang 
et al. 2008). In such conditions, better survival is conferred to those can-
cer cells that switch over to anaerobic respiration (glycolysis) from aero-
bic respiration (Gatenby et al. 2006). A recently proposed model of glioma 
growth applies game theory to capture the interaction between three dis-
tinct tumor phenotypes: autonomous growth, glycolysis, and invasion 
(Basanta et al. 2008). Results of this study implicate a switch to glycolysis 
in tumor cells to lead to more invasive tumor phenotypes, which agrees 
with biological hypothesis that cancerous cells display a switch from aer-
obic respiration to anaerobic respiration (Semenza et al. 2001; Gatenby 
et  al. 2006). However, this model does not consider the spatial distri-
bution of tumor cells and the interaction of the heterogeneous tumor 
cell population. Cellular automaton models exist for explaining tumor 
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growth spatially and agree with the game theory model results that harsh 
microenvironments select for more invasive phenotypes (Anderson et al. 
2006). These models would suggest that reoxygenating tumor cells as a 
clinical therapeutic approach may prevent selection of highly invasive 
phenotypes. However, cellular automata or game theory models cannot 
be directly translated to monitor clinical tumor growth yet.

Tumor Proliferation Assessed with FLT-PET

The PI model currently utilizes volumetric measurements of tumor from 
two MRIs taken prior to any treatment to determine the parameters, D and 
ρ. Although, MRIs are clinically routine, in many instances two observa-
tions are not available pretreatment. FLT-PET (Figure 16.5C) conducted 
in a single day can capture dynamic hyperproliferative activity of brain 
tumors (Hatakeyama et al. 2008). This dynamic information in addition 
to one pretreat MRI showing anatomical tumor abnormality may over-
come the need for another pretreat MRI in determining D and ρ for the 
PI model. A preliminary investigation by Harpold et al. looked at how the 
cellular proliferation rate in tumor versus nontumor cells could be sepa-
rated. Voxel data from FLT-PET was utilized as input to generate para-
metric maps that translated to parameters for a compartmental kinetic 
model of FLT metabolism (Harpold et  al. 2006a). This research is still 
in its early phase since the population of patients receiving FLT-PET, an 
image modality still in clinical trials, is a fraction of those receiving MRIs. 

Figure 16.5  Panels A through C show a glioblastoma imaged in the axial plane 
on T1Gd-MRI, T2-MRI and FLT-PET, respectively. Note that the FLT-PET is a 
summed image of FLT activity recorded dynamically.
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However, future studies are necessary to assess if D and ρ from combined 
FLT-PET and MRI at one time-point can be successfully applied to the PI 
model.

Developing Multiscale Models of Gliomas 
from Animal Experimental Models
New approaches aimed at resolving the challenges of conventional ther-
apy to treat GBMs lie in understanding how these tumors originate. One 
hypothesis in tumorigenesis suggests that progenitor cells, which are 
precursors to glial cells, may be recruited to the heterogeneous popula-
tion of brain tumor cells via platelet-derived growth factor (PDGF), a sig-
naling protein with increasing evidence of involvement in brain tumors 
(Assanah et al. 2006; Shih et al. 2004). This pioneering work showed that 
injecting fluorescently-labeled retrovirus expressing human PDGF into 
the white matter of genetically normal adult rats resulted in the rats rap-
idly developing tumors, which appeared to be identical on histology and 
on MRI to human GBMs (Assanah et  al. 2006, 2009). Assessing tumor 
cell populations through immunofluorescence analysis 14 days postinjec-
tion (DPI) of the retrovirus showed that less than 20% of the malignant 
mass consisted of the retrovirus-infected cells, and the tumor primarily 
comprised glial progenitors, which exhibited similar growth kinetics as 
retrovirus-infected tumor cells (Assanah et al. 2006). This experimental 
research suggested that simple overexpression of PDGF resulted in growth 
of a GBM-appearing abnormality in a previously disease-free brain. 
Moreover, the results pointed to a novel hypothesis for tumorigenesis: 
normal progenitor cells in the tumor periphery are recruited to the tumor 
mass through paracrine signaling of PDGF.

Results from in vivo experiments on rats highlighted a new avenue of 
glioma modeling. Capturing the microscopic interaction between tumor 
cells and normal progenitor cells via PDGF, while still modeling macro-
scopic diffusive and proliferative growth of the tumor, necessitated the 
development of a multiscale model. Like the PIHNA model, this model 
builds upon the success of the PI model and uses a reaction-diffusion con-
tinuum approach and incorporates two cell populations—the retrovirus 
infected tumor cells and uninfected glial progenitor cells—and looks at 
the molecular interaction between these populations via PDGF as illus-
trated in a biological schematic in Figure  16.6. Currently, this model is 
being studied to develop virtual controls that can provide simulations of 
both tissue histology and tumor appearance on MRIs (Massey et al. 2009). 
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Figure 16.6  This schematic shows the hypothesized connection between 
recruited or uninfected glial progenitor cells (r) and infected tumor cells (c) that 
serves as a base for the multiscale model of tumorigenesis. Infected cells (c) secrete 
PDGF (p) at rate ηc in the extracellular space compartment. Via paracrine signal-
ing, these ligands stimulate both the r and c cell populations to proliferate and 
migrate in a dose-dependent manner. The consumption of p by r and c in the 
process occurs at rates qr and qc, respectively, resulting in migration rates Dr and 
Dc, and proliferation rates ρr and ρc.

© 2011 by Taylor and Francis Group, LLC



Clinical Multiscale Modeling of Gliomas    ◾    377

Such simulations can be compared to histological and MRI data on rats 
and can provide a channel to connect experimental animal models to in 
vivo human imaging data. Further, such multiscale models based in ani-
mal experimentation provide novel tools for bridging experimental results 
to human data by providing some assessment of the reasonability of the 
biological mechanism described.

Discussion
The past few years have seen a surge of investigations in the mathematical 
modeling of gliomas. In this chapter, we have provided a glance at how 
mathematical modeling of gliomas relates to the clinical reality of brain 
tumor assessment. Multiple approaches exist to model glioma growth from 
the microscopic to the macroscopic scales. We specifically focus on the 
reaction-diffusion continuum models (PI, PIHNA, PDGF) as they come 
the closest to informing clinical reality because they can (a) be made spe-
cific to patients, thereby providing virtual controls of glioma growth, 
and (b) parallel clinical tools are utilized to assess gliomas such as MRI 
and PET imaging, and therefore show the highest promise of being clini-
cally informative. However, quantitatively assessing the biological basis 
of glioma behavior necessitates both discrete and continuous modeling 
approaches, which can inform new areas of experimentation and model-
ing with the goal of generating tools for clinical use. Future directions of 
glioma modeling look towards the development of mathematical models 
that can be applied in optimizing glioma therapy, that can utilize PET 
imaging to extract biochemical parameters for reproducing the tumor 
microenvironment and parallel patient-specific PET scans, and that can 
connect analysis of animal-based experimentation to the clinical scale.
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Introduction
Gliomas are neoplasms of glial cells that support and nourish the brain. 
These tumors have varying histopathological features and biological behav-
ior showing different aggressiveness levels, from benign-grade I to malig-
nant-grade IV (glioblastoma multiforme). There has been a vast amount 
of research in mathematical modeling to describe the growth dynamics of 
these tumors (Byrne et al. 2006; Cristini et al. 2003; Frieboes et al. 2007; 
Patel et al. 2001; Stamatakos et al. 2006; Zhang et al. 2007). Lately, specific 
type of macroscopic models, the reaction-diffusion models, received con-
siderable attention from the literature in the attempt to link glioma growth 
models to medical images (Tracqui et al. 1995; Swanson et al. 2000; Clatz 
et al. 2005; Jbabdi et al. 2005; Hogea et al. 2007; Mandonnet et al. 2008). 
These recent models integrate information coming from medical images, 
specifically through anatomical and diffusion images, in their formula-
tion. This integration is crucial for the transfer of mathematical models to 
the clinical applications since medical images are conventionally used for 
diagnosis and patient follow-up in the clinical routine. One of the biggest 
challenges in this transfer is the automatic adaptation of mathematical 
models to the patient, based on images. In this chapter, first we address 
the problem of adapting the recent reaction-diffusion models to specific 
patient cases using the time series of medical (magnetic resonance: MR) 
images (Konukoglu et al. 2009a). Following this, we address the question 
of retrieving relevant information for radiotherapy planning from the 
personalized reaction-diffusion models (Konukoglu 2009).

Reaction-Diffusion Models

Reaction-diffusion models describe the evolution of gliomas via prolif-
eration of tumor cells and infiltration of the surrounding healthy tissue. 
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The building block of these models is the reaction-diffusion type partial 
differential equations of this form:

	
∂
∂

= ∇⋅ ∇( )+ −( ) ∇ ⋅ ∂
u
t

u u u uD(x) D n Ωρ 1 , , 	 (17.1)

where u represents the tumor cell density, D is the local diffusion tensor 
(i.e., symmetric positive definite 3 × 3 matrix), ρ is the proliferation rate, 
Ω is the brain domain, and ∂Ω represents the boundaries of the brain. 
The two terms on the right hand side correspond to the two phenomena 
described by the model: the diffusion term ∇ ⋅ (D∇u) models the migra-
tion of tumor cells within the brain tissue and the reaction term ρu(1-u) 
models the proliferation of tumor cells.

Different models proposed in the literature mostly differ by the con-
struction of the D tensor and the form of the proliferation term (Tracqui 
et al. 1995; Swanson et al. 2000; Giese 1996; Clatz et al. 2005; Jbabdi et al. 
2005; Hogea et al. 2007). In this chapter we concentrate on the personal-
ization of the growth models proposed in Clatz et al. (2005) and Jbabdi et 
al. (2005). However, the methods explained in this chapter are indepen-
dent from the exact construction of the tensor and can be applied to both 
of these formulations, as well as to other reaction-diffusion models. The 
two aforementioned models are based on Equation 16.1, and they con-
struct the diffusion tensor D as follows:

	 D(x)
I x

D xwater

=
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( ) ∈
d

f d
g

w

,

, ,

gray matter

white mmatter




	 (17.2)

The choice of the function f is defined differently in the two models:

	
f

d
e x

w=
D

V(x)
water , ( )

diag ( )
Clatz et al. 2005

1 dd d dw g g, , ,( ) 


 V(x)T (Jbabdi et al. 2005)

where dw is the diffusion rate in the white matter (Clatz et al. 2005) or 
along the white matter fiber tracts (Jbabdi et al. 2005), dg is the diffusion 
rate in the gray matter, I is the unit tensor and Dwater=VΛVT is the diffusion 
tensor of water molecules at point x with Λ representing the eigenvalue 
matrix and e1 being its highest eigenvalue.
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Image-Guided Model Personalization

Once the mathematical model describing the general dynamics of the 
tumor growth process is created, the personalization is defined as the esti-
mation of the model parameters based on the observations. The image-
guided personalization focuses on determining the reaction-diffusion 
parameters, the diffusion tensor D (dw and dg), and the proliferation rate 
ρ, based on the observed evolution of the tumor in the time series medical 
images. The difficulty in this estimation is due to the sparsity of the avail-
able information. The reaction-diffusion models describe the temporal 
evolution of tumor cell densities, whereas in the images we only observe 
the evolution of the tumor delineation, which is assumed to correspond to 
an iso-density contour (Burger 1988) as shown in Figure 17.1. Therefore, 
reaction-diffusion models are not directly applicable for the estimation 
problem.

The problem of parameter estimation in the context of tumor growth 
models is a rather unexplored problem. A first attempt was made by 
Tracqui et al. (1995) where they optimized the parameters of their model 
by comparing the area of the tumor observed in CT images at different 
times and the area of the simulated tumor. The drawback of this approach 
was the use of tumor cell densities requiring an initialization of the density 
distribution throughout the brain although these densities are not observ-
able in the images (again, we observe tumor delineations). More recently, 
in (Hogea et al. 2008), Hogea et al. have optimized their parameters using 
two different methods: by comparing locations of some manually-placed 

T2w image
signal
intensity

T1w post-gad
enhanced region

T1w post-gad
signal intensity

T2w enhanced
region

Necrotic core

Figure 17.1  (Left) T2-weighted and (middle) T1-weighted post-gad MR images 
showing a high grade glioma. The bulk tumor and the infiltrated edema are 
the enhanced regions in the left and the middle images respectively. (Right) 
Hypothetical distribution of tumor cell density is a smooth transition starting 
from the bulk tumor extending beyond the edema.
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landmarks with the model-generated ones and by comparing tumor cell 
densities extracted from the images and generated by the model. In addi-
tion to the parameters of the reaction-diffusion model, they optimize the 
parameters of their mechanical model as well. The use of tumor cell densi-
ties in the optimization process has the same problems as the previously 
mentioned method; they are not observable. The landmarks on the other 
hand, seems to be a promising approach; however, the parameter values 
obtained in this approach depend on the assumed coupling between the 
mechanical and the pathophysiological model. The resulting parameters 
are not purely inherent to the tumor. Recently, Swanson (2008) proposed a 
parameter estimation method for the diffusion process in petri dish exper-
iments, which is consistent with the observed information in the images 
as it uses the tumor boundaries rather than tumor cell densities. They have 
derived analytical approximations for the evolution of the tumor delinea-
tion for two-dimensional circular growth. Using the formulation for the 
tumor delineation, they have estimated the diffusion coefficient for the 
petri dish experiments. The difficulty one would encounter if one wants 
to apply this method to medical images is that the method assumes radial 
symmetric growth, which is not the case in the brain (in vivo). Moreover, 
the existence of a reaction term results in a different evolution than pure 
diffusion.

