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in Vivo: The Paradigm of Glioblastoma Multiforme
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Abstract—A novel four-dimensional, patient-specific Monte
Carlo simulation model of solid tumor response to chemother-
apeutic treatment in vivo is presented. The special case of
glioblastoma multiforme treated by temozolomide is addressed
as a simulation paradigm. Nevertheless, a considerable number
of the involved algorithms are generally applicable. The model is
based on the patient’s imaging, histopathologic and genetic data.
For a given drug administration schedule lying within acceptable
toxicity boundaries, the concentration of the prodrug and its
metabolites within the tumor is calculated as a function of time
based on the drug pharamacokinetics. A discretization mesh is
superimposed upon the anatomical region of interest and within
each geometrical cell of the mesh the most prominent biological
“laws” (cell cycling, necrosis, apoptosis, mechanical restictions,
etc.) are applied. The biological cell fates are predicted based on
the drug pharmacodynamics. The outcome of the simulation is
a prediction of the spatiotemporal activity of the entire tumor
and is virtual reality visualized. A good qualitative agreement
of the model’s predictions with clinical experience supports the
applicability of the approach. The proposed model primarily aims
at providing a platform for performing patient individualized
in silico experiments as a means of chemotherapeutic treatment
optimization.

Index Terms—Cancer, chemotherapy, chemotherapy optimiza-
tion, glioblastoma multiforme, in silico oncology, Monte Carlo,
neovasculature, patient individualized optimization, temozolo-
mide, Temodal ™, Temodar ™, tumor growth, simulation model.

I. INTRODUCTION

ANALYTICAL description of tumor growth and response
to several therapeutic modalities such as radiation therapy

and chemotherapy has received considerable attention during
the last decades. Examples of the efforts concerning modeling
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of the tumor response to chemotherapy include the following.
Chuang [1] presented a theoretical study of pharmacokinetic
and cell kinetic models for cancer chemotherapeutic systems.
In his approach, pharmacokinetic models and cell-drug interac-
tions at the tumor site are incorporated into the cell cycle kinetic
models to form the cancer chemotherapeutic model systems.
Levin et al.. [2] defined specific factors that they believed to be
of primary importance in drug delivery to brain tumors, and,
using computer simulation they modeled their effects. Ozawa
et al.. [3] presented a pharmacodynamic model for the cell
cycle phase-specific antitumor agents as well as for the cell
cycle phase-nonspecific agents. Jean et al.. [4] developed an
educational computer-based program simulating experiments
of anti-tumor activity. The input of the program includes
the dose, the number of treatments/day, the total number of
treatments and the time interval between the treatments. Nani
and Oguztoereli [5] presented a set of mathematical models
and computer simulations of the response of haematological
and gynaecological tumors to chemotherapy. To optimize
chemotherapeutic treatment Iliadis and Barbolosi [6], [7] de-
veloped an analytical model describing the pharamacokinetics
of anticancer drugs, antitumor efficacy and drug toxicity. Davis
and Tannock [8] modeled the effect of repopulation of tumor
cells between cycles of chemotherapy. Gardner [9] developed
a computer model, the kinetically tailored treatment or KITT
model, to predict drug combinations, doses, and schedules
likely to be effective in reducing tumor size and prolonged
patient life. Ward and King [10] adapted an avascular tumor
growth model to compare the effects of drug application on
multicell spheroids and on monolayer cultures. From the above
brief literature account it appears that although extensive efforts
have been made towards modeling chemotherapy response
in a generic setting, no simulation models referring to the
individual patient’s imaging [exact three-dimensional (3-D)
geometry] and other pertinent data have been published as yet.
To respond to such a need a novel four-dimensional (4-D) ,
patient-specific Monte Carlo simulation model of solid tumor
response to chemotherapeutic treatment in vivo is presented in
this paper. The special case of glioblastoma multiforme treated
by the alkylating agent temozolomide is addressed although
a considerable number of the involved algorithms are gener-
ally applicable. The model is based on the patient’s imaging,
histopathologic and pharmacodynamic/genetic data and pri-
marily aims at providing a reliable platform for performing
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patient individualized in silico (on the computer) experiments
as a means of chemotherapeutic treatment optimization.

II. DATA COLLECTION

The imaging data [e.g., T1 contrast enhanced magnetic res-
onance imaging (MRI), positron emission tomography (PET)
slices, possibly fused] including the delineation of the (glioblas-
toma multiforme) tumor and its necrotic area as well as the adja-
cent anatomical structures of interest, the histopathologic (e.g.,
type of tumor) and eventually the genetic data (e.g., DNA mi-
croarray output appropriately interpreted through a pertinent ge-
netic network) of the specific tumor, are collected. It is pointed
out that the imaging data (e.g., T1 contrast enhanced MRI) pro-
vide information on 1) the boundaries of the gross volume of
the tumor, 2) the volume itself, and 3) the spatial distribution of
the metabolic activity of the tumor (regions where there is sig-
nificant provision of oxygen and nutrients through the neovas-
culature, and “necrotic” regions where there is lack of adequate
vascularization and subsequently lack of adequate oxygenation
and provision of nutrients).

