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THE EVOLUTION OF. .  . 

Edited by Abe Shenitzer 

Mathematics, York University, North York, Ontario M3J lP3, Canada 

An English major may or may not be a novelist or a poet, but would undoubtedly 
be expected to be able to evaluate a novel or a poem. The term "English major" 
implies some historical, philosophical, and evaluative training and competence. It 
is sad but true that the term "mathematician" does not imply corresponding 
training and competence. 

Integration of the narrowly mathematical and historical, philosophical and 
critical aspects of our discipline is bound to make it more meaningful not only to 
those who identify themselves as mathematicians but also to those who have no 
more than a tangential interest in the subject. 

To promote such integration, and thus encourage an approach to mathematics 
that emphasizes its meaning and significance, the Monthly will publish every two 
months an article of 2-5 pages under the generic title "The evolution of. .  ." The 
corc of such an article will be an account of important mainstream mathematics. 
The essay that follows exemplifies the kind of material, and the approach, we have 
in mind. 

While we prefer original articles, we will also publish translations or adapta- 
tions of appropriate articles in the public domain. 

Abe Shenitzer 

The Evolution of Integration 

A. Shenitzer and J. Stepriins 

THE GREEK PERIOD. The Greek problem underlying integration is the quadra-
ture problem: Given a plane figure, construct a square of equal area. 

It is easy to solve the quadrature problem for a polygon, a figure with rectilinear 
boundary. The first quadrature of a figure with curvilinear boundary was achieved 
by Hippocrates in the fifth century B.C. Hippocrates showed that the area of the 
lunule in FIGURE1(that is, the figure bounded by one-half of a circle of radius 1 
and one-quarter of a circle of radius 6)is equal to the area of the unit square B. 

Hippocrates managed to square two other lunules.* 
In the third century B.C. Archimedes effected the quadrature of a parabolic 

segment. He showed that its area is :A, where A is the triangle of maximal area 
inscribed in the parabolic segment. 

Archimedes effected a number of other quadratures (and cubatures). Some of 
his quadratures involved inventive constructions but most relied on the technique 
of wedging an area between ever closer upper and lower approximating sums. 

*TWO more quadrable lunules were found by T. Clausen in the 19th century. In the 20th century, 
two Russian algebraists proved (independently) that these five lunules are the only quadrable ones. 
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Figure 1 

Figure 2 

Analogs of such sums are a key element of the definition of the Darboux integral (a  
variant of the Riemann integral introduced by Darboux in the 19th century) as well as 
of quadrature programs for computers. We illustrate both of Archimedes' ap-
proaches next. 

Consider FIGURE3. Here the hypotenuse AB of the right triangle OAB is 
tangent to the spiral at A. It then turns out that the side AB is equal to the 

Figure 3 
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circumference of the circle with radius OA. (This is a special case of Archimedes' 
rectification of circular arcs by using tangents to spirals.) Since he knew that the 
area of a circle is half the product of its circumference by its radius, we can say 
that Archimedes used (a tangent to) a spiral to rectify a circle and square its area. 
Their brilliance notwithstanding, such constructions have been reduced to histori- 
cal footnotes because they failed to yield general methods. 

FIGURE4 shows a turn of Archimedes' spiral r = a0 and the associated circle of 
radius 27ra, and thus of area K = 47r3a2. To compute the area S of the turn of the 
spiral in FIGURE 4 Archimedes approximates it from below and above by unions of 
circular sectors indicated in FIGURE 5. 

Figure 4 Figure 5 

The areas of these approximating figures are, respectively, 

and 

It is not difficult to see that 

for all n. This double inequality can be rewritten as 

K 
s; < - < s,"

3 
for all n. Obviously, 

SI,< S < S," 
for all n. To prove that S = (K/3) Archimedes shows that S,"- SI,= (47r3a2/3n2) 
and is thus small for large n. He can now show that the assumption S # K/3 leads 
to a contradiction and can conclude that S = (K/3). 

While Archimedes makes no explicit use of limits, he relies on the "method of 
exhaustion," and, in modern terms, the final part of the argument in a proof 
involving the method of exhaustion (in the above example it is disproving S # K/3) 
amounts to proving the uniqueness of the limit of a Cauchy sequence. 
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CONTINUATION IN THE 17TH CENTURY. Using nonrigorous infinitesimal 
techniques (rather than rigorous algebraic methods of the kind used by Archimedes) 
Cavalieri (1598-1647) managed to compute (what we now write as) l i x k  ak for 
k = 1,2,.. . ,9. His chief difficulty was the evaluation of lk+ . . . +nk. In about 
1650 Fermat evaluated 1 , " ~ ~ ' ~  ak by means of a brilliant yet simple computation. 
Further progress was due to Torricelli, Wallace, and Pascal. In particular, Pascal 
interpreted Cavalieri's "sum of lines" (the equivalent of area) as a sum of 
infinitesimal rectangles. 