In this chapter, we explain and analyze a parameter estimation method 
for reaction-diffusion based tumor growth models using the time series of 
MR images. The method is based on the evolution of the tumor delineation 
rather than tumor cell densities, and in this respect it is consistent with the 
observations in the images. It also takes into account tissue inhomogene-
ities, fiber structures, and the real geometry of both the patient’s brain and 
the tumor while remaining consistent with the image information. We 
also present preliminary promising results on two sets of patient data.

Infiltration Extent of Gliomas and Model-Based Irradiation Margins

For the diagnosis and the therapy of gliomas, clinicians rely on medical 
images, such as magnetic resonance (MR) and computed tomography 
(CT) images, which show the mass part of the tumor. Current imaging 
techniques are not able to expose the low-density infiltration (Tovi et al. 
1994; Tracqui et al. 1995; Swanson et al. 2004) posing a problem for the 
experts in outlining the whole tumor and in delineating its extent (see 
Figure 17.1). In radiotherapy, this problem of visualizing low density infil-
tration is addressed by outlining a constant margin of 2 cm around the 
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visible tumor boundary for irradiation and assuming the whole tumor 
infiltration is contained within this region (Seither 1995; Kantor et al. 
2001). This approach does not take into account the infiltration dynamics 
of gliomas, particularly the higher motility of tumor cells in white matter 
compared to gray matter (Giese 1996). As a result, the irradiation region 
ignoring these dynamics might not reach the full extent of the tumor infil-
tration in white matter and irradiate healthy gray matter. The importance 
of this problem was shown by Swanson et al. (2002) where they compare 
the visible part of the tumor with the extent of the invisible infiltration for 
virtual tumors grown by reaction-diffusion models. Personalized tumor 
growth models can offer solutions to this problem by integrating clini-
cal information and theoretical knowledge about tumor cell dynamics. In 
this chapter we describe a new formulation that aims to solve the problem 
of estimating tumor cell density distribution beyond the visible boundary 
of gliomas in the images. Starting from the tumor delineation either found 
by a segmentation algorithm or manually drawn by an expert, it produces 
a map of possible tumor infiltration. It uses the anatomical MR images 
and diffusion tensor images (DTI) to suggest irradiation margins, taking 
into account the growth dynamics. We then use the extrapolated infiltra-
tion extents to create variable irradiation margins. The potential benefits 
of such margins in targeting tumor cells are also described.

Methods

Parameter Estimation and Model Personalization

The reaction-diffusion model given in Equations 17.1 and 17.2 describes 
the temporal evolution of local tumor cell densities. In order to solve 
the parameter estimation problem we need a formulation consistent 
with the image: it should model the evolution of the tumor delineation 
rather than the evolution of the cell densities. In this section, first we 
present the traveling time formulation for tumor delineation which cap-
tures the same growth dynamics as the reaction-diffusion models while 
remaining consistent with the image information. Then we formulate 
the parameter estimation problem as an optimization problem based on 
the MR images, using the traveling time formulation.

Traveling Time Formulation for Tumor Delineation
The asymptotic properties of the reaction-diffusion equations under 
certain conditions allow us to construct a formulation for the tumor 
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delineation as described above, the traveling time formulation. 
Reaction-diffusion equations and their asymptotic properties have been 
well studied in the literature (Aronson and Weinberger 1978; Sarlos and 
Ebert 2000). The property on which we base our derivation is the existence 
of traveling wave solutions of the reaction-diffusion equations and the con-
vergence of different initial conditions to these solutions in time.

The constant coefficient case of Equation 17.1 admits a traveling wave 
solution in the infinite cylinder given as u(x,t) = u(n ⋅ x − vt) = u(ξ), where 
v is the speed of the wave (front of the u distribution), n is the direction of 
motion of the wave, and ξ = n ⋅ x − vt is the moving frame of the traveling 
wave. There are two important characteristics of the reaction-diffusion 
equations and the traveling wave solutions that are very useful for our 
derivation:

For the traveling wave solution, all iso-density contours of the distri-•	
bution u move with the same speed v.

Any initial condition •	 u(x,0) with compact support (1) converges to 
the traveling wave solution in time (see Figure 17.2). Therefore, the 
traveling wave solution serves as a good approximation for a certain 
class of solutions of the reaction-diffusion equation.

Based on these two characteristics we can model the evolution of the 
tumor delineation through the speed of the traveling wave.

The asymptotic speed v of the traveling wave solution is given as a func-
tion of the model parameters

	 v = ′2 ρn Dn , 	 (17.3)

where (.)’ is the transpose operator. This speed is defined in the infinite cyl-
inder under the constant coefficient assumption. In the case of the tumor 
modeling the shape of the tumor is arbitrary and the model coefficients 
can be spatially and temporally varying. Therefore, the above assumptions 
should be relaxed. Under the assumptions that the tumor delineation is 
planar and coefficients are constant within each image voxel, we can write a 
preliminary traveling time formulation for the tumor delineation using v:

	 2 1ρ ∇ ′ ∇ =T TD , 	 (17.4)
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	 T T( ) ,x x= ∀ ∈0 Γ 	 (17.5)

where T(x) is an implicit time function representing the time when the 
tumor delineation passes through the point x. Equation 17.5 represents 
the Dirichlet-type boundary condition, stating that the tumor delineation 
reaches the surface Γ in T0 time since its emergence. The value of T0 is the 
absolute time value, and it is not known from the images. However, we do 
not need to know this value in order to evolve the tumor delineation with 
the model given in Equation 17.4. The formulation given by Equations 17.4 
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Figure 17.2  Any initial condition with compact support when evolved with 
reaction-diffusion equations (in the infinite cylinder and constant coefficients) 
converges to the traveling wave solution. (Left) A Heaviside initialization is 
evolved in time. (Middle) We plot the distribution at different times on the mov-
ing frame. (Right) The traveling wave solution has an asymptotic speed plot as 
dashed curve; however, when we observe the speed of the tumor front (u = 0.5 
iso-density contour) we notice the low rate of convergence (solid curve). We can 
get a better approximation for the speed of tumor front by including the effect of 
time convergence and curvature (point-dashed curve).
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and 17.5 is, in a sense, a first-order approximation. It does not take into 
account the convergence rate of the initial distribution u to the travel-
ing wave solution (see Figure 17.2) and the effect of the curvature of the 
tumor delineation on its speed. These effects can be included, leading to 
the final traveling time formulation for the tumor delineation as follows 
(Konukoglu 2009a)

	 4 3
2

0 3 1 0 3ρ
ρ

ρ κ ρT
T

e T− − −( )







∇ ′ ∇− ( ). | |/ .eff D TT =1	 (17.6)

	 κeff = ∇⋅
∇

∇ ′ ∇
= ∀ ∈D

D
x xT

T T
T T, ( ) ,0 Γ

where the term 4 3 2ρ ρT T−( ) ( )/  is the effect of the tumor rate of con-
vergence, and the term with κeff is the effect of the tumor delineation’s 
curvature on its evolution. The traveling time formulation given in 
Equation 17.6 describes the evolution of the tumor delineation in the MR 
images based on the same growth dynamics as the reaction-diffusion 
models. In the formulation given in Equation 17.6 we notice the T depen-
dence of the equation. This means that the value of T0 becomes important 
for the simulation. As we have noted, this value would not be known in 
the clinical routine. However, we solve this problem by treating this value 
as another model parameter to be optimized for.

In Figure 17.3 we show an example evolution simulated using the trav-
eling time formulation to show that it captures the same growth dynam-
ics as the reaction-diffusion model given in Equations 17.1 and 17.2. We 
compare the evolution of a synthetic tumor delineation simulated by the 
reaction-diffusion model (in white) and by the traveling time formulation 
(in black). In the case of the reaction-diffusion model, the synthetic delin-
eation is obtained by thresholding the tumor cell density distribution, 
which would not be available in patient cases.

The Parameter Estimation Formulation
Since we have linked the reaction-diffusion model and the evolution 
of the tumor delineation through the traveling time formulation, we 
can formulate the parameter estimation problem using this link. In the 

© 2011 by Taylor and Francis Group, LLC



394    ◾    Ender Konukoglu, et al.

reaction-diffusion model given in Equations 17.1 and 17.2, there are three 
different parameters: dw, dg,, and ρ. In addition to these, in the previous 
section we added another parameter T0 in the traveling time formulation 
as a result of integrating the convergence characteristics of the reaction-
diffusion solutions. This results in four parameters to estimate for. Our aim 
is to optimize these parameters such that the evolution simulated using 
the traveling time formulation best matches the real evolution observed in 
the time series of MR images.

At the first step we define a discrepancy measure between the simu-
lated tumor evolution and the observed one for a given set of parameters. 
Minimizing this discrepancy then would provide us with the optimum 
model parameters. Our strategy in defining this discrepancy is to use the 
symmetric surface distances between the simulated and the real delinea-
tions and also add a criterion regarding the initial size of the tumor in the 

Figure 17.3  Comparison between the reaction-diffusion model and the travel-
ing time formulation: The temporal evolution of the iso-density contour is dem-
onstrated for a synthetic tumor. Contours are shown for days 400, 600, 800, 1000, 
and 1200 from the innermost to outermost respectively. The synthetic tumor is 
virtually grown using the reaction-diffusion model. White contours are obtained 
by thresholding the tumor cell densities at u = 0.4 for the respective day values 
(400-600-800-1000-1200). Then in order to simulate the evolution of the iso-
density contour (assumed to correspond to tumor delineation in real images) 
starting from day = 400, without the knowledge of the tumor cell density dis-
tribution we use the traveling time formulation. Black curves are the contours 
we obtain at days 600 (2nd innermost) to 1200 (outermost). The tumors were 
grown in the images of a healthy subject for whom we also have the DT-MRIs. 
Parameters: (dw = 0.25 mm2/day, dg = 0.01 mm2/day, ρ = 0.012 day−1). The figure 
is Copyright © 2009 IEEE.
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first acquired image. The resulting criterion becomes a quadratic measure 
as follows:

	 C d d T v T Tw g i i

N

, , , dist( , ˆ ) min minρ 0 0
2

1

( ) = { }+ −Γ Γ
−−

∑
1

	 (17.7)

	 ˆ | ( ) ( )Γ ∆ Γi iT T t T T= = +{ } = ∀ ∈x x x x0 0 0with 	 (17.8)

	 v T Tmin min. , ( )= ′ =0 1 ρn D(x )n xmax min max min 	 (17.9)

where N is the number of images, Γi is the delineation enclosing the tumor 
in the i-th image, dist() is the symmetric distance between two surfaces, 
Δti is the time difference between the i-th, and the first MR image, xmin 
is the point where the simulated T reaches its minimum and nmax is the 
principal eigenvector of D(xmin). In Equation 17.7 the summation mea-
sures the distance between the simulated and the real observations. This 
is obtained by running the traveling time formulation outwards, starting 
from the delineation of the tumor obtained in the first image and compar-
ing the corresponding simulated and observed delineations for the other 
images. The other term in the same equation, vmin⎮Tmin − T0⎮2, takes into 
account the size of the visible tumor in the first image and quantifies the 
coherency of this size with the model parameters. We compute this value 
by simulating the traveling time evolution within the tumor delineation 
in the first image and compare the minimum T value obtained with the T0 
parameter. If all the parameters of the model are coherent with the obser-
vations, then this term should be equal to zero.