Concerning the delineation and extraction of the tumor, the
following procedures take place. A specialized clinician delin-
eates the structures of interest, i.e., the necrotic and the well vas-
cularized areas of the tumor on each tomographic (e.g., MRI)
slice available using a dedicated software tool previously de-
veloped by our research group. The imaging data under con-
sideration can be either digital tomograms in DICOM format or
the scanning output of conventional films (e.g., in TIFF format).
Manual segmentation obviously relies on the user’s clinical ex-
perience and training. Each user defined slice contour consists
of a number of ordered points which appear on a screen window
through the use of the mouse. There are possibilities of addition,
translation or removal of the contour points. A simple trilinear
interpolation is used as a first approximation in order to substi-
tute the missing information due to the generally varying spatial
interval between subsequent slices. In this way the value of each
interpolated element is calculated based on the weighted values
of its six neighboring elements. It is assumed that the color den-
sity varies linearly along the three basic axes between the two
closest image elements that lie at both sides of the element under
consideration. Shape-based interpolation through the use of dis-
tance maps (6-neighbor distance transformation) is applied to
the delineation contours in order to acquire resolution equal to
the resolution of the imaging data following interpolation. Im-
proved interpolation techniques can also be used.

Contrast enhanced T1 MRI images usually provide sharp
edges between the hyperintense and hypointense regions of
the tumor. Poorly differentiated glioblastoma multiforme cells
when lying in the vicinity of functional capillaries that provide
them with sufficient oxygen and nutrients are expected to be
cell cycling most of the time unless spontaneous apoptosis
or a therapeutic effect is taking place (e.g., cytostasis and
subsequent apoptosis due to temozolomide action). Tumor
cells lying at a large distance form their nearest neovasulature
capillaries will either be in the G0 phase or the necrotic one
due to inadequate oxygenation and nutrition. Within a given
geometrical cell, the distribution of the proliferating tumor
cells throughout the cell cycle phases is performed in a statis-
tical way based on the mean duration of each separate phase.

Concerning handling of the imaging data, although this paper
does not focus on the techniques that can be used in order to
perform image segmentation, automatic segmentation might
be a better alternative to the manual one adopted so far. To
this end techniques such as the ones appearing in [11] and [12]
can be used. It is pointed out that at the present phase of the
model development a perfect segmentation is not absolutely
necessary. This is because uncertainties in the estimation of
specific biological parameters would prevent full exploitation
of a perfect segmentation.

The imaging information is introduced into the 3-D vi-
sualization package (AVS-Express™), which performs the
visualization of both the tumor and its surrounding region by
combining volume and surface rendering techniques. Especially
for the case of glioblastoma multiforme, gadolinium-enhanced
T1-weighted images have been mainly considered by our group
up to now. According to [13], the hyper-intense, white region
of the tumor reflects an area of extensive blood-brain/tumor
barrier leakage. Since this regional neovascular setting provides
tumor cells with sufficient nutrition, this region contains the
highly metabolizing and, therefore, the highly proliferating,
e.g., dividing tumor cells. It is also pointed out that up to now
no work has been published in which direct exploitation of the
actual 3-D structural and functional information provided by
imaging techniques is used in order to optimize chemotherapy
on a patient-specific level. Undoubtedly tumor cells infiltrate
into the brain well beyond the imaged edge of the tumor and
infiltrations play a critical role in patient survival. Extensive
work on this aspect of glioblastoma has been done by Swanson
et al.. [14], [15]. Nevertheless, control of the main imageable
tumor which is addressed in this paper is a straightforward
necessity.

III. BIOLOGICAL AND CLINICAL BACKGROUND

A. Tumor Growth and Chemotherapeutic Treatment Biology

The cytokinetic model shown in Fig. 1 is proposed and
adopted. According to this model, a tumor cell when cycling
passes through the phases G1 (gap 1), S (DNA synthesis), G2
(gap 2), and M (mitosis) [16]–[19]. After mitosis is completed,
each one of the resulting cells re-enters G1 if oxygen and
nutrient supply in its current position is adequate. Otherwise,
it enters the resting G0 phase in which if oxygen and nutrient
supply are inadequate it can stay for a limited time (T ).
Subsequently, it enters the necrotic phase which leads to cell
death unless the local environment of the cell becomes adequate
before the expiration of T . In the latter case, the cell re-enters
G1. In addition to the previously described pathway, there is
always a chance that each cell residing in any phase—other
than necrosis or apoptosis—dies with some probability/hour
due to ageing and spontaneous apoptosis. This probability
represents the cell loss rate due to apoptosis and is the product
of the cell loss factor due to apoptosis and the cell birth rate
[20]. The cell birth rate can be considered as the ratio of
the growth fraction to the cell cycle duration [20]. A rather
analogous approach to the cytokinetic modeling of tumor cells
for the case of non-Hodgkin lymphomas has been adopted
by Ribba et al.. [21]. Side effects, immunologic reactions,
formation of metastases, and drug resistance as a phenomenon
building up with time are neglected in the current version of