If we combine Fermat's result with Cavalieri's understanding of the linearity of 
the definite integral (our terminology!) then we see that by the middle of the 17th 
century one could evaluate j ,b~(x)  ak, P(x) a "polynomial" with rational expo- 
nents. 

In 1647 Gregory St. Vincent made a discovery that linked Napier's logarithm 
function and the area under the hyperbola xy = 1. This connection is now 
expressed as log,(x) = l,X(dt/t). 

Newton and Leibniz invented the calculus and made it into a tool with countless 
applications but neither gave what we would call a rigorous definition of a definite 
integral (or saw the need for such a definition). Such concerns became dominant in 
the 19th century. 

FROM CAUCHY TO LEBESGUE. The first rigorous definition of a definite 
integral was given by Cauchy in the 1820s. Cauchy dealt with continuous functions. 
In view of the importance of Fourier series whose coefficients are given by 
integrals it was necessary to define the integral for more general functions. This 
was first done by Riemann. The limitations of the Riemann integral were reme- 
died at the beginning of the 20th century by Lebesgue. An explanation follows. 

With each theory of integration there is associated a theory of measure. 
Specifically, if f is a function on a set E and f = f+- f- (recall that f+(x)  = 

max{f (x), 0) and f-(x) = m a {-f (x), 0)) then 1, f is defined as the difference 
1, f+- 1, f- of the measures jEf and 1,f- of the ordinate sets of the nonnega- + 

tive functions f and f- respectively.+ 

The measure underlying the Riemann integral is Jordan measure and the 
measure underlying the Lebesgue integral is Lebesgue measure. How do they 
differ? In what way is one "better" than the other? 

Consider the simple case of the ordinate set M of a bounded, nonnegative 
function f on an interval, 0 I f(x) I c for x in [a, b]. The Jordan measure of M 
is the common value, if any, of the outer and inner Jordan measures of M. The 
outer Jordan measure of M is the glb of the areas of the coverings of M consisting 
of finite unions of rectangles. The inner measure of M is the difference between 
the area C(b - a) of the rectangle S with base [a, b] and height C and the outer 
measure of the complement of M in S. Lebesgue replaced the word "finite" in the 
Jordan definition of the measure of a subset of S by "countable." This increased 
greatly the number of measurable subsets of S and led to a theory of integration 
far more comprehensive and mathematically flexible than Riemann's. 

THE HK-INTEGRAL. Surprisingly, Henstock (in 1955) and Kurnveil (in 1957) 
came up with a new version of the Riemann integral-call it the HK-integral (see 
[7])-that is "as good as" the Lebesgue integral! Its definition and main character- 
istics follow (see [7]): 

Definition: A tagged division of [a, b] given by a finite ordered set a = x, < x, < 
. < x, = b of points, together with a collection of tags zi such that xi-, I zi I 
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xi for i = 1,. . .,n. We denote a tagged division by D(xi, zi) and the corresponding 
Riemann sum by 

A gauge on [a, b] is a function 6 defined on [a, b] such that 6(x) > 0 for all 
x E [a, bl. An important example of a gauge is a constant function. If 6 is any 
gauge on [a, b], we say that a tagged division D(xi, zi) is 6-fine in case that 

xi] G [zi - 6(zi), zi + 6(zi)]; that is, in case zi - 6(zi) Ixi-, I zi I xi I 
zi + 6(zi) for all i = 1,2, .. . ,n. Finally, we say that the number A is an HK-
integral of f if, for every E > 0, there exists a gauge 6, such that if D(xi, zi) is any 
tagged division of [a, b] that is 6,-fine, then we have 

It turns out that "the HK-integral of a function is uniquely defined when it 
exists and that a function is Riemann integrable if and only if the gauge 6, can be 
chosen to be constant." More importantly, "every Lebesgue integrable function is 
HK-integrable with the same value." 

THERE IS NO PERFECT INTEGRAL. While in the eyes of some mathematicians 
the Lebesgue integral was the final answer to the difficulties associated with 
integration, there were others who were not willing to give up the search for the 
perfect integral, one which would make all functions integrable. Because Lebesgue's 
construction had shown that the key to a comprehensive theory of integration was 
the construction of an appropriate measure, the search now focussed on finding a 
total measure on R, that is, one which assigns a measure to each subset of the real 
numbers. 

Vitali [6] showed that a total measure on the reals cannot be countably additive 
and translation invariant. This being so, it is natural to ask which of these 
properties should be retained. This decision is, of course, somewhat arbitrary. 
While retaining translation invariance leads to some fascinating group theory and 
the Banach-Hausdorff-Tarski Paradox, we will consider what happens if countable 
additivity is retained instead. 

In 1930 S. Ulam [I] showed that there is no such measure on w,, w, or on any 
cardinal1 which is the successor of some other cardinal. Ulam's proof was a 
spectacular advance in that it did not rely on any of the geometric assumptions, 
such as translation invariance, on which earlier proofs of the existence of non-mea- 
surable sets had relied. 