We define the parameter estimation problem as the minimization of the 
error measure defined in Equation 17.7. Different optimization algorithms 
can be used for this purpose. Since the gradients of C are not trivial to find 
analytically, we prefer to use a general algorithm that approximates the 
gradient directions. In this work we use the algorithm proposed by Powell 
in (Powell 2001) that finds the gradient directions by fitting quadratic sur-
faces to the underlying minimization surface. Computation times depend 
on the size of the tumor and the number of images. As an example for a 
high grade glioma with a time series of 4 images of size (256 × 256 × 53) the 
minimization takes around 50 min on a 2.4 GHz Intel Pentium machine 
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with 1 GB of RAM. In Figure 17.4 we provide an example showing the 
inputs and the outputs of the parameter estimation method.

Extrapolating Infiltration Extent and Adaptive Irradiation Margins

In the previous section we presented a method to personalize the reaction-
diffusion-type tumor growth models using the MR images of the patient. 
Here, we assume that we have the personalized model and we present a 
method to extrapolate the cell density distribution of the tumor beyond 
its delineation in the image. This method produces a map of possible 
tumor infiltration that is not visible in the image. Then, using this map, we 
describe a method for constructing variable irradiation margins, taking 
into account the growth dynamics of the tumor.

Extrapolating Invisible Infiltration Extents of Gliomas
In order to formulate the extrapolation method, first we need an imag-
ing model for the gliomas. We assume that this imaging process can be 
modeled using a Heaviside function as done in (Tracqui et al. 1995) and in 
(Swanson et al. 2000). The imaging function Im is given as

	 Im( ( , )) ;u t
u u
u u

x =
≥
<





1
0

0

0

if
if

	 (17.10)

Figure 17.4  (See color insert following page 40) The inputs and the outputs 
of the parameter estimation method for a virtual tumor grown by reaction-dif-
fusion models are shown. Top row shows the tumor delineations as observed in 
medical images and also the DT-MRI image of the subject. Bottom row shows the 
outputs of the method. The white contours are the tumor delineations observed 
in the images, the red contours are the evolution of the tumor delineation simu-
lated by the traveling time formulation with optimized parameters.
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we define 1 as enhanced, 0 as nonenhanced regions in the image, and u0 is 
the tumor cell density threshold of the imaging modality. This simplistic 
model assumes that the delineations in the images correspond to an iso-
density contour of the tumor cell density distribution. A more general 
imaging function can be used, and similar ideas presented below would 
be applicable. Based on this definition, the problem of extrapolating cell 
density distribution of a tumor beyond its delineation in the image is 
defined as

	 u u T( ) ( , ) |Im( ) ,x x x x x≈ ∀ ∈ ={ }0 0 	 (17.11)

where u~ approximates the actual tumor distribution at a time instant T0. 
Unlike the forward modeling of the tumor growth, the construction of 
the approximation u~ is a static problem, and it does not involve the time 
evolution of the tumor. Moreover, in the clinical situations, the value of T0, 
which indicates the time elapsed between the emergence of the tumor and 
the image acquisition is not available.

The ability to personalize reaction-diffusion models give us the oppor-
tunity to construct u~ for patient images. The asymptotic properties of 
the reaction-diffusion equations explained in section titled “Parameter 
Estimation and Model Personalization” allow us to write the following 
formulation

	
∇ ⋅ ∇( )

−( ) = ( ) = 
 


u u
u u

u u
D

ρ 1
1 0, .Γ 	 (17.12)

In this equation Γ is the tumor delineation in the image either found by a 
segmentation algorithm or drawn manually. For the derivation of this for-
mulation we ask the reader to refer to (Konukoglu 2009). Equation 17.12 
provides us a gradient relationship for u~. In order to solve this equation 
we start from the enhanced part of the tumor in the image and sweep 
the brain tissue outwards, computing possible tumor cell density values at 
every point. Since the equation is an anisotropic Eikonal equation, it can 
be rapidly solved as described using fast-marching methods suitable to 
the exact form of the equation (Konukoglu et al. 2007). In Figures 17.5a–
17.5c, for a virtual tumor grown by the reaction-diffusion model, we 
demonstrate the visible part of the tumor, the invisible infiltration, and 
the reconstructed tumor cell density based only on the visible part of the 
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tumor and personalized parameters. We observe the similarity between 
the distributions.

Adaptive Irradiation Margins
In conventional radiotherapy, the irradiation margins are constructed 
based on the tumor geometry visible in the medical images. The margin 
takes into account the enhanced area of the tumor in the image, plus a 
constant margin around the delineation to deal with the low cell density 

(a)

(d) (e)

(b) (c)

(f )

Figure 17.5  (See color insert following page 40) (a) to (c): Example of an 
extrapolated image for a synthetic tumor. (a) The image of a synthetic tumor is 
shown, where the white region is the visible part. The not-imageable infiltration 
region is also shown in color (from white  =  high density to green  =  low den-
sity). (b) The low density infiltration extrapolated by the proposed method start-
ing from the visible part. (c) Iso-density contours of the actual distribution (red 
solid) and the corresponding ones of the extrapolated distribution (white solid). 
The black contour is the tumor delineation visible in the image. We observe the 
high global resemblance. (d) to (f): The proposed variable irradiation region con-
struction takes into account the growth dynamics of the tumor. Figures show the 
two irradiation margin construction approaches and the synthetic tumor cell 
distribution they aim to target. (d) Cell distribution of the synthetic tumor. The 
white region is the visible part while the colored region is the infiltration not 
visible in the image. Figures (e) and (f) show constant and variable irradiation 
regions overlaid on the tumor distribution respectively. Blue regions represent 
the areas to be irradiated. For the synthetic tumor the variable margin better cov-
ers the extent of the infiltration therefore provides a better targeting.
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infiltration (Kantor et al. 2001). This approach assumes that the tumor 
cells would diffuse within the brain tissue homogeneously around the 
visible tumor. It does not take into account the growth dynamics of the 
tumor, especially the differential motility (Giese 1996).

The extrapolation method presented in the previous section gives us 
a map of possible tumor infiltration that is not visible in the images. We 
can use this to construct irradiation margins adapted to this map. Our 
strategy is to first construct the conventional constant margin irradiation 
region Mc and then create the adapted margins Mv by molding Mc such 
that Mv takes into account the infiltration extent constructed as explained 
in the previous section. We refer the reader to (Konukoglu 2009) for the 
details of this construction. In Figures 17.5d–17.5f we demonstrate the two 
margins, the constant and the variable ones. For a virtually grown tumor 
we show the visible part of the tumor, its invisible infiltration and the 
constant and the variable irradiation margins constructed based on its 
visible part.

Results

Parameter Estimation and Model Personalization

The evaluation of parameter estimation for tumor growth models using 
real patient images is not easy because we do not have access to the real 
values of the parameters. The real values could be found using microscopic 
in vivo analysis; however, up to the best of our knowledge such a study 
has not been performed yet. In this work we perform an indirect evalua-
tion for the proposed parameter estimation method using patient images. 
For a given patient dataset, we estimate the parameters using all but the 
image taken at the last time point. Then, using the estimated parameters 
we simulate the evolution of the tumor delineation for the time elapsed 
between the last two images. We then compare the evolution predicted, 
using the estimated parameters and the traveling time formulation with 
the one observed in the last image. The correlation between the prediction 
and the observed delineation provides us with a qualitative evaluation of 
the estimated parameters.

In the parameter estimation process it is shown in Konukoglu et al. 
(2009a) that estimating all the parameters of the model independently 
using the evolution of the tumor delineations in the images results in non-
unique solutions. Therefore, in this study we fix the proliferation rates ρ of 
the tumors to the values suggested in the literature. We only estimate for 
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the diffusion rates and the initial time estimates. In fixing the value of ρ 
we assume that this value can be estimated based on the biopsy results and 
microscopic analysis using the relation between the mitotic index (MI) 
and the labeling index (LI) (Johannessen and Torp 2006).

As a preliminary step we use two patient datasets that include 
anatomical and diffusion tensor MR images. The dataset for the first 
patient, who suffers from a high-grade glioma (glioblastoma multi-
forme), includes T1-post gadolinium MR images (with the resolution of 
0.5 × 0.5 × 6.5 mm3) at three successive different time points and diffu-
sion tensor MR image (with the resolution of 2.5 × 2.5 × 2.5 mm3) taken 
at the second time point. The second patient suffers from a low-grade 
glioma (second grade astrocytoma) and the dataset for this patient 
includes T2 flair MR images (with the resolution of 0.5 × 0.5 × 6.5 mm3) 
at five successive time points and the DT-MRI image (with the resolu-
tion of 2.5 × 2.5 × 2.5 mm3) taken at the first time point. For both cases, 
the tumor boundaries were manually delineated by an expert in each 
image separately.

The images used to estimate parameters, the estimated parameters 
and the predicted evolution of the tumor delineations along with the real 
delineations are given in Figures 17.6 and 17.7. In the images in both fig-
ures, first we show the anatomical images at the time of detection and the 
intermediate images used in the parameter estimation. On the intermedi-
ate images we also plot the manual delineations for the underlying image 
(white contour) and the simulated evolution of the tumor delineation with 
the estimated parameters (dark contour) obtained in the course of esti-
mation. Following this, we start from the last image (in time) used in the 
parameter estimation and predict the evolution of the tumor delineation 
until the acquisition of the final image (which was not used in the estima-
tion). In the corresponding images we show the anatomical MR image 
taken at the last time point showing the final state of the tumor along 
the tumor delineation predicted, using the estimated parameters drawn 
as the dark contour. In the accompanying tables we provide the values of 
the estimated parameters.

We observe in Figure 17.6c that the prediction of the tumor delineation 
is in very good agreement with the final state of the tumor. In the case of 
the low-grade tumor shown in Figure  17.7, the correlation between the 
predicted tumor delineation and the final state of the tumor is in line with 
our previous arguments. We observe that the slow evolution of the tumor 
is well captured by the estimated parameters. For the proliferation rate 
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we pick a lower value than the one in the previous case since it is a lower 
grade tumor.

Extrapolating Infiltration Extent and Adaptive Irradiation Margins

In this section we assess the quality of the extrapolation method and the 
method for constructing the variable, adaptive irradiation margins. In 
order to understand the potential benefits of extrapolating the infiltra-
tion extents of gliomas and constructing irradiation margins adapted to 
these results, we perform experiments on synthetic images. We create a 

Figure 17.6  The parameter estimation method is applied to the images of a real 
patient suffering from high grade glioma. Images in columns (left column) and 
(middle column) shows different slices of the T1-post gadolinium images which 
are used to estimate the parameters of the growth model as: ρ = 0.05/day (set), 
dw = 0.66 mm2/day, dg = 0.0013 mm2/day. In (middle column) we also show the 
manual delineation of the tumor (in white) used in parameter estimation along 
with the optimum simulation obtained by the estimated parameters (in black) 
(only white contour is shown in (left column) since it is the same as the black 
one). (right column) The final image shows the final state of the tumor and the 
evolution of the delineation predicted by the estimated parameters (the black 
contour). The figure is Copyright © 2009 IEEE.
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Figure 17.7  As a second case we applied our methodology to the images of a 
patient suffering from a low-grade tumor. Images (first three columns) show dif-
ferent slices of the T2 flair images and the manual delineations (in white) which 
are used to estimate the parameters of the growth model as: ρ = 0.008/day (set), 
dw = 0.20 mm2/day, dg =7 × 10-4 mm2/day. Also in these images we show the 
simulated evolution of the tumor delineation obtained by the estimated param-
eters in black contours. The simulated evolution starts from the white contour in 
the image (left column). Images (right column) are the slices of the final image 
showing the final state of the tumor and the delineation predicted by the esti-
mated parameters as the black contour. The figure is Copyright © 2009 IEEE.
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dataset of virtually grown tumors using the reaction-diffusion models 
where the tumors are grown in the MR images of a healthy subject (1 × 1 
2.6 mm3 resolution). Different tumors in the dataset are created using 
different model parameters and different seed points in the brain. For 
each tumor we construct synthetic images using the Im() function given 
in Equation 17.10 with u0 = 0.4, value consistent with (Tracqui et al. 
1995). We assume that the detection and the first image acquisition take 
place when the average diameter of the visible tumor reaches 1.5 cm. 
After the detection for each tumor we construct a synthetic image every 
50 days for 1 year (8 images in total). An example of the created syn-
thetic image with the synthetic tumor is shown in Figures 17.5d–17.5f. 
For the tumors in the dataset we construct the constant and the variable 
irradiation margins based on their visible parts in the images. Since for 
the virtual tumors, the cell density at every location is known—even if 
the image does not show a tumor at that point—we carry out a quanti-
tative comparison. We geometrically compare these margins based on 
two criteria:

	 1.	R: number of tumor cells not targeted

	 2.	Vol: volume of healthy tissue targeted by the irradiation margin

In order to compute these values we follow the values given in (Tracqui 
et al. 1995) we assume that a voxel of 1 × 1 × 2.6 mm3 can hold a maximum 
of 9.1 × 104 tumor cells. At the time of detection of high grade gliomas, 
isolated tumor cells can be found in any region in the brain. Therefore, 
there is no completely healthy brain. In order to compute the Vol value we 
need to define “healthy tissue.” In this work we define a voxel to be healthy 
if there are on the average less than 1 tumor cell in it. In Figure 17.8 for a 
synthetic tumor we show the comparison between the constant and the 
variable irradiation margins. We plot the R versus time and Vol versus 
time graphs. We observe that the variable irradiation margins adapted 
to the extrapolated infiltration extents targets more tumor cells and less 
healthy tissue.