STAMATAKOS et al.: PATIENT INDIVIDUALIZED SIMULATION MODEL OF SOLID TUMOR RESPONSE TO CHEMOTHERAPY IN VIVO 1469

Fig. 1. A simplified cytokinetic model of a tumor cell. Symbol explanation. G1:
G1 phase; S: DNA synthesis phase; G2: G2 phase; G0: G0 phase; N: necrosis; A:
apoptosis. The cytotoxicity produced by TMZ is primarily modeled by a delay
in the S phase compartment (TDS) (“Delay due to the effect of chemotherapy”
in the diagram) and subsequent apoptosis. The delay box simply represents the
time corresponding to at most two cell divisions being required before the emer-
gence of temozolomide cytotoxicity. It is not a time interval additional to the
times represented by the cell cycle phase boxes.

the model. Only the tomographically visible gross volume of
the tumor is taken into account at this stage of the simulation
model development process. The response of the entire clinical
tumor, the surrounding edema and the whole body reactions to
the chemotherapeutic scheme are to be addressed in a future
version.

Based upon the experimental observation that the diffusion
limit of oxygen is about 100 m from the capillaries and that
there is usually progressive hypoxia from the outer tumor layer
to the center of the tumor [22]–[27], an intermediate “G0 layer”
(containing a substantial number of hypoxic cells) is considered.
During the tumor growth process, new capillaries are assumed
to emerge. In this way both the tumor volume characterized by
pronounced metabolic activity in the beginning of the simulated
period and the volume subsequently added to the tumor are con-
sidered to be able to sustain proliferation.

In the case of chemotherapeutic treatment with the pro-
drug temozolomide (TMZ) with the chemical name 3,4-di-
hydro-3-methyl-4-oxoimidazo[5,1-d]-as-tetrazine-8-carbox-
amide, a given proliferating or dormant cancer cell may or
may not be affected by the treatment [28]–[30]. In the former
case, the methyldiazonium ion methylates guanine residues
in the DNA molecules [28]. The resulting interruptions in the
daughter strands are inhibitory to replication in the subsequent
S-phase and account for up to two cell divisions being required
before the emergence of Temozolomide cytotoxicity [29]. Thus,
the effect of TMZ is simulated by both a time delay TDS in the
S phase (“Delay due to the effect of chemotherapy” in Fig. 1)
taken equal to 1 of the cell cycle duration. After expiration
of TDS, affected cells are assumed to proceed to death via the
apoptotic pathway. It should be noted that certain investigators
assume that affected cells are arrested at the G2/M checkpoint
before undergoing apoptosis [30]. Nevertheless, no essential
difference from the computing point of view would arise in
case that such an assumption were more realistic than the one
adopted, as the only difference between the two approaches lies
in a rather insignificant time delay.

B. Temozolomide Pharmacokinetics and Pharmacodynamics

TMZ belongs to a new class of alkylating agents known as
imidazotetrazines. TMZ is a small molecule with a molecular
weight of 194 daltons and is, therefore, readily absorbed in the
digestive tract and, because it is lipophilic, it is able to cross the
blood-brain barrier. TMZ is robustly stable at the acidic pH of
the stomach. However, once in contact with the slightly basic
pH of the blood and tissues, TMZ spontaneously undergoes hy-
drolysis to the active metabolite 5-(3-methyltriazen-1-yl)imi-
dazole-4-carboxamide (MTIC), which rapidly breaks down to
form the reactive methyldiazonium ion [30]. The methyldiazo-
nium ion formed by the breakdown of MTIC primarily methy-
lates guanine residues in the DNA molecule, resulting in the
formation of O - and N -methylguanine. The formation of
O -methylguanine is primarily responsible for the cytotoxic ef-
fects of TMZ and DTIC. When DNA mismatch repair enzymes
attempt to excise O -methylguanine, they generate single- and
double-strand breaks in the DNA, leading to activation of apop-
totic pathways [28]–[47]. It is pointed out that apoptosis is by
far the main way through which cells treated by temozolomide
die [30], [47]. It is also stressed that although the cytotoxicity of
TMZ is due to its decomposition products, both its pharmacoki-
netics and pharmacodynamics are referred to the parent drug
concentration [38].

TMZ pharmacokinetics can be adequately described by a one
compartment open model [30]. The absorption process for oral
drug administration can be described by a first order differen-
tial equation [34]–[37], [47]–[50]. The plasma concentration is
given by

(1)

where stands for the administered dose/fraction, for the
bioavailability (the fraction of drug reaching the systemic
circulation following administration by any route), and
for the volume of distribution. The variable t represents the
time elapsed since the drug administration. It is noted that the
dose/fraction and the volume of distribution should be adjusted
for the actual weight of the patient (e.g., 70 kg). k denotes
the absorption rate constant whereas k the elimination rate
constant. Both k and k depend on the specific chemotherapy
agent and the administered dose/fraction.