By Ulam's theorem, the existence of a countably additive measure on R that 
measures all of its subsets implies that 2'0 is not the successor of any other 
cardinal, that is, it is a limit cardinal. By arguing a bit more carefully one can show 
that there must exist some limit cardinal A I 2 5  which is not the union of fewer 
than A sets of size less than A. The existence of such a cardinal has a profound 
influence on set theory. 

In order to understand this influence, it is necessary to recall (a consequence of) 
Godel's second incompleteness theorem which says that set theory can not prove 
its own consistency. One way to prove the consistency of a theory is to find a model 

'cantor introduced the notation w to represent the next ordinal after the integers and it is still 
favored by set theorists today. The next cardinal after w is denoted w ,  and so on. 
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of that theory, that is, a mathematical structure satisfying all of the axioms of that 
theory. We ask: What are the implications for set theory of the existence of a 
model of set theory? Recall the procedure for the construction of the hierarchy of 
sets. One begins with the empty set-call it Vo-and then defines Vk to be the 
power set of Vk-, for each integer k 2 1.This is not the end, though, because one 
can then define Vmto be the union of the sets Vk and then define Vm+,to be the 
power set of V,. If one continues this as far as possible and takes the union one 
gets a model of set theory-or, at least, what would be a model of set theory if it 
were a set and not a proper class. 

How soon, if ever, does this construction process lead to a model of set theory? 
It turns out that many of the axioms of set theory are satisfied at early stages of the 
construction. For example the axiom of infinity is satisfied as soon as a single 
infinite set is included and this is already true of Vm+,.The power set axiom is 
satisfied at any limit stage because any set which occurs, occurs at a stage before 
the limit and so all of its subsets are added at the very next stage. The power set 
itself is therefore added in no more than two stages and, in any case, before the 
limit. For similar reasons, the pairing axiom is also satisfied at all limit stages. 
Well-foundedness and comprehension are also easy to deal with. 

The problematic axiom is the axiom of replacement, which says that the range 
of any function defined by a formula is a set. It has already been mentioned that 
Vm+,will satisfy all of the axioms of set theory except for replacement. Replace-
ment fails because the mapping which takes 2n to w + n and 2n + 1 to n is 
definable by a formula and its domain is w which belongs to Vm+,c Vm+,. 
However, the range of this function is w + w which does not belong to V,,,. The 
same argument can be used to show that Va is a model of set theory if and only if 
the following holds: 

if h < a  then2" a 
if h < a then any function F: h -+ a (defined using only parameters from Va) 
has range bounded in a. 

Any cardinal satisfying these requirements is known as a large or inaccessible 
cardinal. Since the existence of a large cardinal implies that a model of set theory 
exists, it follows from Godel's Theorem that it is impossible to prove the existence 
of inaccessible cardinals. 

Ulam's argument shows that if there is a countably additive measure which 
measures every set of reals then there is a cardinal a which satisfies the second 
requirement of being an inaccessible cardinal. Such cardinals are known as weakly 
inaccessible. Another of Godel's major contributions is the notion of the Con-
structible Universe, one of whose consequences is that any model of set theory 
contains a submodel which satisfies the generalized continuum hypothesis. This 
allows us to conclude that if there is a weakly inaccessible cardinal then, in the 
Constructible Universe, the weakly inaccessible cardinal is in fact an inaccessible 
cardinal; this is so because the cardinal arithmetic of this smaller model of set 
theory easily implies the first requirement for being a large cardinal. 

In other words, if there is a countably additive measure which measures every 
set of reals than set theory is consistent. This and Godel's theorem show that the 
existence of a perfect integral is not provable. On the other hand, it is conceivable 
that some day there may be a proof that it is not possible to have a perfect 
integral. The impact of this on set theory would be devastating. It would follow 
that many of the large cardinals which experts now consider quite innocuous, and 
which have played an important role in many important independence results, do 
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not exist. While this would not show that set theory itself is inconsistent it would 
severely shake our faith in the assumption that it is. 

We've told our story but would nevertheless like to tack on the following 
relevant "postscript": 

In what sense does the integral solve the Greek quadrature problem and what is 
its conceptual significance? A telegraphic answer to these two questions follows. 

The integral provides a direct "analytic" solution of the Greek quadrature 
problem for regions of the form 

Figure 6 

Indeed, the area of the region in the figure is 

b
A = / f ( x )  dx.  

a 

If we rewrite this as 

then it is clear that our "integral region" has been replaced by a rectangle of equal 
area with base b - a and height ( l / ( b  - a)) / ,bf(x)dx.  The quantity ( l / ( b  -
a)) / ,bf(x)dx is the average of the functional values of f on [ a ,  b ] .  This averaging 
ability of the integral is the key to its importance in countless applications. 
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