The experiments presented above use synthetic images and virtually 
grown tumors. Validating the presented methods on real images would 
require the knowledge of tumor cell density distributions throughout the 
brain. This could be obtained with postmortem analysis or with animal 
models. This would be the topic of a future study.
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Conclusion
In this chapter we presented methods to personalize reaction-diffusion 
type tumor growth models in MR images. Our aim was to bridge the gap 
between the mathematical tumor growth models and the clinical applica-
tions. In this spirit, first we focused on a method for personalizing the 
generic reaction-diffusion growth models based on time series of MR 
images. The method described the evolution of the tumor delineation 
in the images based on the growth dynamics captured by the reaction-
diffusion models. Based on this formulation, it optimized for the model 
parameters such that the resulting simulations best matches the observed 
evolution of the tumor boundaries in the MR images. The results shown in 
section titled “Results” demonstrated promising preliminary findings.

As a second part, we presented an application of personalized tumor 
growth models for radiotherapy to demonstrate clinical relevance of the 
personalization process. We constructed the possible tumor infiltration map 
of gliomas starting from their visible delineation in the MR images. Using 
this map we proposed variable irradiation margins that are adapted to the 
modeled growth dynamics of the observed tumor. We also showed potential 
benefits of such variable irradiation margins compared to constant ones.

Although a preliminary validation was performed a thorough valida-
tion remains to be done on animal models and postmortem analysis.
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Figure 17.8  For an example virtual tumor we plot the R vs. time (left) and Vol 
versus time plots (right). Each time point corresponds to an image taken in the 
study as explained in the section titled “Extrapolating Infiltration Extent and 
Adaptive Irradiation Margins.” We see that potentially variable irradiation mar-
gins can improve the accuracy of irradiation margins.
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In Silico Oncology
Part I—Clinically Oriented Cancer 
Multilevel Modeling Based 
on Discrete Event Simulation

Georgios S. Stamatakos

Introduction
Most cancer modeling techniques developed up to now adopt the 
straightforward “bottom-up” approach, focusing on the better understand-
ing and quantification of rather microscopic tumor dynamics mechanisms 
and the investigation of crucial biological entity interdependences includ-
ing tumor response to treatment in the generic investigational context. To 
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this end several combinations of mathematical concepts, entities, and tech-
niques have been developed and/or recruited and appropriately adapted. They 
include population dynamics models (Guiot et al. 2006), diffusion-related 
continuous and finite mathematics treatments (Murray 2003; Swanson et al. 
2002; Breward et al. 2003; Cristini et al. 2005; Frieboes et al. 2006; Enderling 
et al. 2007; Ramis-Conde et al. 2008), cellular automata and hybrid techniques 
(Duechting and Vogelsaenger 1981; Duechting et al. 1992; Ginsberg et al. 
1993; Kansal et al. 2000; Stamatakos et al. 2001a, 2001b; Zacharaki et al. 2004), 
agent-based techniques (Mansury and Deisboeck 2003), etc. Additionally, a 
number of bulky clinical tumor models focusing mainly on invasion and 
tumor growth morphology rather than on tumor response to concrete thera-
peutic schemes as administered in the clinical setting have appeared. Finite 
difference and finite element-based solutions of the diffusion and classical 
mechanics equations constitute the core working tools of the corresponding 
techniques (Murray 2003; Swanson et al. 2002; Clatz et al. 2005).

However, a number of concrete and pragmatic clinical questions of 
importance cannot be dealt with neither by the bottom-up approach 
nor by the morphology-oriented bulky tumor growth models in a 
direct and efficient way. Two examples of such questions are the fol-
lowing (Graf and Hoppe 2006): Can the response of the local tumor 
and the metastases to a given treatment be predicted in size and shape 
over time?, What is the best treatment schedule for a patient regarding 
drugs, surgery, irradiation and their combination, dosage, time sched-
ule, and duration? A promising modeling method designed with the 
primary aim of answering such questions is the Discrete Event-Based 
Cancer Simulation Technique (DEBCaST) (Stamatakos et al. 2001c, 
2002, 2006a, 2006b, 2006c, 2007a, 2007b, 2009; Dionysiou et al. 2007, 
2008; Stamatakos and Uzunoglu 2006; Dionysiou et al. 2004, 2006a, 
2006b; Antipas et al. 2004, 2007; Stamatakos and Dionysiou 2009). 
DEBCaST is basically a “top-down” biomodeling approach, in the sense 
that macroscopic data, including anatomic and metabolic tomographic 
images of the tumor, provide the framework for the integration of avail-
able and clinically trusted biological information pertaining to lower 
and lower biocomplexity levels such as clinically approved histological 
and molecular markers. However, DEBCaST does also provide a power-
ful framework for the investigation of multiscale tumor biology in the 
generic investigational context.

From the mathematical standpoint, DEBCaST is primarily a discrete 
mathematics method, although continuous mathematics (continuous 
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functions, differential equations) are used in order to tackle specific aspects 
of the models, such as pharmacokinetics and cell survival probabilities 
based on pharmacodynamical and radiobiological models. Adoption of 
the discrete approach as the core mathematical strategy of DEBCaST has 
been dictated by the obvious fact that from the cancer treatment perspec-
tive it is the discrete (i.e., the integer) number of the usually few tumor 
cells surviving treatment and their discrete mitotic potential categoriza-
tion (stem cells, progenitor cells of various mitotic potential levels, and 
differentiated cells) that really matters. These discrete entities and quan-
tities in conjunction with their complex interdependences may give rise 
to tumor relapse or to ensure tumor control over a given time interval 
following completion of the treatment course. Cell-cycle phases have a 
clearly discrete character, too. Moreover, the properties of the different 
cell phases may vary immensely from the clinical significance perspective. 
A classic example is the lack of effect of cell-cycle-specific drugs on living 
tumor cells residing in the quiescent G0 phase.

It is noted that complex interdependencies of microscopic factors in the 
surrounding milieu of the cells such as oxygenation, nutrient supply, and 
molecular signals emitted by other cells play a critical role in the mitotic 
fate of tumor cells. Their effect is taken into account in DEBCaST through 
the local mean values of the corresponding model parameters. To this 
end, imaging, histological, and molecular data are exploited, as will be 
described later.

Due to the numerical character of the method, a careful and realistically 
thorough numerical analysis concerning consistency, convergence, and 
sensitivity/stability issues is absolutely necessary before any application 
is envisaged. A discussion of this critical issue is included in the section 
titled “Discussion and Future Perspectives.”

Tumor neovascularization is taken into account in an indirect yet prag-
matic way by exploiting grey level and/or color information contained 
within slices of tomographic imaging modalities sensitive to blood perfu-
sion and/or the metabolic status of the tumor. (Stamatakos et al. 2001a, 
2002, 2006a; Dionysiou et al. 2004, 2007; Marias et al. 2007). The reason 
for adopting the above-mentioned strategy rather than developing or inte-
grating detailed tumor angiogenesis models is that no microscopic infor-
mation regarding the exact mesh of the neovascularization capillaries 
throughout the tumor can be currently extracted from clinically utilized 
imaging modalities. Nevertheless, the microscopic functional capillary 
density distribution over the tumor can be grossly estimated, based on 
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various imaging modalities such as T1-gadolinium-enhanced MRI in the 
case of glioblastoma multiforme (GBM) and arterial spin labeling (ASL) 
MRI.

Precursors of DEBCaST can be traced in the well-established and clini-
cally applicable disciplines of pharmacology and radiobiology. Integration 
of molecular biology in DEBCaST may be viewed as the introduction of 
a perturbator or adaptor of the cellular and higher biocomplexity level 
parameters. In such a way, the in vivo measurable clinical manifestation 
of tumor dynamics is placed in the foreground. This is one of the reasons 
why DEBCaST is gaining wider and wider acceptance within the clinical 
and the industrial environment, including the emergent domain of in sil-
ico oncology (Stamatakos et al. 2002, 2007b, 2009; Stamatakos 2006, 2008; 
Graf and Hoppe 2006; Graf et al. 2007, 2009). Both the large scale European 
Commission (EC) and Japan-funded research and development (R&D) 
project ACGT [ACGT: Advancing Clinicogenomic Trials on Cancer: 
Open Grid Services for Improving Medical Knowledge Discovery, FP6-
2005-IST-026996, http://eu-acgt.org/acgt-for-you/researchers/in-silico-
oncology/oncosimulator.html and http://www.eu-acgt.org/] and the 
EC-funded R&D project ContraCancrum [ContraCancrum: Clinically 
Oriented Translational Cancer Multilevel Modeling FP7-ICT-2007-2-
223979, www.contracancrum.eu] have adopted DEBCaST as their core 
cancer simulation method. It is worth noting that in both projects the 
role of clinicians is prominent. A biomedical engineering concept and 
construct tightly associated with DEBCaST, the Oncosimulator, which is 
currently under clinical adaptation, optimization, and validation, is also 
sketched.

In order to convey the core philosophy of the method to the reader in a 
concise way, a symbolic mathematical formulation of DEBCaST in terms 
of a hypermatrix and discrete operators is introduced. Two specific models 
of tumor response to chemotherapeutic and radiotherapeutic schemes are 
briefly outlined so as to exemplify DEBCaST’s application potential. The 
chapter concludes with a discussion of several critical aspects including 
numerical analysis, massive parallel code execution, associated technolo-
gies, extensions, and validation within the framework of clinico-genomic 
trials and future challenges and perspectives.

An encouraging fact as far as industrial and eventually clinical 
translation of the method is concerned is that both DEBCaST and the 
Oncosimulator have been selected and endorsed by a worldwide lead-
ing medical technology company and now constitute modules of their 
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research and development line (ContraCancrum project). One of the 
envisaged final products of this endeavor is a radiotherapy treatment 
planning system based on both physical and multiscale biological optimi-
zation of the spatiotemporal dose administration scheme. A clinical trial-
based validation process for the system is currently at the final stage of its 
detailed formulation.

The Oncosimulator
The Oncosimulator is, at the same time, a concept of multilevel integrative 
cancer biology, a complex algorithmic construct, a biomedical engineer-
ing system, and eventually a clinical tool that primarily aims at supporting 
the clinician in the process of optimizing cancer treatment in the patient- 
individualized context through conducting experiments in silico (i.e., on 
the computer). Additionally, it is a platform for simulating, investigating, 
better understanding, and exploring the natural phenomenon of cancer, 
supporting the design and interpretation of clinicogenomic trials and finally 
training doctors, researchers, and interested patients alike (Stamatakos and 
Uzunoglu 2006; Stamatakos et al. 2007a; Graf et al. 2009).

A synoptic outline of the clinical utilization of a specific version of the 
Oncosimulator, as envisaged to take place following an eventually suc-
cessful completion of its clinical adaptation, optimization, and validation 
process, is provided in the form of the following seven steps (Figure 18.1):

First step: Obtain patient’s individual multiscale and inhomogeneous 
data. Data sets to be collected for each patient include: clinical data 
(age, sex, weight, etc.), possible previous antitumor treatment history, 
imaging data (e.g., MRI, CT, PET, etc., images), histopathological data 
(e.g., detailed identification of the tumor type, grade and stage, histo-
pathology slide images whenever biopsy is allowed and feasible, etc.), 
molecular data (DNA array data, selected molecular marker values or 
statuses, serum markers, etc.). It is noted that the last two data catego-
ries are extracted from biopsy material and/or body fluids.

Second step: Preprocess patient’s data. The data collected are prepro-
cessed in order to take an adequate form, allowing its introduction 
into the Tumor and Normal Tissue Response Simulation Module 
of the Oncosimulator. For example, the imaging data are seg-
mented, interpolated, and eventually fused; subsequently, the ana-
tomic entities of interest are three-dimensionally reconstructed. 
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Figure 18.1  Oncosimulator: a synoptic workflow diagram of one of the system 
versions.
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This reconstruction will provide the framework for the integration 
of the rest of data and the execution of the simulation. In parallel 
the molecular data is processed via molecular interaction networks 
so as to perturb and individualize the average pharmacodynamic or 
radiobiological cell survival parameters.