The k and k pharmacokinetics parameters have been
calculated based on data included in the corresponding study
in [38] that has been conducted by the Schering-Plough Re-
search Institute. The values of pharmacokinetics parameters of
TMZ in plasma have been measured in patients with advanced
cancer. In the present paper the dose values (in milligrams of
TMZ/m of the patient’s body surface) of 150 mg/m , 200
mg/m , and 250 mg/m have been considered [38], [39]. Two
oral drug administration schedules have been simulated (see
Section VI): the standard one (once a day, for 5 consecutive
days/28-day treatment cycle) [37]–[39] and a hypothetical one
in which the chemotherapy fractions are distributed more uni-
formly throughout the 28-day chemotherapy cycle. In the latter
scheme more time for the normal tissues to recover between
chemotherapy sessions is allowed. The pharmacokinetics con-
stants have been calculated for the three previously mentioned
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doses using the method of “residuals.” For the dose of 150
mg/m the pharmacokinetics constants have been calculated to
be k = 3.10 h and k = 0.33 h , for the dose of 200 mg/m
k = 3.60 h and k = 0.39 h and for the dose of 250 mg/m
k = 4.60 h and k = 0.74 h . The volume of distribution
for an individual weighting 70 kg has been taken equal to 28 L
(0.4 L/kg [38]). In order to validate the implementation of the
calculation method adopted, the plasma concentration for the
three doses considered has been “re-calculated” based on the
previously estimated values of k and k . The “re-calculated”
plasma concentration values have been compared with data
included in [38] and an excellent agreement has been observed.
The bioavailability of TMZ is practically 1.0 (or 100%) [38].

Being an alkylating agent TMZ belongs to the Cell Cycle
Nonspecific Agents (CCNS) [35], [36], [48]–[58]. The Survival
Fraction (SF) for the CCNS depends on the following factors
[3], [56]–[58]: 1) Average plasma concentration (C ) of TMZ;
2) Exposure of tumor cells to (T ); 3) Survival fraction
constant (K ) depending on the pharmaceutical substance and
the target cell properties. It is noted that in the near future K is
expected to be routinely estimated based on the gene expression
profile of the individual tumor under consideration, e.g., using
DNA microarrays. More precisely the mean K value based on
population statistics will be perturbed based on the individual
patient’s tumor gene expression profile. The survival fraction
can be expressed as [58]

(2)

Use of O6-benzylguanine, an inhibitor of O6-methylgua-
nine-DNA methyltransferase (MGMT) has been shown to
eliminate MGMT in human glioma cell lines and increase
their sensitivity to the clinically utilized alkylating agents
BCNU (carmustine) and TMZ. This observation demonstrates
that MGMT is an important mechanism of resistance to these
alkylators and supports the use of O -benzylguanine to reduce
glioma resistance to alkylating agents. A graph of SF as a
function of Cpav for the case of glioblastoma derived line
UW455 has been used in order to calculate or better estimate
the value of K [43], [59], [60]. In the present model pre-
treatment with O6-benzylguanine has been considered and
therefore, the corresponding pharmacodynamics graph has
been adopted [43], [59], [60]. K has been calculated to be
9.2 10 M h when at C =125 .
As a first approximation the parameter T has been given the
value of t h [38] which corresponds to the period of
time during which the concentration of TMZ is above its half
maximum value. The value T = t 2 h is given only to
convey an idea of the time during which most of the effect of
the drug takes place. The duration of the period for which the
drug concentration is above its half maximum value is 1.7 h
to 1.8 h (which if rounded to the nearest integer gives 2h) for
each one of the first 5 days of the chemotherapeutic cycle [38].
The value of T h if multiplied by the maximum
concentration can be used as a first rough approximation of the
area under the concentration versus time curve which appears
at the exponent of (2). During the actual simulation process, the
curve of drug concentration over time is discretized in intervals
of 1 h. In each time interval the mean concentration of the drug

is calculated using the pharmacokinetics curve. The product of
the mean drug concentration by 1h is used in the SF calculation
equation for each one of the scanning intervals (of 1h each).
Finally in this way the area under the concentration over time
curve arises in the exponent of equation (2) as needed.

IV. THE MODEL BASICS

The notion of “geometrical cell” [18] is introduced in order to
spatially describe the biological activity of the tumor [16], [17],
[20]. A 3-D discretizing mesh is superimposed on the anatom-
ical region of interest shown in the imaging data collected. Each
geometrical cell of the mesh belonging to the tumor contains a
number of biological cells “residing” in various phases within or
out of the cell cycle (G1, S, G2, M, G0, Necrosis/Lysis, Apop-
tosis). Within each geometrical cell, a number of classes of bi-
ological cells (compartments), each one characterized by the
phase in which its cells are found are defined. Sufficient reg-
isters are used in order to characterize the state of each geo-
metrical cell and each phase class within it (e.g., the number of
biological cells in phase G1, the time spent in phase G1, etc.).
The number of biological cells constituting each phase class is
initially estimated according to both the position of the geomet-
rical cell within the tumor and the metabolic activity in the local
area (e.g., based on PET, functional MRI, etc).

Mammalian cells require oxygen and nutrients for their
survival and functional cells must, therefore, be located within
a distance of 100 m to 200 m from the nearest capillary
blood vessels, which is the diffusion limit for oxygen. For
multicellular organisms to grow new blood vessels must be
recruited by angiogenesis. Without blood vessels, tumors
cannot grow beyond a critical size or metastasize to another
organ [22]. In contrast to normal vessels, tumor vasculature
is highly disorganized; vessels are tortuous and dilated, with
uneven diameter, excessive branching and shunts. This is due to
imbalance of angiogenic regulators. Consequently, tumor blood
flow is chaotic and variable [22], [23] and leads to hypoxic and
acidic regions in tumors [22], [23]. Tumor vessel ultrastructure
is also abnormal. The vessel walls have numerous “openings”
widened interendothelial junctions, and a discontinuous or
absent basement membrane. These defects make tumor vessels
“leaky” [25], [26] and there is tremendous heterogeneity in
leakiness over space and time [20], [25], [26]. Vascular perme-
ability and angiogenesis depend on the type of tumor and on
the host organ in which the tumor is growing [22], [25].