Third step: Describe one or more candidate therapeutic schemes and/or 
schedules. The clinician describes a number of candidate therapeutic 
schemes and/or schedules or no treatment (obviously leading to free, 
i.e., noninhibited tumor growth), to be simulated in silico, that is, on 
the computer.

Fourth step: Run the simulation. The computer code of tumor growth 
and treatment response is massively executed on distributed grid 
or cluster computing resources so that several candidate treatment 
schemes and schedules are simulated for numerous combinations 
of possible tumor parameter values in parallel (see the section titled 
“Discussion and Future Perspectives” for detailed justification). 
Predictions concerning the toxicological compatibility of each can-
didate treatment scheme are also produced.

Fifth step: Visualize the predictions. The expected reaction of the tumor 
as well as toxicologically relevant side effect estimates for all scenar-
ios simulated are visualized using several techniques ranging from 
simple graph plotting to four-dimensional virtual reality rendering.

Sixth step: Evaluate the predictions and decide on the optimal scheme 
or schedule to be administered to the patient. The Oncosimulator’s 
predictions are carefully evaluated by the clinician by making use of 
their logic, medical education, and even qualitative experience. If no 
serious discrepancies are detected, the predictions support the clini-
cian in taking their final and expectedly optimal decision regarding 
the actual treatment to be administered to the patient.

Seventh step: Apply the theoretically optimal therapeutic scheme or 
schedule and further optimize the Oncosimulator. The expectedly 
optimal therapeutic scheme or schedule is administered to the 
patient. Subsequently, the predictions regarding the finally adopted 
and applied scheme or schedule are compared with the actual tumor 
course and a negative feedback signal is generated and used in order 
to optimize the Oncosimulator.
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Model—A Symbolic Mathematical 
Formulation of DEBCaST

Hypermatrix of the Anatomical Region of Interest

A special operator notation is introduced in order to concisely describe 
DEBCaST as applied to the modeling of malignant tumor response to 
therapeutic schemes in the clinically oriented setting. In order to convey 
the basic philosophy of the method, a deliberately simplified version of 
DEBCaST is considered throughout the chapter. The anatomical region of 
interest, primarily including the tumor and possibly adjacent normal tis-
sues and edema, in conjunction with its biological, physical, and chemical 
dynamics is represented by hypermatrix a. A hypermatrix is a

Matrix of (Matrices of (Matrices…of (Scalars or Vectors or Matrices )…)).

The hypermatrix a is created by a cubic discretization mesh that is vir-
tually superimposed upon the anatomical region of interest. Biological 
cells residing within each geometrical cell of the mesh are conceptually 
clustered into mathematical equivalence classes. Equivalence classes pri-
marily correspond to the various phases within or out of the cell cycle 
in which a biological cell of the tumor resides. Since a tumor cell at any 
given instant also belongs to a mitotic potential category (stem, progeni-
tor, terminally_differentiated), the latter acts as a further partitioner of 
the biological cells into equivalence classes. One of the reasons, though 
not the single most important, for clustering biological cells into equiva-
lence classes within each geometrical cell of the discretization mesh, is 
computing resource limitations. Complex computational treatment of 
each single cell of a large clinical tumor undergoing therapeutic treat-
ment as a separate entity is still not achievable within acceptable resource 
and time limits.

Discrete time represents a further dimension of the hypermatrix. An 
important discretization aspect of the method is the mean time spent in 
the phase of an equivalence class by the biological cells belonging to the 
equivalence class (Stamatakos et al. 2001c, 2002, 2006a, 2006c; Dionysiou 
et al. 2004, 2006; Stamatakos and Dionysiou 2009). In order to allow for 
spatiotemporal perturbations of critical parameter values throughout the 
tumor and also avoid artificial cell synchronizations due to discretiza-
tion, use of pseudorandom numbers is extensively made (Monte Carlo 
technique).
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Practical Considerations Regarding the 
Construction of the Discretization Mesh

Collection of the appropriate monomodality or, far better, multimodality 
tomographic data of the patient such as slices of T1-weighted contrast-
enhanced MRI, T2-weighted MRI, CT, PET, or other modalities, image 
segmentation, slice interpolation, three-dimensional reconstruction of 
the anatomical entities of interest centered at the tumor, and eventually 
fusion of more than one modality images constitute the initial steps for 
the creation of the discretization mesh. The latter discretizes and covers 
the anatomical region of interest. Processed microscopic data (histologi-
cal, molecular) are then utilized in order to enhance the patient individu-
alization of the hypermatrix.

Hypermatrix and Operator Formulation of DEBCaST

The following mathematical entities are introduced:
a denotes the hypermatrix corresponding to the anatomical region of 

interest that includes the tumor and possibly parts of the surrounding 
normal tissue and edema. a describes explicitly or implicitly the biologi-
cal, physical, and chemical dynamics of the anatomical region of interest. 
For a given geometrical cell of the discretization mesh, each vector ele-
ment of the hypermatrix a can be written as follows:

	 a x , y , z , t , c , p g , N , Xi j k 1 m n
ijklmn ijklmn ijklm( ) = nn ijklmn ijklmn, h , h( ) 	 (18.1)

	 a a( )t0 = 0 	 (18.2)

The following symbols are used—xi, yj, and zk—to denote the spatial 
coordinates of the discrete points of the discretization mesh with spatial 
indices i, j, and k, respectively. Each discrete spatial point lies at the center 
of a geometrical cell of the mesh. The temporal coordinate of the discrete 
time point is denoted as t1 with temporal index l. The mitotic potential 
category (i.e., stem, progenitor, or terminally_differentiated) of the bio-
logical cells is represented as cm with mitotic potential category index m. 
It is noted that the term tumor progenitor cell denotes a tumor cell with 
limited mitotic potential (i.e., number of possible mitoses); pn denotes the 
cell phase (within or out of the cell cycle) of the biological cells with cell 
phase index n.
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For the biological cells belonging to the mitotic potential category cm 
and residing in cell phase pn and being accommodated within the geo-
metrical cell whose center lies at the spatial point (xi, yj, zk) and being 
considered at the time point t1—in other words, for the biological cells 
clustered in the same equivalence class denoted by ijklmn—the follow-
ing state parameters are provided by the corresponding hypermatrix ele-
ment a( )x , y , z , t , c , pi j k 1 m n : gijklmn: local oxygen and nutrient provision 
level; Nijklmn: number of biological cells; Xijklmn: average time spent by the 
biological cells in phase n; hijklmn: number of biological cells hit by treat-
ment; h

~
ijklmn: number of biological cells not hit by treatment. The symbol a0 

represents the initial biological, physical, and chemical state of the entire 
anatomical region of interest or equivalently of the hypermatrix under 
consideration. This state corresponds to the instant just before the start of 
the treatment course to be simulated.

The previously mentioned discrete variables can take values from proper 
or improper subintervals of the discrete intervals appearing below or from 
proper or improper subsets of the discrete sets appearing also below.

	 xi ∈ [xmin, xmax]	 (18.3)

where xmin and xmax denote the minimum and the maximum value, respec-
tively, of the parameter xi within the discretization mesh,

	 yj ∈ [ymin, ymax]	 (18.4)

where ymin and ymax denote the minimum and the maximum value, respec-
tively, of the parameter yj within the discretization mesh,

	 zk ∈ [zmin, zmax]	 (18.5)

where zmin and zmax denote the minimum and the maximum value, respec-
tively, of the parameter zk within the discretization mesh,

	 t1 ∈ [tmin, tmax]	 (18.6)

where tmin and tmax denote the initial and the final simulation time point, 
respectively

	 cm ∈ {stem, progenitor, terminally_differentiated}	 (18.7)
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	 pn ∈ {G1, S, G2, M, G0, A, N, D}	 (18.8)

where G1 denotes the G1 cell cycle phase; S denotes the DNA synthesis 
phase; G2 denotes the G2 cell cycle phase; M denotes mitosis; G0 denotes the 
quiescent (dormant) G0 phase; A denotes the apoptotic phase; N denotes 
the necrotic phase; and D denotes the remnants of dead cells.

	 gijklmn ∈ {s, s~}	 (18.9)

where s stands for “oxygen and nutrient provision level sufficient for tumor 
cell proliferation”; s~ stands for “oxygen and nutrient provision level insuf-
ficient for tumor cell proliferation.” Obviously, the binary character of the 
oxygen and nutrient provision level is to be considered only a first sim-
plifying approximation. More elaborate descriptions have been proposed 
and applied (Stamataos et al. 2002, 2006a, 2006b; Dionysiou et al. 2004, 
2006a; Antipas et al. 2004).

	 Nijklmn ∈ {0, … , Nmax}	 (18.10)

where Nmax denotes the maximum number of biological cells irrespectively 
of mitotic potential category or cell phase that can be accommodated in 
any geometrical cell under either normal or transient conditions.

	 Xijklmn ∈ [0, Xmax]	 (18.11)

where Xmax denotes the maximum average time that can be spent by bio-
logical cells in phase n

	 hijklmn ∈ {0, Nmax}	 (18.12)

	 h
~

ijklmn ∈ {0, Nmax}	 (18.13)

In the six dimensional discrete abstract space of tumor dynamics delin-
eated above, three discrete dimensions represent space, one discrete 
dimension represents time, another one represents mitotic potential, and 
the last one represents the cell phase. Combinations of all possible values 
from these six discrete dimensions produce all the biological cell equiva-
lence classes that have been introduced so far.
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The entire simulation can be viewed as the periodic and sequential 
application of a number of discrete algorithmic operators on the hyper-
matrix a of the anatomic region of interest. The operator application 
period is equal to the time separating two consecutive complete scans of 
the discretization mesh. A complete scan includes mesh scans performed 
by all operators for any given time point. The operator application period 
is usually taken 1 h since this is approximately the duration of mitosis, 
the shortest of the cell-cycle phases. It should be noted that although the 
parameter values exported by the simulation execution at any desired 
instant for visualization and analysis purposes have a discrete character, 
certain parameters are handled by the computer internally and temporar-
ily as real numbers (even with enhanced precision) in order to minimize 
discretization error propagation, in particular when dealing with small 
numbers of discrete entities in the stochastic context. By no means, how-
ever, does this technicality affect the fundamentally discrete character of 
DEBCaST.

The various processes or modules of the complex (not in the sense of 
complex numbers) algorithmic manipulations applied on the hyperma-
trix can be thought of as corresponding to discrete operators acting on 
the discrete hypermatrix of the anatomical region of interest in analogy 
to the action of continuous operators on a continuous wave function in 
quantum mechanics (Schiff 1981). The great importance of introducing 
abstract (vector) spaces and operators has been established in virtually 
all fields of the essentially nonliving matter physics (Morse and Feshbach 
1953). Compactness, clarity, amenability to in-depth mathematical analy-
sis and propensity to provide stimulating and eventually highly creative 
analogies with other scientific fields are but a few of the advantages of 
the particular formalism. Therefore, extending such a strategy to multi-
scale living matter physics (i.e., biology) seems to be a straightforward step 
forward.

In order to proceed to the operator application on the hypermatrix the 
following symbols are introduced:

f stands for the composite discrete operator (i.e., the operator formed by 
the synthesis of all partial operators that are sequentially applied on the 
hypermatrix at each discrete time step. Therefore, the updated hyperma-
trix at the time point tl+1 is given by

	 f t tl l+1a a( ) ( )( ) = 	 (18.14)
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The composite operator can be written as

	 f = fU fE fC fH fO fT	 (18.15)

where

	 fJ, J ∈ {U, E, C, H, O, T} stands for a partial operator	 (18.16)

T stands for time updating (i.e., increasing time by a time unit [e.g., 1h]). 
Action of operator T on the hypermatrix should not be confused with the 
updated state of the entire hypermatrix a at time tl. O stands for estimat-
ing the local oxygen and nutrient provision level. H stands for the effect 
of treatment (therapy) referring mainly to cell hit by treatment, cell kill, 
and cell survival. C stands for cell cycling, possibly perturbed by treatment. 
Transition between mitotic potential cell categories such as transition of the 
offspring of a finally divided progenitor cell into the terminally differenti-
ated cell category is also tackled by this operator. E stands for differential 
expansion or shrinkage or more generally for geometry and mechanics han-
dling. U stands for the updating of the local oxygen and nutrient provision 
level following application of the rest of the operators at each time step.

It is noted parenthetically that the outcome of appropriate processing 
of the molecular and/or histopathological data via, for example, molecular 
networks and signaling pathways is used as a perturbator of the cell sur-
vival probabilities included in operator H, so as to considerably enhance 
patient individualization of the simulation. A realistic estimate of the 
extent of such perturbations for a given tumor-type subclass in the frame-
work of a clinico-genomic trial is achieved in a stepwise way. Initial rough 
modifications of the cell survival probabilities based on the baseline-
pretreatment data, pertinent literature information, and logic are subse-
quently corrected through utilization of the corresponding posttreatment 
data via a process of parameter fitting.

Therefore, Equation 18.14 becomes:

	 f f f f f f t t lU E C H O T
l la a( )( )( )( )( )( ) = ( ) =+1 0 1 2, , , ,,… 	 (18.17)

or in a more compact form:

	 f f f f f f t t lU E C H O T
l la a( ) , , , ,= ( ) =+1 0 1 2 … 	 (18.18)

where the application of operators takes place from the right to the left.

© 2011 by Taylor and Francis Group, LLC



420    ◾    Georgios S. Stamatakos

It is obvious that the above mentioned concepts and symbols cannot 
convey all the details needed for the simulation to run. Their role is, rather, 
to identify and decompose the major conceptual mathematical and com-
putational steps than to list all modeling details. The interested reader 
is referred to the Web site of the In Silico Oncology Group, Institute of 
Communications and Computer Systems, National Technical University of 
Athens (www.in-silico-oncology.iccs.ntua.gr) where they may find lists of 
pertinent publications providing detailed descriptions of several DEBCaST 
models including assumptions, mathematical treatment, numerical aspects 
such as convergence and discretization error minimization, sensitivity 
analysis, validation, applications, and suggested extensions.

It is worth noting that discrete simulation under certain constraints 
can efficiently replace analytical solutions to a wide range of mathemati-
cal problems which, although being formulated in terms of continuous 
mathematics—usually including symbolically formulated differential 
equations—refer in fact to discrete physical quantities such as biological 
cells and cell state transition rates. Moreover, in many cases the continu-
ous symbolic formulation of mathematical operators, such as the well-
known differential operator, when acting on discrete physical quantities 
can be readily replaced by a conceptually more straightforward algorith-
mic formulation. Several techniques leading to the minimization of error 
propagation for those cases where small numbers of discrete entities are 
dealt with by stochastic processes are available. The above generic pol-
icy has been extensively adopted in DEBCaST models. For extensions of 
DEBCaST currently under implementation see section titled “Discussion 
and Future Perspectives.”

Results
In this section two indicative models denoted by Model A and Model B are 
briefly outlined so as to exemplify the application potential of DEBCaST 
in the clinical context.

Model A: Tumor Response to Chemotherapeutic Schemes

Model A is a four-dimensional, patient-specific DEBCaST simulation 
model of solid tumor response to chemotherapeutic treatment in vivo. 
The special case of imageable glioblastoma multiforme (GBM) treated 
by temozolomide (TMZ) has been selected as a simulation paradigm. 
Nevertheless, a considerable number of the involved algorithms are quite 
generic. The model is based on the patient’s imaging, and histopathologic 
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and genetic data. For a given drug administration schedule lying within 
acceptable toxicity boundaries, the concentration of the prodrug and its 
metabolites within the tumor is calculated as a function of time based 
on the drug pharmacokinetics and is conceptually included in operator 
H. A discretization mesh is superimposed upon the anatomical region of 
interest and within each geometrical cell of the mesh the basic biologi-
cal, physical, and chemical “laws” such as the rules concerning oxygen 
and nutrient provision (operators O and U), cell cycling (operator C) 
(Salmon and Sartorelli 2001), mechanical deformation (operator E), and 
so forth are applied at each discrete time point (operator T). The bio-
logical cell fates are predicted based on the drug pharmacodynamics, 
constituting part of operator H (Perry 2001; Katzung 2001; FDA 1999; 
Newlands et al. 1992; Bobola et al. 1996; Stupp et al. 2001). The outcome 
of the simulation is a prediction of the spatiotemporal activity of the 
entire tumor and is virtual reality visualized. A good qualitative agree-
ment of the model’s predictions with clinical experience (Stamatakos 
et al. 2006b, 2006c) supports the applicability of the approach. Model A 
has provided a basic platform for performing patient individualized in 
silico experiments as a means of chemotherapeutic treatment optimiza-
tion in the theoretical context. A few indicative aspects of the model 
are described below. Since the complexity of the analysis is high, the 
interested reader is referred to (Stamatakos et al. 2006b, 2006c) for a 
detailed description of the model. The work has also provided the basis 
for the development of the chemotherapy treatment response models of 
the ACGT and the ContraCancrum projects.

Figure 18.2 depicts the simplified cytokinetic model of a tumor cell that 
has been proposed and adopted in Model A. The cytotoxicity produced by 
TMZ is primarily modeled by a delay in the S phase compartment (TDS), 
which is denoted by “Delay due to the effect of chemotherapy” in the dia-
gram of Figure 18.2 and by subsequent apoptosis. Further details are pro-
vided in the caption of Figure 18.2.

Figure 18.3 provides a three-dimensional visualization of the simulated 
response of a clinical GBM tumor to one cycle of the TMZ chemotherapeu-
tic scheme: 150 mg/m2 orally once daily for 5 consecutive days per 28-day 
treatment cycle (Stamatakos et al. 2006b). Panel (a) shows the external sur-
face of the tumor before the beginning of chemotherapy. Panel (b) shows 
the internal structure of the tumor before the beginning of chemotherapy. 
Panel (c) shows the predicted external surface of the tumor 20 days after 
the beginning of chemotherapy. Panel (d) shows the predicted internal 
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structure of the tumor 20 days after the beginning of chemotherapy. The 
pseudocoloring criterion proposed and utilized is described in the caption 
of Figure 18.3.

Model B: Tumor Response to Radiotherapeutic Schemes

Model B is a spatiotemporal simulation model of in vivo tumor growth 
and response to radiotherapy exemplified by the special case of imageable 
GBM treated with radiation. The main constitutive processes of the model 
can be summarized as follows. A discretizing cubic mesh is superimposed 
upon a three-dimensional virtual reconstruction of the tumor includ-
ing its necrotic region and the surrounding anatomical features based 
on imaging data. In a way analogous to Model A, within each geometri-
cal cell of the mesh a number of biological cell equivalence classes are 
defined based, inter alia, on the biological cell distribution over the vari-
ous phases within or out of the cell cycle for the various mitotic potential 

G1 G2S M G0

Delay due to
the effect of

chemotherapy
Cell

death

N A

Cell disappearance
Tumor shrinkage

Figure 18.2  Simplified cytokinetic model of a tumor cell proposed and adopted 
in model A. Symbols: G1: G1 phase; S: DNA synthesis phase; G2: G2 phase; G0: 
G0 phase; N: necrosis; A: apoptosis. The cytotoxicity produced by TMZ is pri-
marily modeled by a delay in the S-phase compartment (TDS) (“Delay due to 
the effect of chemotherapy” in the diagram) and subsequent apoptosis. The delay 
box simply represents the time corresponding to, at most, two cell divisions that 
are required before the emergence of temozolomide cytotoxicity. It is not a time 
interval additional to the times represented by the cell cycle phase boxes. (From 
Stamatakos G.S. et al. 2006b. IEEE Trans Biomed Eng 53: 1467–1477. Reprinted 
with permission from the Institute of Electrical and Electronics Engineers [IEEE], 
© 2006 IEEE.)
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(a) (c)

(d)(b)

Figure 18.3  (See color insert following page 40) A three-dimensional visual-
ization of the simulated response of a clinical GBM tumor to one cycle of the TMZ 
chemotherapeutic scheme: 150 mg/m2 orally once daily for five consecutive days 
per 28-day treatment cycle. (a) External surface of the tumor before the begin-
ning of chemotherapy, (b) internal structure of the tumor before the beginning 
of chemotherapy, (c) predicted external surface of the tumor 20 days after the 
beginning of chemotherapy (d) predicted internal structure of the tumor 20 days 
after the beginning of chemotherapy. The following pseudocolor code has been 
applied: red: proliferating cell layer; green: dormant cell layer (G0); blue: dead 
cell layer. The “99.8%” pseudocoloring criterion has been devised and applied as 
follows (pseudocode version): “For a geometrical cell of the discretizing mesh, if 
the percentage of dead cells within it is lower than 99.8% then {if percentage of 
proliferating cells > percentage of G0 cells, then paint the geometrical cell red 
(proliferating cell layer) else paint the geometrical cell green (G0 cell layer)}else 
paint the geometrical cell blue (dead cell layer).” (From Stamatakos G.S. et al. 
2006b. IEEE Trans Biomed Eng 53(8): 1467–1477. Reprinted with permission from 
the Institute of Electrical and Electronics Engineers [IEEE], © 2006 IEEE.)
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categories. Sufficient registers are used in order to store the current state 
of each equivalence class such as the average time spent by clustered bio-
logical cells in phase G1, etc. The mesh is scanned every one hour (opera-
tor T). The basic biological, physical, and chemical “laws” including the 
metabolic activity dynamics [operators O and U], cell cycling [operator 
C], mechanical and geometrical aspects [operator E], cell survival prob-
ability following irradiation with dose D [operator H] (Perez and Brady 
1998; Steel 2002) are applied on each geometrical cell at each complete 
scan. A spatial and functional restructuring of the tumor takes place dur-
ing each discrete time point since new biological cells are eventually pro-
duced, leading to differential tumor growth, or existing cells eventually 
die and subsequently disappear through specific molecular and cellular 
event cascades, thus leading to differential tumor shrinkage. Simulation 
predictions can be two- or three-dimensionally visualized at any simu-
lated instant of interest. In the particular model special attention has been 
paid to the influence of oxygenation on radiosensitivity in conjunction 
with the introduction of a refined imaging-based description of the neo-
vasculature density distribution. In order to validate the model two identi-
cal (except for the status of the p53 gene) virtual GMB tumors of large size, 
complex shape, and complex geometry of their internal necrotic region 
were considered. The first one possessed a wild-type p53 gene whereas the 
second one was characterized by a mutated p53 (Stamatakos et al. 2006a; 
Dionysiou et al. 2004). The values of the α and β parameters of the standard 
linear quadratic radiobiological model for cell survival (Steel 2002, Perez 
and Brady 1998) have been determined experimentally for the two cell 
lines considered (Haas-Kogan et al. 1995). Simulation predictions agree 
at least semiquantitatively with clinical experience and in particular with 
the outcome of the Radiation Therapy Oncology Group RTOG Study 83 
02 (Werner-Wasik et al. 1996). The model allows for a quantitative study 
of the interrelationship between the competing influences in a complex, 
dynamic tumor environment. Therefore, the model is already useful as an 
educational tool with which to theoretically study, understand, and dem-
onstrate the role of various parameters on tumor growth and response to 
irradiation. A long-term quantitative clinical adaptation and validation 
of a considerably extended version of the model is in progress within the 
framework of the ContraCancrum project. The long-term goal is integra-
tion into the clinical treatment planning procedure.