Taking into account the previous observations, an inter-
mediate layer between the “necrotic” and the “proliferating”
layers of the tumor denoted by “G0” is assumed to exist. This
layer which contains a substantial number of dormant cells lies
around the necrotic area of the tumor. During the simulation
process, and in the case of tumor growth, normal tissue capil-
laries are shifted away, and tumor capillaries are generated in
their origin [22], [27]. Consequently, the new tumor cells are
assumed to be sufficiently oxygenated and able to divide. The
following temporal behavior assumptions are made: 1) Time is
quantized and measured in appropriate units. In all applications
described in this paper 1 h has been adopted as the unit of time.
The discretizing mesh scanning procedure is described in detail
in [18]. 2) Biological cells constituting each phase class within
a given geometrical cell of the discretizing mesh are assumed to
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be synchronized. 3) For each geometrical cell and for the pool
of the chemotherapy affected cells, the time remaining until the
next cell division is the result of weighting the time until the
cell division of each synchronized cell subgroup of the pool
by the number of cells constituting it. 4) For each geometrical
cell under examination the remaining time in the current phase
is reduced by one time unit (1 h) after each simulation step.
5) During the initialization process, cells within the same cell
cycle phase class are not considered to be synchronized. A
random number generator is used to produce a uniform cell
distribution over the time units constituting the duration of each
phase class within or out of the cell cycle. If the surviving cells
of the entire tumor are reduced by three orders of magnitude
(e.g., due to the effect of chemotherapy) a new random number
generator is used in order to re-randomize the time elapsed
within each phase for any given geometrical cell. This is done in
order to avoid an artificial synchronization of the entire tumor.
As at least the distribution of the cells in the various phases is
respected, it has been shown that in this way no substantial error
is introduced into the model’s predictions. The tumor expan-
sion and shrinkage algorithm adopted is described in [61]. The
detailed mechanical behavior of the surrounding normal tissues
as well as the local and whole body toxicities (e.g., epilepsy,
neutropenia, thrombocytopenia, etc.) have not been taken into
account in this version of the model. Especially toxicities need
to be taken into account in detail (in a future model extension)
as they impose fundamental restrictions on the prospective drug
administration schedules. Furthermore, inclusion of the effects
of drug resistance in more detail is expected to substantially
refine the simulation model. The overall simulation strategy of
the model presented is schematically depicted in Fig. 2. Table I
provides a summary of the model parameters, some remarkable
dependencies, their units, their values considered in this paper
as well as the sources of the parameter values considered.

V. SIMULATION RUN AND VISUALIZATION

The computer code has been developed in Microsoft Visual
C++ 6.0 ™ . As far as computational demands are concerned ex-
ecution of, e.g., a six week chemotherapy course (usually corre-
sponding to 1.5 chemotherapy cycles) with a discretizing mesh
of geometrical cells each one of dimensions 1
mm 1 mm 1 mm on an AMD Athlon XP ™ machine (2.5
GHz, 786 MB RAM) takes about 1.5 min. As the proposed
model aims at serving as a decision support tool to a clinical
doctor, in silico experiments should be performable in real-time.
The imaging, histopathologic and eventual genetic data of the
patient are processed by the previously described software in
order to “predict” the most likely spatio-temporal response of
the tumor. Software from Advanced Visual Systems ™ has been
used to provide a suite of sophisticated 3-D tools for presenta-
tion of the simulation results. Additionally, the simulation pre-
dictions have been visualized using the CAVE™ Immersive Vir-
tual Reality System.

VI. THE CASE OF GRADE IV ASTROCYTOMA IN

VIVO—RESULTS

A preliminary validation of the algorithms described so far
has been achieved by devising and implementing the following
testing procedure. A clinical case of glioblastoma multiforme

Fig. 2. A simplified flowchart of the proposed algorithm. Following introduc-
tion of the baseline tumor structure and metabolic activity data and the drug
administration schedule, simulation of the various response stages takes place
as shown in the flowchart.