Figure 18.4 provides the simulation outcomes corresponding to several 
branches of the clinical study RTOG Study 83 02. Panel (a) shows the total 
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Figure 18.4  Simulation predictions corresponding to several branches of the 
RTOG Study 83 02. (a) total predicted number of proliferating and dormant 
tumor cells as a function of time for the hyperfractionated (1.2 Gy twice daily to 
the dose of 81.6 Gy, “HF-81.6”) and accelerated hyperfractionated (1.6 Gy twice 
daily to the dose of 54.4 Gy, “AHF-54.4”) radiotherapy schedules. All schemes 
start on the first day of the radiotherapy course. HF-81.6 is completed on day 46 
after initiation of treatment, whereas AHF-54.4 is completed on day 23. (b) total 
number of proliferating and dormant tumor cells as a function of time for the 
hyperfractionated (1.2 Gy twice daily to the dose of 76.8 Gy, “HF-76.8”) and 
accelerated hyperfractionated (1.6 Gy twice daily to the dose of 48 Gy, “AHF-48”) 
radiotherapy schedules. Both irradiation schedules start on the first day of the first 
week of treatment. HF-76.8 is completed on day 44 after initiation of treatment 
whereas AHF-48 is completed on day 19. (From Stamatakos G.S. et al. 2006a. 
Br J Radiol 79: 389–400. Reprinted with permission from the British Institute of 
Radiology, © 2006 BIR.)
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predicted number of proliferating and dormant tumor cells as a function 
of time for the hyperfractionated (1.2 Gy twice daily to the dose of 81.6 Gy, 
“HF-81.6”) and accelerated hyperfractionated (1.6 Gy twice daily to the 
dose of 54.4 Gy, “AHF-54.4”) radiotherapy schedules. All schemes start on 
the first day of the radiotherapy course. HF-81.6 is completed on day 46 
after initiation of treatment whereas AHF-54.4 is completed on day 23. 
Figure  18.4 (b) depicts the total number of proliferating and dormant 
tumor cells as a function of time for the hyperfractionated (1.2 Gy twice 
daily to the dose of 76.8 Gy, “HF-76.8”) and accelerated hyperfractionated 
(1.6 Gy twice daily to the dose of 48 Gy, “AHF-48”) radiotherapy sched-
ules. Both irradiation schedules start on the first day of the first week of 
treatment. HF-76.8 is completed on day 44 after initiation of treatment 
whereas AHF-48 is completed on day 19. According to the graphs, before 
completion of the AHF course cell kill due to AHF irradiation is more pro-
nounced than cell kill induced by the HF scheme. This can be explained by 
the fact that a higher total dose has been administered to the tumor by the 
AHF scheme, whereas for the period under consideration both schemes 
are characterized by the same time intervals between consecutive sessions. 
If not all living cells have been killed by AHF irradiation, tumor repopula-
tion is considerable so that by the time the HF scheme is completed living 
tumor cells and their progeny that have escaped AHF irradiation outnum-
ber tumor cells that have escaped HF irradiation. Improved tumor control 
following the HF irradiation scheme in comparison with tumor control 
following the AHF scheme is in agreement with the conclusions of the 
clinical trial RTOG-83-02.

Discussion and Future Perspectives
Since DEBCaST is a numerical method, a thorough convergence and sensi-
tivity/stability analysis that includes the study of multiple parameter inter-
dependences is imperative before any application is envisaged. Numerical 
analysis should satisfactorily cover at least those regions of the abstract 
parameter space that correspond to the envisaged applications. It is noted 
that of particular importance is the creation of the baseline tumor consti-
tution by exploiting the relevant multiscale data available. Convergence 
of the tumor initialization has to be ensured. All of the above issues have 
been successfully addressed for specific tumor treatment cases such as 
breast cancer treated with epirubicin and nephroblastoma treated with 
vincristine and dactinomycin. The numerical behavior of the correspond-
ing models has been checked through massive numerical experimentation. 
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Concrete applicability intervals, restrictions, and limitations have been 
identified (Internal ACGT project reports and deliverables; Kolokotroni 
et al. 2008; Georgiadi et al. 2008). Since the entire parameter space of 
DEBCaST models is rather large, numerical studies covering regions 
that correspond to further applications are in progress. Special attention 
is paid to the inherent relative biological instability of the cancer system 
itself when the model’s stability is investigated.

It is well known that the values of critical parameters determining 
treatment outcome can vary considerably around what is assumed to be 
their population-based average values. Even after incorporation of patient-
specific multiscale data into the simulation model, several critical model 
parameters cannot be accurately evaluated. Moreover, as already men-
tioned, a tumor may behave as a relatively unstable system. Therefore, in 
order to compare candidate treatment schemes and/or schedules in silico, 
several possible combinations of parameter values lying around their 
apparently most probable estimates have to be constructed so as to cover 
the abstract parameter space as best as possible. Code executions have to 
be performed for all these selected parameter combinations. If, for exam-
ple, the clinical question addressed is “Which one of the two candidate 
treatment schedules denoted by I and II is the most promising for a given 
patient?” simulations have to be run for both schedules I and II and for 
all parameter value combinations selected in the way briefly delineated 
above. If based on the simulation predictions schedule I outperforms 
schedule II for a sufficiently large percentage of the total parameter com-
binations considered, say 90%, then there is ground to suggest adoption 
of schedule I. Candidate scheme/schedule selection criteria are currently 
under formulation in tight collaboration with specialist clinicians within 
the framework of the ACGT and the ContraCancrum projects. Obviously, 
the above-drafted treatment optimization strategy dictates the need for 
a large number of parallel code executions on either cluster or grid plat-
forms. This necessity has been addressed by specific actions of the previ-
ously mentioned projects.

Critical constraints imposed by toxicological limits of the treatment 
affected normal tissues should also be taken into account in order to 
judge whether or not a candidate scheme could be toxicologically accept-
able. This issue may be addressed by exploiting the outcome of eventually 
relevant clinical trials and in particular of their phase I results. Ideally, 
direct multiscale spatiotemporal simulation of the effects of a given can-
didate scheme on specific normal tissues would provide quantitatively 
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refined predictions. However, due to the extremely high complexity of 
the homeostatic mechanisms governing normal tissue dynamics, the 
large number of functional aspects of normal tissue and the potential 
induction of serious late effects by treatment such as radiotherapy, clini-
cal translation of the second scenario seems to be a long-term enterprise 
(Antipas et al. 2007).

Since many solid tumors are microscopically inhomogeneous in space, 
the applications presented so far essentially make use of the mean values 
of certain biological parameters over each imaging-based, segmented sub-
region of the tumor (Stamatakos et al. 2002, 2006a, 2006b, 2006c, 2007b; 
Stamatakos and Uzunoglu 2006; Dionysiou et al. 2004, 2006a, 2006b; 
2007; 2008; Antipas et al. 2004, 2007). Small perturbations around these 
values are nevertheless implemented across each region through Monte 
Carlo simulation by DEBCaST. In the paradigmal case of MRI T1 gado-
linium-enhanced imaging modality, strong gray-level fluctuations over a 
tomographic slice can lead to an approximate delineation of the internal 
necrotic and the well-neovascularized region of the tumor. Despite the 
fact that different values of certain parameters may be assigned to these 
two regions, subimaging-scale inhomogeneities may still create spatial 
fluctuations of certain parameter values. In order to theoretically inves-
tigate the role of such biological inhomogeneities, pertaining for example 
to the genotypic and/or phenotypic tumor constitution, as well as the role 
of biochemical inhomogeneities of the extra tumoral environment such 
as acidity, necrosis exudate concentration, etc., the DEBCaST basic plat-
form can be still used, provided that specific adaptations have taken place. 
Furthermore, tumor cell–tumor cell, tumor cell–host cell, and tumor cell–
local environment interactions in the microscopic setting can, in prin-
ciple, be studied. In order to implement the above scenarios, the density 
of the discretization mesh should considerably increase, a deeper level 
partitioning into more equivalence (sub-)classes has to be introduced into 
the hypermatrix of the anatomical region of interest, and the operators 
should be extended accordingly. However, such an approach dictates a 
sharp increase in computing memory and time demands, and therefore 
the tumor size must be kept small if restrictions in these resources apply, 
as is usually the case.

Following appropriate adaptation of specific modeling modules or 
equivalently operators such as operator H, DEBCaST is, in principle, able 
to simulate tumors of any shape, size, geometry, macroscopic distribution 
of the metabolic or neovascularization field, differentiation grade, spatial 
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inhomogeneities, molecular profile, and treatment scheme/schedule such 
as radiotherapeutic, chemotherapeutic, combined, and new treatment 
modalities. However, great care should be taken so that the model param-
eter values are estimated as accurately as possible, based on real multiscale 
data. If such data is not available, use of at least population-based average 
parameter value estimates or qualitative experience-based plausible values 
may be utilized only for generic exploratory reasons.

Hybridization of DEBCaST with continuous and finite mathematics 
approaches such as diffusion-based tumor growth modeling and detailed 
biomechanics is currently under implementation (ContraCancrum project). 
The aim of the task is to integrate into a DEBCaST GBM model the micro-
scopic tumor invasion process that conceptually constitutes part of operator 
E. The detailed biomechanics of the system calculated via a finite element 
module and constituting also part of operator E is also being integrated. 
Such a hybrid model is expected to be able to reproduce in relative detail 
both physical and biological aspects of tumor dynamics within the generic 
investigational framework. It should be noted that the nonimageable dif-
fusive component of GBM does play an important role in the development 
of the disease and therefore merits an in-depth theoretical investigation. 
However, since the nonimageable boundaries of GBM cannot be defined 
and monitored in a sufficiently objective way, that is, based on observational 
data such as clinically obtainable tomographic images, direct handling of 
the nonimageable component by treatment planning systems in the patient-
individualized treatment context seems not to be a fully mature scenario 
as yet. Furthermore, by focusing on the imageable component within the 
treatment optimization context, one may argue that if for the imageable 
component a candidate treatment scheme denoted by scheme I outperforms 
another candidate scheme denoted by scheme II in silico, the same would be 
true for the nonimageable component of the tumor as well. Furthermore, 
by focusing on the imageable component within the treatment optimiza-
tion context, one may expect that if for the imageable component a candi-
date treatment scheme denoted by scheme I outperforms another candidate 
scheme denoted by scheme II in silico, the same would be true for the non-
imageable component of the tumor as well. The latter can be substantiated 
as follows. Although there may be differing gene activity, blood–tumor 
barrier status, and perhaps other microscopic characteristics between the 
imageable (predominantly proliferative) and the nonimageable (predomi-
nantly invasive) component of a GBM tumor, the above assumption reflects 
the current clinical practice. The latter is based on the absence of clinically 

© 2011 by Taylor and Francis Group, LLC



430    ◾    Georgios S. Stamatakos

tested and exploitable information supporting the opposite hypothesis (i.e., 
an uncorrelated treatment sensitivity behavior of the imageable and the 
nonimageable component). Such an approach is in line with the principle 
of parsimony (Occam’s razor). As a consequence, up to now no differing 
standard treatments have been developed for the two tumor components. 
Nevertheless, in case that clinically reliable information supporting an 
uncorrelated treatment response behavior of the two major GBM compo-
nents becomes available in the future, adaptations in the simulation exploi-
tation policy can readily be made.

From the treatment perspective, again, the main advantage of focusing 
on the imageable component, although this may represent even less than 
half of the total number of all viable tumor cells, is that this very compo-
nent is amenable to relatively objective measurement in vivo and not only 
postmortem. Therefore, glioma dynamics models based on the imageable 
component are amenable to validation, at least in part, in vivo. Besides, 
incorporation of the immune system response to the tumor (D’Onofrio 
2005) and simulation of the effects of antiangiogenetic drugs on the tumor 
are two further scenarios, currently under investigation in the ACGT 
Oncosimulator extension context.

Referring to the molecular level from the generic investigational stand-
point, a large number of mechanisms that can be informed by available 
molecular data, such as pathways leading to apoptosis or survival, can be 
readily integrated into DEBCaST models. The latter can be achieved by 
applying the summarize and jump strategy of biodata and bioknowledge 
integration across biocomplexity scales (Stamatakos et al. 2009). This is, 
in fact, one of the actions currently taking place within the framework 
of the ContraCancrum project. However, if the same biocomplexity level 
is viewed from the clinical perspective, care has to be taken so that only 
those characteristics and mechanisms whose predictive potential has been 
proved and established in the clinical setting—normally through clinical 
trials—may be incorporated into the models.

Regarding the anticipated clinical translation of DEBCaST-based mod-
els and systems, including the Oncosimulator, a sine qua non prerequisite 
is a systematic, formal, and strict clinical validation. Designing the models 
so as to mimic actual clinical or—far better—clinicogenomic trials seems 
to be the optimal way to achieve this goal (Stamatakos et al. 2006a, 2007a; 
Graf and Hoppe 2006; Graf et al. 2007, 2008, 2009). Therefore, involve-
ment of clinicians in the model and system design and validation process 
should start at the very beginning of the endeavor (Graf et al. 2007, 2008, 
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2009). Real clinicogenomic trials can provide invaluable multiscale data 
(imaging, histological, molecular, clinical, treatment) before, during, and 
after a treatment course so as to best adapt and optimize the models and 
subsequently validate them. This is one of the core tasks of both the ACGT 
and the ContraCancrum projects. Nephroblastoma and breast cancer are 
the tumor types addressed by ACGT, whereas gliomas and lung cancer are 
the ones addressed by ContraCancrum.

A further important challenge is to develop reliable, efficient, highly 
versatile and user-friendly technological platforms which, following clini-
cal adaptation, optimization, and validation of the models would facilitate 
translation of Oncosimulators into the clinical practice so as to efficiently 
support, enhance, and accelerate patient-individualized treatment opti-
mization. Advanced image processing, visualization, and parallel-code 
execution modules are but a few of the components necessary to achieve 
this goal.