(grade IV astrocytoma) has been selected and the imaging-based
boundary of the tumor has been delineated. The necrotic area
has also been identified, based on the corresponding T1
weighted, gadolinium enhanced MRI data. As a first approx-
imation, the effective neovasculature field has been assumed
to coincide with the area of the tumor where pronounced
metabolism is apparent on the pertinent data. A discretizing
mesh cube defining the anatomical region of interest has been
superimposed on the imaging-based 3-D reconstruction of the
anatomic region of interest. The dimensions of each geomet-
rical cell of the cube are 1 mm 1 mm 1 mm. Such a volume
contains roughly 10 biological cells [61],[62] .
The administered dose/chemotherapeutic fraction has been
taken 150 mg/m , or 200 mg/m , or 250 mg/m . The drug has
been assumed to be administered orally, either once daily for
5 consecutive days/28-day treatment cycle (standard scheme,
Fractionation scheme A, Fig. 3) or according to a hypothetical
scheme in which drug administration is almost uniformly
distributed throughout the chemotherapy cycle (Fractionation
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TABLE I
SIMULATION MODEL PARAMETERS

Fig. 3. The two chemotherapy fractionations considered. Fractionation A cor-
responds to the standard TMZ administration scheme (once daily for 5 consec-
utive days/28-day treatment cycle) whereas Fractionation B corresponds to a
hypothetical drug administration almost uniformly distributed throughout the
chemotherapy cycle. Each drug administration session is denoted by a small
black disk (pill).

scheme B, Fig. 3). Only one chemotherapy cycle/scheme has
been simulated.

For the specific type of poorly differentiated tumor under
consideration, and for simplification reasons, all nonclonogenic
cells have been considered to be necrotic (sterile cells have not
been taken into account). The contribution of the living non-
clonogenic cells (cells that are able to undergo only a limited
number of cell divisions) are to be considered in a subsequent
version of the model. A typical mean clonogenic cell density
[62] is 10 cells/cm cells/mm ). We have assumed a
clonogenic cell density of 2 10 cells/mm in the “prolifer-
ating cell layer.” This layer has lain between the external surface
of the gross tumor volume and a hypothetical surface (HYP) en-
closing its necrotic kernel and lying 1.5 mm further out. The
tumor volume contained between HYP and the surface of the
necrotic region has been assumed to contain a large number
of dormant G0 cells; therefore, it is called “G0 cell layer”. A
clonogenic cell density of 10 cells/mm in the G0 cell layer
and 0.2 10 cells/mm in the necrotic or dead cell layer of the
tumor has also been assumed. Within each geometrical cell of
the discretizing mesh the initial distribution of the clonogenic
cells through the various cell cycle phases depends on the layer
of the tumor to which the geometrical cell belongs. The fol-
lowing rough assumptions concerning the distribution of cells
within and out of the cell cycle have been made. In the prolif-
erating cell layer 70% of the living clonogenic cells have been
assumed to be in the cycling phases and 30% in the G0 phase. In
the G0 cell layer 30% of the living clonogenic cells have been
assumed to be in the cycling phases and 70% in the G0 phase.
Finally, in the necrotic cell layer 10% of the living clonogenic
cells have been assumed to be in the cycling phases and 90%
in the G0 phase. The previous fractions reflect an initial effort
to quantify histopathological observations concerning the cy-
tokinetic distribution of the tumor cells in the various layers of
a tumor. More realistic values are expected to arise during the
clinical validation of the model.

Further parameters of importance include the cell cycle dura-
tion (T ) assumed to be 30 h and the cell cycle phase durations
(T , T , T , T , and T ) assumed to be 11 h, 13 h, 4 h, 2
h, and 25 h, respectively [63]. The free tumor growth cell loss
factor [18] has been taken to be 0.3 as cell death products are
removed from brain with considerable difficulty. This total cell
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Fig. 4. Number of surviving (metabolically living) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(solid line) or B (dashed line) (Fig. 3). Each chemotherapy fraction corresponds
to 150 mg/m . The cell cycle has been assumed equal to Tc = 30 h and the
mean clonogenic cell density equal to CCD = 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 2 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

Fig. 5. Number of surviving (metabolically living) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(solid line) or B (dashed line) (Fig. 3). Each chemotherapy fraction corresponds
to 200 mg/m . The cell cycle has been assumed equal to Tc = 30 h and the
mean clonogenic cell density equal to CCD = 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 2 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

loss factor has been expressed as the sum of the cell loss factor
due to necrosis (assumed to be 0.2) and the cell loss factor due
to apoptosis (assumed to be 0.1). It is noted that necrosis tends
to be more pronounced than apoptosis for the specific type of
tumor. The probabilities of cell loss/hour due to necrosis and
due to apoptosis have been derived from the above-mentioned
value of the cell loss factor according to Steel [20]. More real-
istic values of the cell loss factor and the phase distribution of
cells in the various tumor layers are expected to emerge after
completion of the clinical adaptation process.

As already mentioned, in order to assess the model’s sensi-
tivity to various critical input parameters, the following para-
metric analysis has been performed. Three different doses/frac-
tion have been considered: 150 mg/m , 200 mg/m and 250
mg/m . Both the standard fractionation scheme A and the hy-
pothetical fractionation scheme B (Fig. 3) have been considered
for each dose/fraction. The only scheme performance criterion
adopted so far is tumor control. Figs. 4–6 show the number of
surviving proliferating and G0 cells. It should be stressed that
Figs. 4–6 refer to the total number of (still) metabolically ac-
tive cells. This implies that surviving proliferating and G0 cells
include also cells affected by the drug and destined to die but
not yet dead. The reason for considering this set of cells is that
metabolically active cells exploit the sufficient blood provision