In summary, having taken into account the hypercomplex and heavily 
multiscale character of the natural phenomenon of cancer, as well as the 
constantly expanding accumulation of experimental and clinical knowl-
edge pertaining to the disease, both DEBCaST and the Oncosimulator have 
been designed so as to be readily optimizable, extensible, and adaptable to 
varying clinical, biological, and research contexts. In other words both 
entities, being primarily biomedical-engineering-geared, have a clearly 
pragmatic and evolutionary character. This has been largely achieved 
through the extensive application of the principles of discrete event simu-
lation and system modularity.
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19C h a p t e r  

In Silico Oncology
Part II—Clinical Requirements 
Regarding In Silico Oncology

Norbert Graf

Introduction
This chapter deals with the clinical potential and some clinical translation 
prerequisites of multiscale cancer modeling as perceived from the stand-
point of the clinician engaged in clinical trial research. Therefore, the aim 
is to propose clinical translation guidelines for clinically oriented cancer 
modeling, rather than to provide the description of any particular math-
ematical model.

Cancer as a leading cause of death accounted for 7.9 million or 13% of 
all deaths worldwide in 2007 [1]. The main types of cancer leading to over-
all mortality are lung, stomach, liver, colon, and breast cancer in adults. 
To reduce the burden of cancer, evidence-based strategies are needed for 
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its prevention, early detection, treatment, and care. In 2007 the WHO 
initiated an action plan against cancer with the following four goals:

Prevent what is preventable.•	

Cure what is curable.•	

Provide palliative care for all cancer patients.•	

Manage and monitor results.•	

In clinical oncology, today’s treatment is still based on surgery, radio-
therapy, chemotherapy, and supportive care, including psychosocial 
support, pain relievers, and palliation. Individualization of treatment is 
just starting by introducing small molecules as targeted therapies for 
specific diseases. But there is a significant amount of further knowledge 
needed, and to be translated to the clinics, before personalized medicine 
becomes reality. This knowledge is mainly coming from molecular biol-
ogy (genomics, proteomics, metabolomics, etc.) and clinico-genomic 
trials. A third source for the individualization of treatment is based on 
system-biology-driven concepts in biomedicine, which are based on 
mathematical cancer models, and that belong to in silico oncology. Such 
mathematical models are just at the beginning. But it can be anticipated 
that they will play an important role as clinical decision makers in the 
near future. The demand for better treatments based on individual risk 
factors is obvious as most patients do respond to treatment but fewer will 
be cured.

EnrolLment in Clinical Trials
An increase in the number of patients that are enrolled in clinical trials is 
needed. This can be achieved by simplifying and supporting the clinical 
trial process—from obtaining the idea, writing of the protocol, and setting 
up the trial, to collecting and analyzing the data. Today, only 5–10% of 
adult cancer patients are enrolled in prospective and randomized clinical 
trials [2] (see Figure 19.1). The fact that a patient is enrolled in a clinical 
trial increases his chance to be cured per se [3]. In pediatric oncology, 
more than 90% of patients are enrolled in prospective clinical trials [4]. 
This is one of the reasons, why survival rates in childhood cancer have 
risen to 80% today. The need for clinical trials is also based on the fact 
that for translational research, as well as for mathematical modeling of 
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cancer, reliable clinical data are needed. These data can only be generated 
in prospective clinico-genomic trials. Only with such trials can new risk 
factors for outcome be found, which will allow a better stratification of 
patients according to their individual risk factors. This will help to spare 
toxic chemotherapy (CT) in patients who do not need them and increase 
dose intensity of CT or change of treatment options for those patients with 
a poor prognosis. Such a treatment plan is given in Figure 19.2 for the pro-
spective randomized trial SIOP 2001/GPOH for the treatment of nephro-
blastoma in children, adolescents, and young adults in Europe.

Need of Bio-Banks
In every clinical trial there is a demand for bio-banking and analyzing 
tumor samples in molecular genetic laboratories to gain more insights 
into the biology of cancer. An example of such a bio-bank is given in 
Figure 19.3 for the SIOP nephroblastoma trials. A variety of different ana-
lytical techniques and methods are available today. This will increase our 
knowledge with regard to the molecular biology of cancer. As a result, new 
therapeutics can be awaited that will lead to higher cure rates. Such thera-
peutics will be small molecules and used as targeted therapies. Drivers for 
such molecular therapeutics are the following subjects:

Human Genome Project•	

Bioinformatics•	
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Figure 19.1  Enrollment of patients in clinical trials in percentage of patients. 
(AYA: adolescents and young adults). (From Couzin, J. Science 317:1160–1162, 
2007.)
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Robotic high-throughput screening•	

Computer-aided drug design•	

Expression vectors for novel protein target production•	

Seamless Integration of Heterogeneous Data
Besides clinical data and molecular biological data, imaging data, patho-
logical data, and other data will be collected in prospective clinical trials. 
Such heterogeneous data need to be seamlessly integrated in the individ-
ual patient’s clinical record. An integrated IT platform as it is developed 
in ACGT (Advancing Clinico Genomic Trials, a European Integrated 
Project of Framework Package 6) is very helpful for this purpose. 
Pseudonymized or anonymized data can then be used for translational 
research in accordance to legal, ethical, and regulatory requirements. 
Risk-adapted treatment in the future is only possible by fostering trans-
lational research [5,6]. Statisticians and bioinformatics can then analyze 
these data to gain new knowledge in an effort to get closer to personalized 
medicine.
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Recycle tumorbox

Pathology

Cell culture

RNA tumorDNA tumorDNA blood/kidneyTissue storage
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11p15 / p13, 11q
16q
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PCR/Sequence

(WT1)
(DHPLC/Sequencing)

Real time PCR
Microarray

Associated screens,
requests from

scientific community

Figure 19.3  Schema for a bio-bank as used in the SIOP nephroblastoma trials.
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In Silico Oncology
The aim of in silico oncology is to develop patient-specific computer simu-
lation models of malignant tumors and normal tissues in order to opti-
mize the planning of various therapeutic schemes. Ultimately, the goal is 
to aid in the process of effectively treating cancer and to contribute to the 
understanding of the disease at the molecular, cellular, organ, and body 
level.

Only with the help of powerful integrative platforms for the seamless 
integration of molecular biological, clinical, imaging, and other data, as 
well as public databases mathematical models of cancer can be gener-
ated. To run in silico experiments successfully, the characterization of the 
underlying disease, its biology, and treatment is needed, as well as com-
putational mathematical methods and techniques. From system biology, 
physiological and pharmacokinetic models have to be developed for usage 
in such experiments.

From a clinical point of view it is expected that cancer growth and 
response to different treatments can be simulated. In simulating response 
to treatment in a given cancer, this knowledge is significant for assessing 
better methods for treatment efficacy as the RECIST criteria [7,8] provide. 
It might be time to improve traditional measures of clinical response as 
trial end points and to evaluate the activity on rare and resistant cancer 
cells. If in silico experiments are to be of more help for a clinician than pro-
viding a prediction of changes in tumor volume and shape, the response 
of treatment of the small fraction of resistant cancer cells will be of utmost 
importance in the future [9].

There are two possibilities for in silico experiments, the top-down and 
the bottom-up approach. The top-down approach uses clinical observa-
tions and the knowledge about the behavior of a cancer as a whole [10]. 
This approach tries to identify subsystems based on physiological and 
biological findings that are required to build a reproducible model of a 
specific cancer [11]. An iterative process continues to find the highest gran-
ularity of the system in making the in silico model as accurate as possible 
in reflecting reality. In doing so, the model is kept under surveillance by 
the overall behavior of the entire system [12,13]. In contrast, a bottom-up 
approach assembles all known parts of a system, starting with genes and 
proteins, and brings them into a formal structure until a model of the sys-
tem is attained [12,14]. The disadvantage of the bottom-up approach is the 
fact that the discovery of each new component requires a reconfiguration 
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of the whole model [12]. For further information, available biosimulation 
software is summarized by Ho and Bartsell 2004 [15] and Deisboeck et 
al., 2009 [16], who gives an excellent overview of in silico cancer modeling 
by reviewing selected studies on modeling the progression and therapy of 
highly malignant brain tumors.

Clinical Preconditions of In Vivo 
Cancer Modeling
Such in silico experiments might help clinicians in the future to find the 
best way of treating an individual patient by simulating different treat-
ments in the computer before starting the treatment in reality. Two 
preconditions are of utmost importance before one can rely on in silico 
oncology models [17]:

	 1.	Every in silico method should be part of a clinico-genomic trial.

	 2.	Every prediction of an in silico method has to be compared with the 
reality.

After establishing the in silico model it is necessary to define the needed 
data in a first step, including data from the tumor (molecular biology, 
pathology, imaging), from the patient (clinical data), and from the possi-
ble treatment (pharmacokinetics of drugs that will be used, the treatment 
schema), as well as from the literature and open-source databases. To make 
the simulation predictions precise and realistic, it is crucial to get as much 
information as possible from each of the different categories. The amount 
of data will be restricted by the availability of tumor material, imaging 
data, and clinical data. Therefore, in silico oncology should always be inte-
grated into or be part of a clinico-genomic trial, where data management 
including data security and anonymization or pseudonymization of data, 
along with tumor banking, are well established. In addition, the trial is 
always reviewed by an ethical committee and fulfills all other GCP criteria 
to get approval by regulatory authorities [18].

The simulation prediction of each in silico model must always be com-
pared with the reality, in other words, the actual treatment outcome. The 
actual outcome provides feedback for tuning the in silico model to get better 
predictions. Such a control loop, executed automatically, must be a compo-
nent in any in silico model whose predictions are to be used for treatment. 
In that way in silico experiments should be considered and established as 
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learning systems. Only if there are no or minimal deviations between the 
prediction and the reality can the in silico method be allowed to be used 
in a clinical setting. The clinician has to define what can be accepted as a 
maximal deviation between prediction and reality in a trial. This defini-
tion should always be included in the biometrics part of a clinico-genomic 
trial protocol. For the safety of patients, a stopping rule has to be defined 
if clinical decisions are based on in silico experiments.

Clinical Questions to Be Addressed
For a clinician it is important that the in silico experiments can address 
and answer precisely for each patient the following questions [10,17]:

	 1.	What is the natural course of the tumor growth over time, in size 
and shape?

	 2.	When and to which site(s) is the tumor metastasizing?

	 3.	Can the response of the local tumor and the metastases to a given 
treatment be predicted over time, in size and shape?

	 4.	What is the best treatment schedule regarding medication, surgery, 
irradiation, and their combination, dosage, time schedule, and dura-
tion to achieve a cure?

	 5.	 Is it possible to predict severe adverse events (SAE) of a treatment and to 
propose alternatives to avoid them without deteriorating the outcome?

	 6.	Is it possible to predict a cancer before it becomes clinically manifest, 
and to recommend treatment options to prevent the occurrence or a 
recurrence?

Which question will be addressed is decided by the clinician and will 
influence the model. It has to be accentuated as stated before, that every in 
silico experiment should be part of a prospective clinical trial.

Conclusions
The question “What is the best treatment for a given tumor in an indi-
vidual patient?” leads to a high level of individualization. To attain this 
goal it is of utmost importance that the result of the in silico experiment 
is available in a short timeframe after diagnosis. This implies that all data 
that are necessary for running the in silico experiment have to be available 
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in a timely manner. This is especially important for molecular biologists, 
radiologists, and clinicians, who have to produce reliable data very fast 
[10]. Besides this, a high acceptance rate of in silico oncology experiments 
by clinicians is needed in the future. For this purpose, curricula of medi-
cal schools need to be changed and physicians need to be trained to use in 
silico experiments as a support system for clinical decision making in the 
daily clinical care of patients.
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R&D: Research and Development
RTOG: Radiation Therapy Oncology Group
S: DNA synthesis phase
TDS: Time Delay in the S phase compartment
TGFβ: Transforming growth factor β
TMZ: Temozolomide
2D: Two-dimensional
3D: Three-dimensional

© 2011 by Taylor and Francis Group, LLC
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Figure 5.4  (See Figure caption on page 99)

Figure 6.5  (See Figure caption on page 122)
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Figure 6.7  (See Figure caption on page 124)
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Figure 7.3  (See Figure caption on page 146) 
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Figure 10.3  (See Figure caption on page 203) 
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Figure 11.4  (See Figure caption on page 226) 

Figure 12.5  (See Figure caption on page 246) 
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Figure 14.3  (See Figure caption on page 318) 
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Figure 17.4  (See Figure caption on page 396) 

(a) (b () c)

(d) (e) (f)

Figure 17.5  (See Figure caption on page 398) 
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Figure 18.3  (See Figure caption on page 423) 
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