Fig. 6. Number of surviving (metabolically alive) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(solid line) or B (dashed line) (Fig. 3). Each chemotherapy fraction corresponds
to 250 mg/m . The cell cycle has been assumed equal to Tc = 30 h and the
mean clonogenic cell density equal to CCD = 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 2 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

which creates the hyperintense regions on the T1 contrast en-
hanced MRI or PET slices. According to Fig. 4, in the case of a
fraction dose of 150 mg/m , the standard fractionation scheme
A seems to be superior to the hypothetical scheme B, as it keeps
the number of surviving cells substantially lower during most of
the chemotherapy 28 cycle. This implies that eventual combi-
nation of TMZ chemotherapy with another cytotoxic modality
(e.g., irradiation) might lead to a considerably improved out-
come. Two fighting strategies can be distinguished here. The
first one aims at keeping cell survival low by an initial fast sup-
pression of tumor repopulation whereas the second one aims
at reducing cell survival by delivering cytotoxicity more uni-
formly in time. The adoption of the first strategy in the clin-
ical setting is in accordance with the simulation predictions. Ac-
cording to Fig. 5 the standard fractionation scheme A leads to a
better tumor control outcome than the more uniform fractiona-
tion scheme B and this happens during the entire duration of the
cycle. This prediction is also in agreement with clinical prac-
tice. Even in the case of a 250 mg/m dose/fraction a superi-
ority of fractionation scheme A to B is clear according to Fig. 6.
Therefore, although still from a rather qualitative point of view,
the simulation model seems to be able to reasonably respond to
changes in critical parameters and at the same time to support
selection of particular fractionation schemes.

The theoretical predictions shown in Fig. 7 visualize the
ability of the model to effectively simulate the tumoricide effect
of Temozolomide. As TMZ is a CCNS agent it is expected to
kill the majority of both the dormant (G0) and the proliferating
cells. This remark is compatible with Fig. 7(b)-(d). Details
on the simulation sequences and the visualization criteria
are given on the corresponding figure captions. Repopulation
between chemotherapy cycles, a usually neglected but crucial
factor which affects the overall treatment output [64], is clearly
visualized in Figs. 4–6.

In order to extend the study of the model behavior to other
combinations of possible values of the model parameters,
a number of further simulation runs have been performed.
Figs. 8–10 depict the simulation predictions concerning the
two fractionation schemes considered for other possible values
of the cell cycle duration and clonogenic cell density. In par-
ticular Fig. 8 corresponds to h, mean clonogenic cell
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Fig. 7. Three-dimensional visualization of the simulated response of a clin-
ical glioblastoma multiforme tumor to one cycle of chemotherapeutic scheme
(150 mg/m orally once daily for 5 consecutive days/28-day treatment cycle,
[fractionation scheme A)]. (a) External surface of the tumor before the begin-
ning of chemotherapy, (b) internal structure of the tumor before the beginning
of chemotherapy, (c) external surface of the tumor 20 days after the begin-
ning of chemotherapy, and (d) internal structure of the tumor 20 days after
the beginning of chemotherapy. Pseudocolor Code: dark grey: proliferating cell
layer, light grey: dormant cell layer (G0), black: dead cell layer. The following
“99.8%”criterion has been devised and applied: “For a geometrical cell of the
discretizing mesh, if the percentage of dead cells within it is lower than 99.8%
then [if percentage of proliferating cells > percentage of G0 cells, then paint the
geometrical cell dark grey (proliferating cell layer), else paint the geometrical
cell light grey (G0 cell layer)] else paint the geometrical cell black (dead cell
layer)”. Three-dimensional visualization of the simulated response of a clin-
ical glioblastoma multiforme tumor to one cycle of chemotherapeutic scheme
[150 mg/m orally once daily for 5 consecutive days/28-day treatment cycle,
(fractionation scheme A)]. (a) External surface of the tumor before the begin-
ning of chemotherapy, (b) internal structure of the tumor before the beginning
of chemotherapy, (c) external surface of the tumor 20 days after the beginning
of chemotherapy, and (d) internal structure of the tumor 20 days after the begin-
ning of chemotherapy. Pseudocolor Code: red: proliferating cell layer, green:
dormant cell layer (G0), blue: dead cell layer. The following “99.8%”criterion
has been devised and applied: “For a geometrical cell of the discretizing mesh, if
the percentage of dead cells within it is lower than 99.8% then [if percentage of
proliferating cells > percentage of G0 cells, then paint the geometrical cell red
(proliferating cell layer), else paint the geometrical cell green (G0 cell layer)]
else paint the geometrical cell blue (dead cell layer)”. (Color version available
online at http://ieeexplore.ieee.org.)

density equal to cells/mm and dose/fraction equal to
150 mg/m . Fig. 9 corresponds to h, mean clonogenic
cell density equal to cells/mm and dose/fraction equal
to 200 mg/m . Fig. 10 corresponds to h, mean clono-
genic cell density equal to 4 10 cells/mm and dose/fraction
equal to 200 mg/m . It is noted that the values of 48 h and 40
h have been randomly selected from the range 1–2.5 days of
possible T values for gliomas as estimated by Pertuiset et al..
[65].

It is pointed out that due to the complex interdependence of
the parameters involved in advanced (and detailed) tumor sim-
ulation models, no monotonicity between the model prediction
outcome and the parameters involved can be strictly assumed.
Theoretically, one should perform an infinite number of simula-
tions corresponding to all possible values of the parameters in-
volved. However, as this would be unrealistic, the best practical
approach is to select a representative finite number of highly
possible parameter values and study the tumor phenomenon
through this simplified window. Obviously, such an approach

Fig. 8. Number of surviving (metabolically living) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(bold line) or B (light line) (Fig. 3). Each chemotherapy fraction corresponds to
150 mg/m . The cell cycle has been assumed equal to Tc = 48 h and the mean
clonogenic cell density equal to 2� CCD = 2� 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 4 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

Fig. 9. Number of surviving (metabolically living) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(bold line) or B (light line) (Fig. 3). Each chemotherapy fraction corresponds to
200 mg/m . The cell cycle has been assumed equal to Tc = 40 h and the mean
clonogenic cell density equal to 3 � CCD = 3� 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 6 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

(as adopted in this paper) is directly dictated by the hyper-com-
plex nature of cancer itself and it seems that there is no way to
evade it. Nevertheless, as high computer power is increasingly
available, large statistical “ensembles” of computer simulations
are expected to be routinely performed.

VII. DISCUSSION

All simulation predictions presented in the forms of graphs
and multidimensional visualizations agree at least qualitatively
with clinical experience. A process of quantitative clinical
adaptation and validation of the evolving model is ongoing
in collaboration with several clinical centers. Such a valida-
tion procedure involves comparison of the model predictions
with pertinent clinical data before, during, and after a number
of chemotherapeutic cycles. The simulation model can just
“follow” the clinical practice and activate a self-optimization
procedure. This implies that in case that substantial divergence
between the simulations predictions and the actual clinical
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Fig. 10. Number of surviving (metabolically living) proliferating and dormant
(G0) tumor cells corresponding to the particular GBM tumor considered as a
function of the time. TMZ is administered according to fractionation scheme A
(bold line) or B (light line) (Fig. 3). Each chemotherapy fraction corresponds to
200 mg/m . The cell cycle has been assumed equal toTc = 40 h and the mean
clonogenic cell density equal to 4� CCD = 4� 10 cells/mm (clonogenic
cell density in the proliferating cell layer = 8 � 10 cells/mm ). Only one
chemotherapy cycle/scheme has been simulated.

outcomes is observed, perturbations of the model parameter
values in combination with the use of pertinent optimization
techniques such as artificial neural networks, genetic algo-
rithms, etc. are activated. Thus, better adapted parameter values
are expected to emerge. Self optimization does not necessarily
require clinical trials specifically designed for the validation of
the model. Data stemming from the current clinical practice can
be used in order to considerably optimize the model. Hence, no
major ethical concerns are expected to arise during the clinical
validation-adaptation procedure. The fact that the simulation
model has a clear modular character is expected to substantially
facilitate its clinical adjustment and application. Simulation of
the reaction of normal tissues to TMZ chemotherapy is under
development. Ongoing integration of DNA microarray output in
conjunction with molecular data interpreting gene-protein-drug
networks are expected to strengthen the model’s predictive
potential. Furthermore, an adaption of the model so that the
concurrent behavior of several grades of malignancy is taken
into account would be another clinically important extension.

Our research group has already developed a novel 4-D model
of the response of in vivo tumors to fractionated radiation
therapy [18], [61], [66] which is envisaged to be merged with
the proposed chemotherapy model at a later stage. Due to the
high complexity of the combined problem, there is no alter-
native to a multistep procedure. A refinement of both models
should take place before their envisaged merging. Besides,
temozolomide may be prescribed as monotherapy to recurrent
gliomas. It should also be mentioned that provided that the
beginning of a chemotherapy cycle and the end of a preceding
radiotherapy course are quite distant, the effect of irradiation
exclusively on the imageable tumor is expected to have been
included in the “necrosed” areas of the tumor identifiable
through imaging techniques.

It is pointed out that although a quantitatively refined model
would take some time to complete, the simulation model pro-
posed can be used as a tool to perform extensive exploratory
parametric studies in the meantime. This implies that the model
can be used in order to identify those parameters that play the

most crucial role in the prediction outcome of the simulation
and consequently in the prediction of the natural phenomenon
itself. Such identifications are expected to lead to suggestions
for targeted experimental work in order to refine the estimates
of the most critical parameters. At the same time new questions
stimulating well targeted experimental, theoretical and clinical
research are expected to emerge.

VIII. CONCLUSION

The 4-D, patient individualized in vivo simulation model
of tumor response to temozolomide-based chemotherapy
presented in this paper constitutes a novel approach towards
the biological optimization of cancer treatment. An at least
qualitative agreement of the model’s predictions with clinical
experience strengthens its treatment optimization potential.
Systematic long term clinical testing that is currently under way
is expected to lead to both its algorithmic refinement and better
parameter value selection. After completion of the clinical
adaptation and validation procedure of the proposed model, an
integrated, patient individualized decision support and temporal
treatment planning system is expected to emerge. Significantly,
it could serve as an educational platform for professionals and
patients by means of virtual reality demonstrations of the likely
natural development and treatment responsiveness of specific
cancers so that all groups might positively contribute to the
discussion about treatment procedure.
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